ACTA MEDICINAE 5/2016 | Pneumologie | Kompletní literatura

Transkript

ACTA MEDICINAE 5/2016 | Pneumologie | Kompletní literatura
ACTA MEDICINAE 5/2016 | Pneumologie | Kompletní literatura
2
Současné trendy v léčbě malobuněčného karcinomu plic
2
Možná, pravděpodobná, nebo jistá idiopatická plicní fibróza?
2
Současnost a nové trendy v léčbě nemalobuněčného karcinomu plic
3
ACOS: překryvný syndrom CHOPN a astmatu
3
Mepolizumab v léčbě těžkého astmatu
4
Nízká incidence těžkých exacerbací asthma bronchiale při užívání fixní kombinace flutikason
propionátu s formoterolem
4
Nové fixní kombinace v léčbě chronické obstrukční plicní nemoci
4
Nové možnosti léčby CHOPN na podkladě deficitu α1‑antitrypsinu
4
Glukokortikoidy indukovaná osteoporóza u pacientů s CHOPN
6
Novinky v diagnostice a léčbě spánkové apnoe
6
Přístup k diagnostice teplot nejasného původu a „laterální myšlení“
6
Dětská myopie na postupu
prof. MUDr. Miloš Pešek, CSc. Klinika pneumologie a ftizeologie FN, Plzeň
MUDr. Martina Šterclová, Ph.D. | prof. MUDr. Martina Vašáková, Ph.D.
Pneumologická klinika 1. LF UK a Thomayerovy nemocnice, Praha
MUDr. Leona Koubková Pneumologická klinika 2. LF UK a FN Motol, Praha
MUDr. Jaromír Zatloukal, Ph.D.
Klinika plicních nemocí a tuberkulózy, FN a LF Univerzity Palackého, Olomouc
MUDr. Vratislav Sedlák, Ph.D. Plicní klinika LF UK a FN, Hradec Králové
doc. MUDr. Milan Teřl, Ph.D. | MUDr. Olga Růžičková-Kirchnerová Pneumologická klinika LF UK a FN, Plzeň
MUDr. Vladimír Koblížek, Ph.D. | MUDr. Ondřej Kudela | MUDr. Martin Blažek, Ph.D. Plicní klinika LF UK a FN, Hradec Králové
MUDr. Jiří Slíva, Ph.D. Ústav farmakologie 3. LF UK, Praha
MUDr. Viktor Kašák LERYMED, s. r. o., Oddělení respiračních nemocí, Praha
MUDr. Jan Chlumský, Ph.D. Pneumologická klinika 1.LF UK a Thomayerovy nemocnice, Praha
MUDr. Olga Růžičková Revmatologický ústav, Praha
MUDr. Milada Hobzová, Ph.D. Klinika plicních nemocí a tuberkulózy LF UP a FN, Olomouc
MUDr. Luboš Kotík, CSc. I. interní oddělení, Fakultní Thomayerova nemocnice, Praha
prof. Ing. Jaroslav Petr, DrSc. Výzkumný ústav živočišné výroby, Praha
Současné trendy v léčbě malobuněčného karcinomu plic
prof. MUDr. Miloš Pešek, CSc. Klinika pneumologie a ftizeologie FN, Plzeň
1 Almquist, D. – Mosalpuria, K. – Ganti, A. K.: Multimodality therapy for limited-stage small-cell lung cancer. J Oncol Practice, 2016, 12,
s. 111–117.
2 Corso, Ch. D. – Rutter, Ch. E. – Park, H. S., et al.: Role of chemoradiotherapy in elderly patients with limited-stage small-cell lung cancer.
J Clin Oncol, 2015, 33, s. 4240–4246.
3 Fan, M. – Zhang, J. – Liu, D., et al.: Comparison of PET/CT, 99mTc-MDP
bone scan and serum alkaline phosphatase for detecting bony metastasis in patients with small cell lung cancer. J Thorac Oncol, 2015,
10, dopl. 2, S501, s. 7–16.
4 Georgie, J. – Lim, J. S. – Jang, J. S., et al.: Comprehensive genomic
profiles of small cell lung cancer. Nature, 2015, 524, s. 47–53, doi:
10.1038/nature14664.
5 Hanna, N. – Bunn, P. A. – Langer, C., et al.: Randomized phase III trial
comparing irinotecan/cisplatin with etoposide/cisplatin in patients
with previously untreated extensive-stage disease small-cell lung
cancer. J Clin Oncol, 2006, 24, s. 2038–2043.
6 Hermes, A. – Bergman, B. – Bremnes, R., et al.: Irinotecan plus carboplatin versus oral etoposide plus carboplatin in extensive small-cell lung cancer: A randomized phase III trial. J Clin Oncol, 2008, 26,
s. 4261–4267.
7 Ishii, H. – Azuma, K. – Kawahara, A., et al.: Significance of program­
med cell death-ligand 1 expression and its association with survival in patients with small cell lung cancer. J Thorac Oncol, 2015, 10,
s. 426–430.
8 Kim, E. Y. – Kim, Y. S. – Park, I., et al.: Prognostic significance of CT-determined sarcopenia in patients with small-cell lung cancer. J Thorac
Oncol, 2015, 10, s. 1795–1799.
9 Kolek, V., et al.: Doporučené postupy v pneumologii, 2013.
10 Lara, P. N. jr. – Natale, R. – Crowley, J., et al.: Phase III trial of irinotecan/cisplatin compared with etoposide/cisplatin in extensive-stage
small-cell lung cancer: Clinical and pharlmacogenomic results from
SWOG S0124. J Clin Oncol, 2009, 27, s. 2530–2535.
11 Mandami, H. – Indru, R. – Jalal, S. I.: Novel therapies in small cell lung
cancer. (Review Article on Lung Cancer Diagnostics and Treatments
2015: A Ranaissance of Patient Care.) Transl Lung Cancer Res, 2015, 4,
s. 533–544.
12 Nawal, L. – Islam, K. M. M. – Deviany, P. E., et al.: Survival trends of
small cell lung cancer (SCLC) in the United States: A SEER database
analysis. J Thorac Oncol, 2015, 10, dopl. 2, S402, MINI37.12.
13 Pillai, R. N. – Owonikoko, T. K.: Small cell lung cancer: therapies and
targets. Semin Oncol, 2014, 41, s. 133–142.
14 Slotman, B. – Faivre-Finn, C. – Interen, H. V., et al.: Which patients
with ES-SCLC should receive thoracic radiotherapy (TRT) routinely?
J Thorac Oncol, 2015, 10, S193, dopl. 2, ORAL10.03
15 Thomas, A. – Szabo, E. – Pinsky, P.: Screening for small cell lung cancer: analysis of the national lung cancer screening trial data. J Thorac
Oncol, 2015, 10, dopl. 2, S221, ORAL25.01.
16 Vandeusen, A. – Zaidi, A. H. – Martin, S. A., et al.: Peripheral limited small cell lung cancer (SCLC). Does surgical resection have a role
in primary management? J Thorac Oncol, 2015, 10, dopl. 2, S499,
P1.7–11.
17 Videtic, G. M. M. – Reddy, Ch. – Woody, N., et al.: Medically inoperable early stage small cell lung cancer: patterns of failure after SBRT.
J Thorac Oncol, 2015, 10, dopl. 2, S626, P2.7–13.
18 Wong, A. T. – Rineer, J. – Schwarz, D., et al.: Assessing the impact of
postoperative radiation therapy for completely resected limited-stage
small cell lung cancer using the national cancer database. J Thorac
Oncol, 2015, 11, s. 242–248.
19 Xie, D. – Marks, R. – Zhang, M., et al.: Nomograms predict over­
all survival for patients with small-cell lung cancer incorporating
pretreatment peripheral blood markers. J Thorac Oncol, 2015, 10,
s. 1213–1220.
20 Yang, Ch. F. J. – Chan, D. Y. – Speicher, P. J., et al.: Long-term survival
after surgery for pathologic N1 and N2 small cell lung cancer: a comparison with nonoperative management. J Thorac Oncol, 2015, 10,
dopl. 2, S193, ORAL10.06.
21 Illei, P. B. – Forde, P. – Hann, Ch., et al.: Expression in small cell lung
carcinoma: an immunohistochemical analysis of 26 cases using
two anti-PD-L1 antibodies. J Thorac Oncol, 2015, 10, dopl. 2, S360,
MINI27.03.
22 Ishii, H. – Azuma, K. – Kawahara, A., et al.: Significance of program­
med cell death-ligand 1 expression and its association with survival in patients with small cell lung cancer. J Thorac Oncol, 2015, 10,
s. 426–430.
23 Karavasilis, V. – Kotsakis, A. – Agelaki, S., et al.: Pazopanib as second
line treatment of platinum sensitive SCLC patients: a multicenter phase II trial of the Hellenic Oncology Research Group. J Thorac Oncol,
2015, 10, dopl. 2, S401, MINI37.08.
24 Mandami, H. – Indru, R. – Jalal, S. I.: Novel therapies in small cell lung
cancer. (Review Article on Lung Cancer Diagnostics and Treatments
2015: A Ranaissance of Patient Care.) Transl Lung Cancer Res, 2015, 4,
s. 533–544.
25 Owonikoko, T. K. – Csoszi, T. – Nackaerts, K., et al.: Alisertib
­(MLN8237)+paclitaxel versus placebo+paclitaxel for relapsed SCLC.
J Thorac Oncol, 2015, 10, dopl. 2, S625, P2.9, s. 7–10.
26 Rudin, Ch. M. – Pietanza, M. C. – Spigel, D. R., et al.: A DLL3-targeted
ADC, rovalpituzumab tesirine, demonstrates substantial activity in
a phase I study in relapsed and refractory SCLC. J Thorac Oncol, 2015,
10, dopl. 2, S192, ORAL10.01.
27 La Russa, F. – Roca, E. – Grossi, F., et al.: Maintenance with lanreotide
in SCLC patients, expressing somatostatine receptors, after response
to first line therapy. J Thorac Oncol, 2015, 10, dopl. 2, S626, P2.7–11.
Možná, pravděpodobná, nebo jistá idiopatická plicní fibróza?
MUDr. Martina Šterclová, Ph.D. | prof. MUDr. Martina Vašáková, Ph.D.
Pneumologická klinika 1. LF UK a Thomayerovy nemocnice, Praha
1 Wells, A. U.: The revised ATS/ERS/JRS/ALAT diagnostic criteria for
idio­pathic pulmonary fibrosis (IPF) – practical implications. Respir
Res, 2013, 14, s. S2.
2 Le Roupic, O. – Bendaoud, S. – Chenivesse C., et al.: Prognostic value
of the initial chest high-resolution CT pattern in idiopathic pulmonary
fibrosis. Sarcoidosis Vasc Diffuse Lung Dis, 2016, 32, s. 353–359.
3 Walsh, S. L. – Calandriello, L. – Sverzellati, N., et al.: UIP Observer
Consort. Interobserver agreement for the ATS/ERS/JRS/ALAT criteria
for a UIP pattern on CT. Thorax, 2016, 71, s. 45–51.
4 Yagihashi, K. – Huckleberry, J. – Colby, T. V., et al.: Radiologic-pathologic discordance in biopsy-proven usual interstitial pneumonia. Eur
Respir J, 2016, 47, s. 1189–1197.
5 Kaarteenaho, R.: The current position of surgical lung biopsy in the
diagnosis of idiopathic pulmonary fibrosis. Respir Res, 2013, 14, s. 43.
6 Aaløkken, T. M. – Naalsund, A. – Mynarek, G., et al.: Diagnostic accuracy of computed tomography and histopathology in the diagnosis
of usual interstitial pneumonia. Acta Radiol, 2012, 53, s. 296–302.
7 Huie, T. J. – Brown, K. K.: Definitions of disease: should possible and
probable idiopathic pulmonary fibrosis be enrolled in treatment
­trials? Respir Investig, 2015, 53, s. 88–92.
8 Lee, J. W. – Shehu, E. – Gjonbrataj, J., et al.: Clinical findings and outcomes in patients with possible usual interstitial pneumonia. Respir
Med, 2015, 109, s. 510–516.
9 Raghu, G. – Lunch, D. – Godwin, J. D., et al.: Diagnosis of idiopathic
pulmonary fibrosis with high-resolution CT in patients with little or
no radiological evidence of honeycombing: secondary analysis of
a randomised, controlled trial. Lancet Respir Med, 2014, 2, s. 277–284.
10 Yu, Y. F. – Wu, N. – Chuang, Ch., et al.: Patterns and economic burden
of hospitalizations and exacerbations among patients diagnosed with
idiopathic pulmonary fibrosis. J Manag Care Spec Pharm, 2016, 22,
s. 414–423.
11 Richeldi, L. – Cottin, V. – Flaherty, K. R., et al.: Design of the INPULSIS trials: Two phase 3 trials of nintedanib in patients with idiopathic
pulmonary fibrosis. Respir Med, 2014, 108, s. 1023–1030.
12 Bonella, S. – Stowasser, S. – Wollin, L.: Idiopathic pulmonary fibrosis:
current tretament options and clinical appraisal of nintedanib. Drug
Design, Development and Therapy, 2015, 9, s. 6407–6419.
13 Richeldi, L. – du Bois, R. M. – Praghu, G., et al.: Efficacy and safety of
nintedanib in idiopathic pulmonary fibrosis. N Engl J Med, 2014, 370,
s. 2071–2082.
Současnost a nové trendy v léčbě nemalobuněčného
karcinomu plic
MUDr. Leona Koubková Pneumologická klinika 2. LF UK a FN Motol, Praha
1 Travis, W. D. – Brambilla, E. – Nicholson, A. G., et al.: The 2015 World
Health Organization Classification of Lung Tumors. Impact of genetic,
clinical and radiologic advances since the 2004 classification. Journal
of Thoracic Oncology, 2015, 10, s. 1243–1260.
2 Scagliotti, G. V., et al.: Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol,
2008, 26, s. 3543–3551.
3 Yang, J. C., et al.: AZD9291 in pre-treated T790M positive advanced NSCLC: AURA study Phase II extension cohort. Abstrakt 943.
Prezentováno na: 16th World Conference on Lung Cancer, 6.–9. 9.
2015, Denver, CO.
4 Mitsudomi, T., et al.: AZD9291 in pre-treated T790M positive advanced NSCLC: AURA2 Phase II study. Abstrakt 1406. Prezentováno na:
16th World Conference on Lung Cancer, 6.–9. 9. 2015, Denver, CO.
5 Klak, E. L. – Bang, Y. – Camidge, D. R., et al.: Anaplastic lymphoma
kinase inhibition in non-small-cell lung cancer. N Engl J Med, 2010,
363, s. 1693–1703.
6 Dong-Wan, K., et al.: Ceritinib in advanced anaplastic lymphoma kinase (ALK)-rearranged (ALK+) non-small cell lung cancer (NSCLC):
Results of the ASCEND-1 trial. J Clin Oncol, 32, 2014, dopl., abstrakt
8003.
7 Zilan, S. – Meining, W. – Ao, Z.: Alectinib: a novel second generation
anaplastic lymphoma kinase (ALK) inhibitor for overcoming clinically-acquired resistance [J]. Acta Pharmaceutica Sinica B, 2015, 5, s. 34–37.
8 Ajimizu, H. – Kim, Y. H. – Mishima, M.: Rapid response of brain metastases to alectinib in a patient with non-small-cell lung cancer resistant to crizotinib. Med Oncol, 2015, 32, s. 477.
9 Thatcher, N. – Hirsch, F. R. – Luft, A. V., et al.: Necitumumab plus
gemcitabine and cisplatin versus gemcitabine and cisplatin alone as
ACTA MEDICINAE 5/2016 | pneumologie | Kompletní literatura
first-line therapy in patients with stage IV squamous non-small-cell
lung cancer (SQUIRE): an open-label, randomised, controlled phase
3 trial. The Lancet Oncology, 2015, 16, s. 763–774.
10 Sander, A., et al.: Paclitaxel–carboplatin alone or with bevacizumab
for non-small-cell lung cancer. NEJM, 2006, 355, s. 2542–2550.
11 Reck, M. – Kaiser, R. – Mellemgaard, A. – Douillard, J. Y., et al.: LUME-Lung 1 Study Group. Docetaxel plus nintedanib versus docetaxel
plus placebo in patients with previously treated non-small-cell lung
cancer LUME-Lung 1): a phase 3, double-blind, randomised control­
led trial. Lancet Oncol, 2014, 15, s. 143–155.
12 Garon, E. B. – Ciuleanu, T. E. – Arrieta O., et al.: Ramucirumab plus
docetaxel versus placebo plus docetaxel for second-line treatment of
stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised
phase 3 trial. Lancet, 384, online, 2. 6. 2014, s. 665–673.
13 Takashi, S. – Terufumi, K. – Makoto, N., et al.: Erlotinib alone or with
bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations
(JO25567): an open-label,randomised, multicentre, phase 2 study.
Lancet Oncol, 2014, 15, s. 1236–1244.
14 Spigel, D. R., et al.: A phase III study (CheckMate 017) of nivolumab
(NIVO; anti-programmed death-1 [PD-1]) vs docetaxel (DOC) in previously treated advanced or metastatic squamous (SQ) cell non-small
cell lung cancer (NSCLC). J Clin Oncol, 2015, 33, dopl., abstrakt 8009.
15 Paz-Ares. L. – Horn, L. – Borghaei, H., et al.: Phase III, randomized
­trial (CheckMate 057) of nivolumab (NIVO) versus docetaxel (DOC)
in advanced non-squamous cell (non-SQ) non-small cell lung cancer
(NSCLC). J Clin Oncol, 2015, 33, dopl., abstrakt LBA109.
16 Garon, E. B. – Jizvi, N. A. – Hui, R., et al.: KEYNOTE-001 Investigators. Pembrolizumab for the treatment of non-small-cell lung cancer.
N Engl J Med, 2015, 372, s. 2018–2028.
17 Herbst, R. S. – Kim, D. W. – Felip, E., et al.: KEYNOTE-010: Phase 2/3
Study of Pembrolizumab (MK-3475) vs Docetaxel for PD-L1–Positive
NSCLC After Platinum-Based Therapy. Prezentováno na: ESMO Asia
2015 Congress, Singapur, 2015, s. 18–21.
18 Spira, A. I., et al.: Efficacy, safety and predictive biomarker results from
a randomized phaseII study comparing MPDL3280A vs docetaxel in
2L/3L NSCLC (POPLAR). J Clin Oncol, 2015, 33, dopl., abstrakt 8010.
19 Brahmer, J., et al.: Nivolumab versus docetaxel in advanced squamous-cell non–small-cell lung cancer. N Engl J Med, 2015, 373,
s. 123–135
ACOS: překryvný syndrom CHOPN a astmatu
MUDr. Jaromír Zatloukal, Ph.D.
Klinika plicních nemocí a tuberkulózy, FN a LF Univerzity Palackého, Olomouc
1 GINA, GOLD: Asthma, COPD, and Asthma-COPD Overlap Syndrome.
dostupné z: www.goldcopd.org.
2 Miravitlles, M., et al.: Spanish COPD Guidelines (GesEPOC): Pharmacological Treatment of Stable COPD. Arch Bronconeumol, 2012, 48,
s. 247–257.
3 Koblížek, V., et al.: Chronic Obstructive Pulmonary Disease: Offi­cial
diagnosis and treatment guidelines of the Czech Pneumological and
Phthisiological Society; a novel phenotypic approach to COPD with
patient-oriented care. Biomed Pap Med Fac Univ Palacky Olomouc
Czech Repub, 2013, 157, s. 189–201.
4 Soriano, J. B., et al.: The proportional Venn diagram of obstructive
lung disease. Chest, 2003, 124, s. 474–481.
5 Miravitlles, M., et al.: Characterisation of the overlap COPD-asthma
phenotype. Focus on physical activity and health status. Respiratory
Medicine, 2013, 107, s. 1053–1060.
6 Koblížek, V.: Phenotypical heterogeneity of severe COPD subjects: Baseline results from the Czech multicentre research database of COPD. ERS
Congress, 2015.
7 Hardin, M., et al.: The clinical features of the overlap between COPD
and asthma. Respiratory Research, 2011, 12, s. 127.
8 Orie, N. G. M., et al.: The host factor in bronchitis. In: Orie, N. G. M., et
al.: Bronchitis. Assen, Nizozemsko, Royal Van Gorcum, 1961, s. 43–59.
9 Fletcher, C. M., et al.: The significance of respiratory symptoms and
the diagnosis of chronic bronchitis in a working population. BMJ,
1959, 2, s. 257–266.
Mepolizumab v léčbě těžkého astmatu
MUDr. Vratislav Sedlák, Ph.D. Plicní klinika LF UK a FN, Hradec Králové
doc. MUDr. Milan Teřl, Ph.D. | MUDr. Olga Růžičková-Kirchnerová
Pneumologická klinika LF UK a FN, Plzeň
MUDr. Vladimír Koblížek, Ph.D. | MUDr. Ondřej Kudela | MUDr. Martin Blažek, Ph.D.
Plicní klinika LF UK a FN, Hradec Králové
1 Teřl, M. – Pohunek, P.: Strategie diagnostiky, prevence a léčby astmatu. Uvedení globální strategie do praxe v ČR. Praha, Česká iniciativa pro
astma, 2012.
2 Sedlák, V. – Chlumský, J. – Teřl, M. – Novotná, B., et al.: Doporučený
postup pro diagnostiku a léčbu obtížně léčitelného astmatu v České
republice. Studia pneumologica et phthiseologica, 2011, 71, s. 65–75.
3 Sedlák, V. – Kudela, O. – Koblížek, V.: Problematické těžké astma
bronchiale. Acta medicinae, 2014, 3, s. 52–58.
4 Teřl, M., et al.: Doporučený postup diagnostiky a léčby bronchiálního
astmatu. GEUM, Semily, 2015.
5 Sedlák, V. – Koblížek, V.: Určování fenotypu astmatu ve výzkumu a klinické praxi. Medicína po promoci, 2010.
6 Chung, K. F. – Godard, P. – Adelroth, E., et al.: Difficult/therapy-resistant asthma: the need for an integrated approach to define clinical phenotypes, evaluate risk factors, understand patophysiology
and find novel therapies. ERS Task Force on Difficult/Therapy-Resistant Asthma. European Respiratory Society. Eur Respir J, 1999, 13,
s. 478–483.
7 Bel, E. H.: Clinical phenotypes of asthma. Curr Opin Pulm Med, 2004,
10, s. 44–50.
8 Good, T. J. J. – Kolakowski, Ch. A. – Groshong, S. D., et al.: Refractory asthma: Importance of bronchoscopy to identify phenotypes and
direct therapy. Chest, 2012, 141, s. 599–606.
9 Moore, C. W. – Meyers, D. A. – Wenzel, S. E., et al.: Identification of
asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med, 2010, 181, s. 315–323.
10 Hastie, A. T. – Moore, W. C. – Meyers, D. A., et al.: National Heart,
Lung, and Blood Institute Severe Asthma Research Program Analyses
of asthma severity phenotypes and inflammatory proteins in subjects
stratified by sputum granulocytes. J Allergy Clin Immunol, 2010, 125,
s. 1028–1036.
11 Haldar, P. – Pavord, I. D. – Shaw, D.: Cluster analysis and clinical
asthma phenotypes. Am J Respir Crit Care Med, 2008, 178, s. 218–224.
12 Brusselle, G. – Vanderstichele, C. – Jordens, P., et al.: Azithromycin
for prevention of exacerbations in severe asthma (AZISAST): a multicentre randomised double-blind placebo-controlled trial. Thorax,
2013, 68, s. 322–329.
13 Castro, M. – Rubin, A. S. – Laviolette, M., et al.: Effectiveness and
safety of bronchial thermoplasty in the treatment of severe asthma:
a multicenter, randomized, double-blind, sham-controlled clinical
trial. Am J Respir Crit Care Med, 2010, 181, s. 116–124.
14 Ruzickova Kirchnerova, O. – Terl, M.: Bronchial thermoplasty as
an option for severe asthma patients—our experiences and retrospective evaluation. 2014, dostupné z: http://erj.ersjournals.com/content/44/Suppl_58/P3735, vyhledáno 13. 4. 2016.
15 Berry, M. – Morgan, A. – Shaw, D., et al.: Pathological features and
inhaled corticosteroid response of eosinophilic and non-eosinophilic
asthma. Thorax, 2007, 62, s. 1043–1049.
16 Bousquet, J. – Chanez, P. – Lacoste, J. Y., et al.: Eosinophilic inflammation in asthma. N Engl J Med, 1990, 323, s. 1033–1039.
17 Menzella, F. – Lusuardi, M. – Galeone, C., et al.: Profile of anti-IL-5
mAb mepolizumab in the treatment of severe refractory asthma and
hypereosinophilic diseases. J Asthma Allergy, 2015, 8, s. 105–114.
18 Wenzel, S. E. – Schwartz, L. B. – Langmack, E. L., et al.: Evidence that
severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am
J Respir Crit Care Med, 1999, 160, s. 1001–1008.
19 Flood-Page, P. – Swenson, Ch. – Faiferman, I., et al.: A study to evaluate safety and efficacy of mepolizumab in patients with moderate
persitent asthma. Am J Respir Crit Care Med, 2007, 176, s. 1062–1071.
20 Leckie, M. – ten Brinek, A. – Khan, J., et al.: Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet, 2000, 356,
s. 2144–2148.
21 Kips, J. – O’Connor, B. J. – Pauwels, R. A., et al.: Effect of SCH55700,
a huminized anti-human interleukin-5 antibody in severe persitent asthma, a pilot study. Am J Respir Crit Care Med, 2003, 167,
s. 1655–1659.
22 Pavor, I. D. – Howarth, P. – Bleecker, R. E., et al.: Mepolizumab for
severe eosinophilic asthma (DREAM): a multicentre, double-blind,
placebo-controlled trial. Lancet, 2012, 380, s. 651–650.
23 Prazma, C. – Wnezel, S. E. – Barnes, N., et al.: Characterization of an
OCS-dependent severe asthma population treated with mepolizumab. Thorax, 2014, 69, s. 1141–1142.
24 Ortega, L. M. – Pavord, I. D. – Brussele, G. G., et al.: Mepolizumab
treatment in patients with severe eosinophilic asthma. N Engl J Med,
2014, 371, s. 1198–207.
ACTA MEDICINAE 5/2016 | pneumologie | Kompletní literatura
Nízká incidence těžkých exacerbací asthma bronchiale při
užívání fixní kombinace flutikason propionátu s formoterolem
MUDr. Jiří Slíva, Ph.D. Ústav farmakologie 3. LF UK, Praha
1 Papi, A. – Mansur, A. H. – Pertseva, T., et al.: Long-term fluticasone
propionate/formoterol fumarate combination therapy is associated
with a low incidence of severe asthma exacerbations. J Aerosol Med
Pulm Drug Deliv, 2016, doi:10.1089/jamp.2015.1255.
2 Ducharme, F. M. – Ni, C. M. – Greenstone, I. – Lasserson, T. J.:
Addition of long-acting beta2-agonists to inhaled corticosteroids versus same dose inhaled corticosteroids for chronic asthma in adults
and children. Cochrane Database Syst Rev, 2010, CD005535.
3 Lasserson, T. J. – Ferrari, G. – Casali, L.: Combination fluticasone
and salmeterol versus fixed dose combination budesonide and
formoterol for chronic asthma in adults and children. Cochrane Database Syst Rev, 2011, CD004106.
4 Chauhan, B. F. – Ducharme, F. M.: Addition to inhaled corticosteroids
of long-acting beta2-agonists versus anti-leukotrienes for chronic
asthma. Cochrane Database Syst Rev, 2014, CD003137.
Nové fixní kombinace v léčbě chronické obstrukční plicní
nemoci
MUDr. Viktor Kašák LERYMED, s. r. o., Oddělení respiračních nemocí, Praha
1 Kašáková, E. – Kašák, V.: Může nesprávná inhalační technika ovlivnit
efektivitu léčby pacientů s chronickou bronchiální obstrukcí? Alergie,
2015, 17, s. 39–44.
2 Teřl, M.: Inhalační léčba astmatu – cesta do průdušek i duše pacienta.
Alergie, 2015, 17, s. 33–36.
3 Koblížek, V. – Chlumský, J. – Zindr, V., et al.: Doporučený postup ČPFS
pro diagnostiku a léčbu stabilní CHOPN. Jessenius, Maxdorf, 2013.
4 Teřl, M. – Čáp, P. – Dvořáková, R., et al.: Doporučený postup diagnostiky a léčby bronchiálního astmatu. ČPFS, ČSAKI, GEUM, 2015.
5 Global strategy for the diagnosis, management and prevention of chronic
obstructive lung disease. Aktualizováno 2016. GOLD 2016; dostupné z:
www.goldcopd.com.
6 Global strategy for asthma management and prevention. Revidováno
2016. GINA 2016; dostupné z: www.ginasthma.org.
7 Kašák, V.: Farmakoterapie CHOPN v r. 2015. Postgraduální medicína,
2015, 17, příloha č. 1, s. 6–22.
8 Cazzola, M. – Page, C. P. – Calzeta, L., et al.: Pharmacology and therapeutics of bronchodilators. Pharmacol Rev, 2012, 64, s. 450–504.
9 Barjaktarevic, I. Z. – Arrendondo, A. F. – Cooper, C. B.: Positioning
new pharmacotherapies for COPD. Int J COPD, 2015, 10, s. 1427–1442.
10 Kašák, V.: Indakaterol/glykopyrronium bromid – první fixní kombinace s dlouhodobým duálním bronchodilatačním účinkem. Farmakoterapie, 2014, 10, s. 436–447.
11 Kudela, O. – Sedlák, V. – Koblížek, V.: Duální bronchodilatační léčba.
ACTA MEDICINAE, 2015, 10, s. 44–46.
12 Marel, M.: Nová duální kombinace aclidinium bromidu a formoterol
v léčbě nemocných s chronickou obstrukční plicní nemocí. Farmakoterapie, 2015, 11, s. 492–503.
13 Barnes, P. J.: Scientific rationale for inhaled combination therapy
with long-acting β2-agonists and corticosteroids. Eur Respir J, 2002,
19, s. 182–189.
14 Bateman, E. D. – Mahler, D. A. – Vogelmeier, C. F., et al.: Recent
advances in COPD disease management with fix dose long-acting
combination therapies. Expert Rev Respir Med, 2014, 8, s. 357–379.
15 Marel, M.: Nová léková kombinace Relvar Ellipta pro nemocné
s CHOPN a s bronchiálním astmatem. Stud Pneumol Phtiseol, 2014,
6, s. 194–200.
Nové možnosti léčby CHOPN na podkladě deficitu
α1‑antitrypsinu
MUDr. Jan Chlumský, Ph.D. Pneumologická klinika 1.LF UK a Thomayerovy nemocnice, Praha
1 Campos, M. A. – Lascano, J.: Current best practice in testing and
augmentation therapy. Ther Adv Resp Dis, 2014, 8, s. 150–161.
2 Chapman, K. R. – Burdon, J. G. W. – Piitulainen, E., et al.: Intravenous augmentation treatment and lung density in severe α1
antitrypsin deficiency (RAPID): a randomised, double-blind, placebo-controlled trial. Lancet, 2015, 386, s. 360–368, http://doi.org/10.1016/
S0140-6736(15)60860-1.
3 Kelly, E. – Greene, C. M. – Carroll, T. P., et al.: Alpha-1 antitrypsin deficiency. Respiratory Medicine, 2010, 104, s. 763–772, http://doi.org/
10.1016/j.rmed.2010.01.016.
4 McElvaney, N. G. – Teschler, H. – Stockley, R., et al.: Augmenta­
tion therapy for alpha-1 antitrypsin deficiency: towards a personalised approach. Respiratory Medicine, 2009, 34, s. 1, http://doi.
org/10.1186/1750-1172-8-149.
5 Stockley, R. – Parr, D. G. – Piitulainen, E., et al.: Therapeutic efficacy
of α-1 antitrypsin augmentation therapy on the loss of lung tissue:
an integrated analysis of 2 randomised clinical trials using computed tomography densitometry. Respiratory Research, 2010,11, s. 136,
http://doi.org/10.1186/1465-9921-11-136.
6 Stockley, R. A. – Miravitlles, M. – Vogelmeier, C.: Augmentation
therapy for alpha-1 antitrypsin deficiency: towards a personalised
approach. Orphanet Journal of Rare Diseases, 2013, 8, s. 1, http://doi.
org/10.1186/1750-1172-8-149.
7 Stoller, J. K. – Aboussouan, L. S.: A review of α-1 antitrypsin defi­
ciency. American Journal of Respiratory and Critical Care Medicine, 2012,
185, s. 246–259, http://doi.org/10.1164/rccm.201108-1428CI.
8 Stoller, J. K.: American Thoracic Society/European Respiratory Society
Statement. American Journal of Respiratory and Critical Care Medicine,
2003, 168, s. 818–900, http://doi.org/10.1164/rccm.168.7.818.
Glukokortikoidy indukovaná osteoporóza u pacientů s CHOPN
MUDr. Olga Růžičková Revmatologický ústav, Praha
1 Kanis, J. A. – Johansson, H. – Oden, A., et al.: A meta-analysis of
prior corticosteroid use and fracture risk. J Bone Miner Res, 2004, 19,
s. 893–899.
2 Lekamwasam, S. – Adachi, J. D. – Agnusdei, D., et al.: A framework
for the development of guidelines for the management og glucocorticoid- induced osteoporosis. Osteoporos Int, 2012, 23, s. 2257–2276.
3 Adachi, J. D. – Ioannidis, G.: Calcium and vitamin D therapy in corticosteroid-induced bone loss: What is the evidence? Calcif Tissue Int,
1999, 65, s. 332–336.
4 de Vries, F. – Bradle, M. – Leufkens, H. G., et al.: Fracture risk with
intermittent high dose oral glucocorticoid therapy. Arthritis Rheum,
2007, 56, s. 208–214.
5 Adachi, J. D. – Papaioannou, A.: In whom and how to prezent
6
7
8
9
glucocorticoid-induced osteoporosis. Best Pract Res Clin Rheumatol,
2005, 19, s. 1039–1064.
Adachi, J. D. – Saag, K. G. – Delmas, P. D., et al.: Two-year effects of
alendronate on bone mineral density and vertebral fracture in pa­tiens
receiving glucocorticoids: a randomized, double-blind, placebo-controlled extension trial. Arthritis Rheum, 2001, 44, s. 202–211.
Bianchi, M. L.: Glucorticoids and bone: some general remarks and
some special observations in pediatric patients. Calcif Tissue Int, 2002,
70, s. 384–390.
Canalis, E. – Mazziotti, G. – Gustina, A., et al.: Glucocorticoid-induced
osteoporosis: pathophysiology and therapy. Osteoporos Ini, 2007, 18,
s. 1319–1328.
Cohen, S. – Levy, R. M. – Keller, M., et al.: Risedronate therapy
prevents corticosteroid-Incudes bone loss. American College of Rheumatology, Arthritis&Rheumatism, 1999, 42, s. 2309–2318.
10 Etminan, M. – Sadatsafavi, M. – Ganjizadeh Zavareh, S., et al.: Inhaled corticosteroids and the risk of fractures in older adults: a systematic review and meta-analysis. Drug Saf, 2008, 31, s. 409–414.
11 Rizzoli, R. – von Tscharner, V. – Fleisch, H.: Increase of adenylate
cyclase catalytic-unit activity by dexamethasone in rat osteoblast-like cells. Biochem J ,1986, 237, s. 447–454.
12 Leib, E. S. – Saag, K. G. – Adachi, J. D., et al.: Official positions for FRAX
clinical regarding glucocorticoids: the impact of the use of glucocorticoids on the estimate by FRAX of the 10 year risk of fracture from
Joint Official Positions Development Konference of the International Society for Clinical Densitometry and International Osteoporosis
ACTA MEDICINAE 5/2016 | pneumologie | Kompletní literatura
Foundation on FRAX. J Clin Densitom, 2011, 14, s. 212–219.
13 Cohen, S. B. – Dore, R. K. – Lane, N. E., et al.: Denosumab treatment
effects on structural damage, bone mineral density, and bone turn­
over in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis
Rheum, 2008, 58, s. 1299–1309.
14 Compston, J. – Reid, D. M. – Boisdron, J., et al.: Recommendations
for the registration of agents for prevention and treatment of glucocorticoid-induced osteoporosis: an update from the Group for the
Respect of Ethics and Excellence in Science. Osteoporos Int, 2008, 19,
s. 1247–1250.
15 Canalis, E. – Mazziotti, G. – Gustina, A., et al.: Glucocorticoid-induced
osteoporosis: pathophysiology and therapy. Osteoporos Ini, 2007, 18,
s. 1319–1328.
16 Einstein, R. S. – Jilka, R. L. – Partity, A. M., et al.: Inhibition of osteo­
blastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious
effects on bone. J Clin Incest, 1998, 102, s. 274–282.
17 Einstein, R. S.: Glucocorticoid-induced osteoporosis. In: MR
ASB (ed) Primer on the metabolic bone diseases and disorders of
mineral metabolism. John Wiley & Sons, Hoboken, NJ, 2009,
doi:l0.1002/9780470623992.ch 58.
18 Rochefort, G. Y. – Pallu, S. – Benhamou, C. L.: Osteocyte: the unrecognized side of bone tissue. Osteoporosis Int, 2010, 21, s. 1457–1469.
19 Den Uyl, D. – Bultink, I. E. – Lems, W. F.: Advances in glucocorticoid-induced osteoporosis. Curr Rheumatol Rep, 2011, 13, s. 233–240.
20 Hayashi, K. – Yamaguchi, T. – Yano, S., et al.: BMPAVnt antagonists
are upregulated by dexamethasone in osteoblasts and reversed by
alendronate and PTH: potential therapeutic targets for glucocorticoid-induced osteoporosis. Biochem Biophys Res Commun, 2009, 379,
s. 261–266.
21 Yao, W. – Cheby, Z. – Busse, C., et al.: Glucocorticoid excess in mice
results in early activation of osteoclastogenesis and adipogenesis and
prolonged suppression of osteogenesis: a longitudinal study of gene
expression in bone tissue from glucocorticoid-treated mice. Arthritis
Rheum, 2008, 58, s. 1674–1686.
22 Hayashi, K. – Yamaguchi, T. – Yano, S., et al.: BMPAVnt antagonists
are upregulated by dexamethasone in osteoblasts and reversed by
alendronate and PTH: potential therapeutic targets for glucocorticoid-induced osteoporosis. Biochem Biophys Res Commun, 2009, 379,
s. 261–266.
23 Yao, W. – Cheby, Z. – Busse, C., et al.: Glucocorticoid excess in mice
results in early activation of osteoclastogenesis and adipogenesis and
prolonged suppression of osteogenesis: a longitudinal study of gene
expression in bone tissue from glucocorticoid-treated mice. Arthritis
Rheum, 2008, 58, s. 1674–1686.
24 Vestergaard, P. – Rejnmark, L. – Mosekilde, L.: Fracture risk associated with different types of oral corticosteroids and effect of termination of corticosteroids on the risk of fractures. Calcif Tissue Int, 2008,
82, s. 249–257.
25 Cooper, M. S. – Rabbitt, E. H. – Goddard, P. E., et al.: Osteoblastic
11 beta-hydroxysteroid dehydrogenase type 1 activity increases
with age and glucocorticoid exposure. J Bone Miner Res, 2002, 17,
s. 979–986.
26 Štěpán, J.: Osteoporóza a metabolická onemocnění skeletu. In: Pavelka, K., et al.: Revmatologie. Praha, Maxdorf Jessenius, 2012, s. 483–552.
27 Grossmann, J. M. – Gordon, R. – Ranganath, V. K., et al.: American
College of Rheumatology 2010 recommendations for the prevention
and treatment of glucocorticoid-induced osteoporosis. Arthritis Care
Res (Hoboken), 2010, 62, s. 1515–1526.
28 Hahn, T. J. – Hahn, B. H.: Osteopenia in subjects with rheumatic di­
seases: Principles of diagnosis and therapy. Semin Arthritis Rheum,
1976, 6, s. 65–88.
29 Hahn, T. J. – Halstead, L. R. – Teitelbaum, S. L., et al.: Altered mineral
metabolism in glucocorticoid-induced osteopenia: Effect of 25-hydroxyvitamin D administration. J Clin Invest, 1979, 64, s. 655–665.
30 Kanis, J. A. – Johansson, H. – Oden, A., et al.: Guidance for the adjust­
ment of FRAX according to the dose of glucocorticoids. Osteoporos
Int, 2011, 22, s. 809–816.
31 Hayashi, K. – Yamaguchi, T. – Yano, S., et al.: BMPAVnt antagonists
are upregulated by dexamethasone in osteoblasts and reversed by
alendronate and PTH: potential therapeutic targets for glucocorticoid-induced osteoporosis. Biochem Biophys Res Commun, 2009, 379,
s. 261–266.
32 Hofbauer, L. C. – Rauner, M.: Live and let die: molecular effects of
glucocorticoids on bone cells. Mol Endocrinol, 2009, 23, s. 1525–1531.
33 Grossmann, J. M. – Gordon, R. – Ranganath, V. K., et al.: American
College of Rheumatology 2010 recommendations for the prevention
and treatment of glucocorticoid-induced osteoporosis. Arthritis Care
Res (Hoboken), 2010, 62, s. 1515–1526.
34 Lekawasam, S. – Adachi, J. D. – Agnusdei, D., et al.: for the Joint
IOF-ECTS GIO Guidelines Working Group: A framework for the
develop­ment of guidelines for the management of glucocorticoid-induced osteoporosis. Osteoporos Int, 2012, doi: 10.1007/
s00198-012-1958–1.
35 Hoibauer, L. C. – Gori, F. – Riggs, B. L., et al.: Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine
mechanisms of glucocorticoid-induced osteoporosis. Endocrinology,
1999, 140, s. 4382–4389.
36 Hoibauer, L. C. – Zeitz, U. – Schoppet, M., et al.: Prevention of glucocorticoid-induced bone loss in mice by inhibition of RANKL. Arthritis
Rheum, 2009, 60, s. 1427–1437.
37 Makovic, V. – Heaney, R. P.: Calcium balance during human growth:
Evidence for threshold behavior. Am J Clin Nutr, 1992, 55, s. 992–996.
38 Dawson-Hughes, B. – Dallas, G. E. – Krall, E. A., et al.: A controlled
trial of the effect of calcium supplementation on bone density in
postmenopausal women. N Engl J Med, 1990, 323, s. 878–883.
39 Hahn, T. J. – Hahn, B. H.: Osteopenia in subjects with rheumatic disea­
ses: Principles of diagnosis and therapy. Semin Arthritis Rheum, 1976,
6, s. 65–88.
40 Hahn, T. J. – Halstead, L. R. – Teitelbaum, S. L., et al.: Altered mineral
metabolism in glucocorticoid-induced osteopenia: Effect of 25-hydroxyvitamin D administration. J Clin Invest, 1979, 64, s. 655–665.
41 Lane, N. E. – Genant, H. K. – Kiney, J. H., et al.: Effect of intermittent
cyclic etidronate (ICT) therapy for glucocorticoid-induced osteoporosis in rheumatoid arthritis: Interim analysis. J Bone Miner Res, 1993,
8, s. S262.
42 Pitt, P. – Li, F. – MacInthos, C.: A double-blind placebo-controlled
study to determine the effects of intermittent cyclical etidronate on
bone mineral density in patients on long-term corticosteroid treat­
ment. J Bone Miner Res, 1997, 12, s. S510.
43 Poubelle, P. E. – Adachi, J. D. – Hawkins, F.: Alendronate increases
bone mineral density in patients on glucocorticoid therapy: Results
of the multinational study. Arthritis Rheum, 1997, 40, s. S327.
44 Lund, B. – Andersen, R. B. – Trios, T., et al.: OH: Effect of 1-alpha-hydroxy vitamin D3 and 1,25-dihydroxy vitamin D3 on intestine and bone
in glucocorticoid-treated patients. Clin Endocrinol, 1977, 7, s. 177–181.
45 Ringe, J. D.: Active vitamin D metabolites in glucocorticoid-induced
osteoporosis. Calcif Tissue hit, 1997, 60, s. 124–127.
46 Adachi, J. D. – Ioannidis, G.: Calcium and vitamin D therapy in corticosteroid-induced bone loss: What is the evidence? Calcif Tissue Int,
1999, 65, s. 332–336.
47 Ringe, J. D. – Faber, H.: Calcium and vitamin D in the prevention and
treatment of glucocorticoid-induced osteoporosis. Clin Exp Rheumatol, 2000, 18 (dopl. 21), s. 44–48.
48 Laan, R. F. – van Riel, P. L. – van de Putte, L. B., et al.: Low-dose prednisone induces rapid reversible axial bone loss in patients with rheumatoid arthritis. A randomized, controlled study. Ann Intern Med, 1993,
119, s. 963–968.
49 Lane, N. E. – Genant, H. K. – Kiney, J. H., et al.: Effect of intermittent
cyclic etidronate (ICT) therapy for glucocorticoid-induced osteoporosis in rheumatoid arthritis (RA): Interim analysis. J Bone Miner Res,
1993, 8 (dopl.), s. 262.
50 Langdahl, B. L. – Marin, F. – Shane, E., et al.: Teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: an analysis by gender and menopausal status. Osteoporos Int, 2009, 20,
s. 2095–2104.
51 Leib, E. S. – Saag, K. G. – Adachi, J. D., et al.: Official positions for FRAX
clinical regarding glucocorticoids: the impact of the use of glucocorticoids on the estimate by FRAX of the 10 year risk of fracture from
Joint Official Positions Development Conference of the International Society for Clinical Densitometry and International Osteoporosis
Foundation on FRAX. J Clin Densitom, 2011, 14, s. 212–219.
52 Lekawasam, S. – Adachi, J. D. – Agnusdei, D., et al.: for the Joint
IOF-ECTS GIO Guidelines Working Group. A framework for the
development of guidelines for the management of glucocorticoid-induced osteoporosis. Osteoporos Int, 2012, doi: 10.1007/
s00198-012-1958–1951.
53 Lund, B. – Andersen, R. B. – Trios, T., et al.: Effect of 1-alpha-hydroxy
vitamin D3 and 1,25-dihydroxy vitamin D3 on intestine and bone in
glucocorticoid-treated patients. Clin Endocrinol, 1977, 7, s. 177–181.
54 Marenzana, M. – Greenslade, K. – Eddleston, A., et al.: Sclerostin
antibody treatment enhances bone strength but does not prevent
growth retardation in young mice treated with dexamethasone. Arthritis Rheum, 2011, 63, s. 2385–2395.
55 Marini, J. C.: Do bisphosphonates make children’s bones better or
brittle? N Engl J Med, 2003, 349, s. 423–426.
56 Makovic, V. – Heaney, R. P.: Calcium balance during human growth:
Evidence for threshold behavior. Am J Clin Nutr, 1992, 55, s. 992–996.
57 Mok, C. C. – Ying, K. Y. – To, C. H., et al.: Raloxifene for preven­tion
of glucocorticoid-induced bone loss: a 12-month randomised
double-blinded placebo-controlled trial. Ann Rheum Dis, 2011, 70,
s. 778–784.
58 Neer, R. M. – Arnaut, C. D. – Zanchetta, J. R., et al.: Effect of parathyroid hormone (1–34) on fractures and bone mineral density in
postmenopausal women with osteoporosis. N Engl J Med, 2001, 344,
s. 1434–1441.
59 Okada, Y. – Nawata, M. – Nakayamada, S., et al.: Alendronate protects premenopausal women from bone loss and fracture associated with high-dose glucocorticoid therapy. J Rheumatol, 2008, 35,
s. 2249–2254.
60 Pitt, P. – Li, F. – Macitohs, C.: A double-blind placebo-controlled study
to determine the effects of intermittent cyclical etidronate on bone
mineral density in patients on long-term corticosteroid treatment.
J Bone Miner Res, 1997, 12 (dopl.), s. 510.
61 Pitt, P. – Li, F. – Todd, P., et al.: A double blind placebo controlled
study to determine the effects of intermittent cyclical etidronate on
bone mineral density in patients on long term oral corticosteroid
treatment. Thorax, 1998, 53, s. 351–356.
62 Poubelle, P. E. – Adachi, J. D. – Hawkins, F.: Alendronate increases
bone mineral density in patients on glucocorticoid therapy: Results
of the multinational study. Arthritis Rheum, 1997, 40 (dopl.), s. 327.
63 Rauch, A. – Gossye, V. – Bradle, D., et al.: An anti-inflammatory selective glucocorticoid receptor modulator preserves osteoblast differentiation. FASEB J, 2011, 25, s. 1323–1332.
64 Reid, D. M. – Devogelaer, J. P. – Saag, K., et al.: Zoledronic acid and
risedronate in the prevention and treatment of glucocorticoid-induced osteoporosis (HORIZON): a multicentre, double-blind, double-dummy, randomised controlled trial. 2009, 373, s. 1253–1263, doi:
http://dx.doi.org/10.1016/S0140-6736(09)60250-6.
65 Ringe, J. D. – Faber, H.: Calcium and vitamin D in the prevention and
treatment of glucocorticoid-induced osteoporosis. Clin Exp Rheumatol, 2000, 18 (dopl. 21), s. 44–48.
66 Ringe, J. D.: Active vitamin D metabolites in glucocorticoid-induced
osteoporosis. Calcif Tissue Hit, 1997, 60, s. 124–127.
67 Rizzoli, R. – Adachi, J. D. – Cooper, C., et al.: Management of Glucocorticoid-Induced Osteoporosis. Calcif Tissue Int, 2012, 91, s. 225–243.
68 Rizzoli, R. – Reginster, J. Y. – Boonen, S., et al.: Adverse reactions and
drug-drug interactions in the management of women with postmenopausal osteoporosis. Calcified Tissue Int, 2011, 89, s. 91–104.
69 Rizzoli, R, – von Tscharner, V. – Fleisch, H.: Increase of adenylate
cyclase catalytic-unit activity by dexamethasone in rat osteoblast-like cells. Biochem J, 1986, 237, s. 447–454.
70 Rochefort, G. Y. – Pallu, S. – Benhamou, C. L.: Osteocyte: the unrecognized side of bone tissue. Osteoporosis Int, 2010, 21, s. 1457–1469.
71 Saag, K. G. – Emkey, R. – Schnitzer, T. J., et al.: Alendronate for the
prevention and treatment of glucocorticoid-induced osteoporosis.
Glucocorticoid-Induced Osteoporosis Intervention Study Group.
N Engl J Med, 1998, 339, s. 292–299.
72 Saag, K. G. – Shane, E. – Boonen, S., et al.: Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med, 2007, 357,
s. 2028–2039.
73 Saag, K. G. – Zanchetta, J. R. – Devogelaer, J. P., et al.: Effects of teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: thirty-six-month results of a randomized, double-blind,
controlled trial. Arthritis Rheum, 2009, 60, s. 3346–3355.
74 Sambrook, P. – Birmingham, J. – Kelly, P., et al.: Prevention of corticosteroid osteoporosis. A comparison of calcium, calcitriol, and calcitonin. N Engl J Med, 1993, 328, s. 1747–1752.
75 Sivagurunathan, S. – Muir, M. M. – Brennan, T. C., et al.: Influence of
glucocorticoids on human osteoclast generation and activity. J Bone
Miner Res, 2005, 20, s. 390–398.
76 Steinbuch, M. – Youket, T. E. – Cohen, S.: Oral glucocorticoid use is
associated with an increased risk of fracture. Osteoporos Int, 2004, 15,
s. 323–328.
77 Stoch, S. A. – Wagner, J. A.: Cathepsin K inhibitors: a novel target for
osteoporosis therapy. Clin Pharmacol Ther, 2008, 83, s. 172–176.
78 Ström, O. – Borgström, F. – Kanis, J. A., et al.: Osteoporosis: burden,
health care provision and opportunities in the European Union. Arch
Osteoporos, 2011, doi: 10.1007/s 11657-011-0060-1.
79 Adachi, J. D. – Bensen, W. G. – Brown, J., et al.: Intermittent etidronate therapy to prevent corticosteroid-induced osteoporosis. N Engl
J Med, 1997, 337, s. 382–387.
80 Boutsen, Y., et al.: Primary prevention of glukocorticoid-inducet osteoporosis hith intermittent intravenous pamidronate a randomized
trial. Calcif Tissue Int, 1997, 61, s. 266–271.
81 Cohen, S., et al.: J Bone Miner Res, 1998, 23 (dopl. 5), s. S595.
82 Devogelaer, J. P., et al.: J Bone Miner Res, 1998, 23 (dopl. 5), s. S480.
83 Saag, K., et al.: J Bone Miner Res, 1998, 23 (dopl. 5), s. S182.
84 Reid, D., et al.: Arthritis Rheum, 1998, 41, s. S136.
85 Jin et al.: J Biol Chem, 2000, 35, s. 27238.
86 Taylor, K. A.: Konference ISCD, 2007 (abstrakt 171).
ACTA MEDICINAE 5/2016 | pneumologie | Kompletní literatura
Novinky v diagnostice a léčbě spánkové apnoe
MUDr. Milada Hobzová, Ph.D. Klinika plicních nemocí a tuberkulózy LF UP a FN, Olomouc
1 Šonka, K., et al.: Apnoe a další poruchy dýchání ve spánku. Praha, Grada, 2004.
2 Nevšímalová, S. – Šonka, K., et al.: Poruchy spánku a bdění. Praha, Galén, 2007.
3 Šonka, K. – Slonková, J.: Spánková apnoe dospělého věku. Cesk Slov
Neurol N, 2008, 71, s. 643–656.
4 Qaseem, A. – Dallas, P. – Owens, D. K., et al.: Diagnosis of obstructive
sleep apnoea in adults: A clinical practice guideline from the American College of Physicians. Ann Intern Med, 2014, 161, s. 210–220.
5 Parati, G. – Lombardi, C. – Hedner, J., et al.: Position paper on the
management of patients with obstructive sleep apnea and hypertension: joint recommendations by the European Society of Hypertension, by the European Respiratory Society and by the members
of the European COST (Coperation in Scientific and Technological
research) ACTION B26 on obstructive sleep apnea. J Hypertens, 2012,
30, s. 633–646.
6 Bradley, T. G. – Floras, J. S.: Obstructive sleep apnoea and its cardiovascular consequences. Lancet, 2009, 373, s. 82–93.
7 McNicholas, W. T. – Bonsignore, M. R.: Sleep apnoea as an indipendent risk factor for cardiovascular disease: current evidence, basic
mechanisms, and research priorities. Eur Respir J, 2007, 29, s. 156–178.
8 Grote, L. – Sommermayer, D.: Early atherosclerosis and cardiovascular
events. Eur Respir Mon, 2010, 50, s. 174–188.
9 Lavie, L. – Lavie, P.: Molecular mechanisms of cardiovascular disease
in OSAHS: the oxidative stress link. Eur Respir J, 2009, 33, s. 1467–1484.
10 Torres, G. – Sánchez-de-la-Torre, M. – Barbé, F.: Relationship between OSA and hypertension. Chest, 2015, 148, s. 824–832.
11 Young, T. – Palta, M. – Dempsey, J., et al.: The occurence of sleep
disordered breathing among middle aged adults. N Engl J Med, 1993,
328, s. 1230–1235.
12 Lindberg, E.: Epidemiology of OSA. In: Eur Respir Mon 50, Plymouth,
European Respiratory Society, 2010, s. 51–68.
13 Ye, L. – Pien, G. W. – Weaver, T. E.: Gender differences in the clinical manifestation of obstructive sleep apnea. Sleep Med, 2009, 10,
s. 1075–1084.
14 Johns, M. W.: A new method for measuring daytime sleepiness: The
Epworth Sleepiness Scale. Sleep, 1991, 14, s. 540–545.
15 Parati, G. – Lombardi, C. – Hedner, J., et al.: Recommendations for
the management of patients with obstructive sleep apnoea and hypertension. Eur Respir J, 2013, 41, s. 523–538.
16 Abrishami, A. – Khajehdehi, A. – Chung, F.: A systematic review of
screening questionnaires for obstructive sleep apnea. Can J Anaesth,
2010, 57, s. 423–438.
17 Mallampati, S. R.: Clinical sign to predict diffucult tracheal intubation
(hypothesis). Can Anaesth Soc J, 1983, 30, s. 316–317.
18 Gaddam, K. – Pimenta, E. – Thomas, S. J.: Spironolactone reduces
severity of obstructive sleep apnoea in patients with resistant hypertension: a preliminary report. J Hum Hypertens, 2009, 24, s. 532–537.
19 Iftikhar, I. H. – Hays, E. R. – Iverson, M. A., et al.: Effect of oral applian­
ces on blood pressure in obstructive sleep apnea: a systematic review
and meta-analysis. J Clin Sleep Med, 2013, 9, s.165–174.
20 Marklund, M. – Verbraecken, J. – Randerath, W.: Non-CPAP therapies in obstructive sleep apnoea: mandibular advancement device
therapy. Eur Respir J, 2012, 39, s. 1241–1247.
21 Van Maanen, J. P. – de Vries, N.: Long-term effectiveness and com­
pliance of positional therapy with the sleep position trainer in the
treat­ment of positional obstructive sleep apnea syndrome. Sleep,
2014, 37, s. 1209–1215.
22 Kezirian, E. J. – Goding, G. S. – Malhotra, A., et al.: Hypoglossal nerve
stimulation improves obstructive sleep apnea: 12-month outcomes.
J Sleep Res, 2014, 23, s. 77–83.
23 Klozar, J.: Jak odstranit chrápání? Interní Med, 2011, 13, s. 51–53.
24 Sulivan, C. E. – Berthon-Jones, M. – Issa, F. G., et al.: Reversal of
obstructive sleep apnoea by continuous possitive airway pressure
applied through the nose. Lancet, 1981, 1, s. 862–865.
Přístup k diagnostice teplot nejasného původu
a „laterální myšlení“
MUDr. Luboš Kotík, CSc. I. interní oddělení, Fakultní Thomayerova nemocnice, Praha
1 Arnow, P. M. – Flaherty, J. P.: Fever of unknown origin. Lancet, 1997,
350, s. 575–580.
2 Durack, D. T. – Street, A. C.: Fever of unknown origin reexamined and
redefined. Curr Clin Topics in Infect Dis, 1991, 11, s. 35–51.
3 Knockaert, D. C. – Dujardin, K. S. – Bobbaers, J.: Long term follow
-up of patients with undiagnosed fever of unknown origin. Arch Intern Med, 1996, 156, s. 616–620.
4 Knockaert, D. C. – Vanderschueren, S. – Blockmans, D.: Fever of
unknown origin in adults: 40 years on. J of Internal Medicine, 2003,
253, s. 263–275.
Dětská myopie na postupu
prof. Ing. Jaroslav Petr, DrSc. Výzkumný ústav živočišné výroby, Praha
1 Dolgin, E.: The myopia boom. Nature, 2015, 519, s. 276–278.
2 Morgan, I. G. – Ohno-Matsui, K. – Saw, S. M.: Myopia. The Lancet,
2012, 379, s. 1739–1748.
3 Morgan, I. – Rose, K.: How genetic is school myopia? Progress in Retinal and Eye Research, 2005, 24, s. 1–38.
4 Wojciechowski, R.: Nature and nurture: The complex genetics of
myopia and refractive error. Clinical Genetics, 2011, 79, s. 301–320.
5 Hobday, R.: Myopia and daylight in schools: a neglected aspect of
public health? Perspectives in Public Health, publikováno před tiskem,
2015.
6 Strong, E. M.: Proper school lighting. American Journal of Public Health,
1956, 46, s. 610–622.
7 Sorsby, A.: Refraction and its components in twins. Privy Council. Medical Research Council Special report no. 303, 1962. Londýn, HMSO.
8 Lyhne, N. – Sjølie, A. K. – Kyvik, K. O. – Green, A.: The importance
of genes and environment for ocular refraction and its determiners:
A population based study among 20–45 year old twins. British Journal of Ophthalmology, 2001, 85, s. 1470–1476.
9 Does Homework Perpetuate Inequities in Education? PISA in Focus,
2014, 46, s. 4, OECD.
10 Jones, L. A. – Sinnott, L. T. – Mutti, D. O. – Mitchell, G. L., et al.:
Parental history of myopia, sports and outdoor activities, and future myopia. Investigative Ophthalmology and Visual Science, 2007, 48,
s. 3524–3532.
11 Rose, K. A. – Morgan, I. G. – Ip, J., et al.: Outdoor activity reduces
the prevalence of myopia in children. Ophthalmology, 2008, 115,
s. 1279–1285.
12 Alvarez, A. A. – Wildsoet, C. F.: Quantifying light exposure pat­
terns in young adult students. Journal of Modern Optics, 2013, 60,
s. 1200–1208.
13 Ashby, R. – Ohlendorf, A. – Schaeffel, F.: The effect of ambient
illuminance on the development of deprivation myopia in chicks.
Investigative Ophthalmology and Visual Science, 2009, 50, s. 5348–5354.
14 Siegwart, J. T. – Ward, A. H. – Norton, T. T.: Moderately elevated fluo­
rescent light levels slow form deprivation and minus lens-induced
myopia development in tree shrews. Investigative Ophthalmology &
Visual Science, 2012, 53, s. 3457.
15 Smith, E. L. – Hung, L-F. – Juany, J.: Protective effects of high ambient
lighting on the development of form-deprivation myopia in rhesus
monkeys. Investigative Ophthalmology and Visual Science, 2012, 53,
s. 421–428.
16 Moinul, P. – Cheng, E. – Stell, W.: Nitric oxide prevents form-deprivation myopia in chicks without requiring a dopamine D2-receptor
relay. Investigative Ophthalmology & Visual Science, 2012, 53, s. 3434.
17 Start, C. – Mangel, S. C.: The circadian clock in the mammalian retina uses dopamine and melatonin receptor activation to control rod
and cone input to ganglion cells. Investigative Ophthalmology & Visual
Science, 2011, 52, s. 5281.
ACTA MEDICINAE 5/2016 | pneumologie | Kompletní literatura