1 - Technická fakulta ČZU v Praze - Česká zemědělská univerzita v

Komentáře

Transkript

1 - Technická fakulta ČZU v Praze - Česká zemědělská univerzita v
Česká zemědělská univerzita v Praze
Technická fakulta
Možnosti uplatnění dynamických měření při
diagnostice motorových vozidel
Disertační práce
Doktorand: Ing. Martin Pexa
Školitel:
Prof. Ing. Ladislav Pejša, DrSc.
Katedra:
Jakosti a spolehlivosti strojů
Praha 2005
1
Poděkování:
Na tomto místě si autor dovoluje poděkovat svému školiteli Prof. Ing. Ladislavu
Pejšovi, DrSc. za odborné vedení v celém průběhu doktorského studia a za cenné rady a věcné
připomínky při řešení problémů v průběhu vypracování doktorské disertační práce.
Poděkování za odborné připomínky, komentáře a poskytnutou literaturu patří také
Doc. Ing. Boleslavu Kadlečkovi, CSc., Prof. Ing. Josefu Poštovi, CSc. a celému kolektivu
katedry Jakosti a spolehlivosti strojů a katedry Vozidel a pozemní dopravy.
2
Abstrakt
Disertační práce se zabývá problematikou diagnostiky mobilních strojů se spalovacími
motory a vlivem jejich technického stavu na provozní parametry. V rámci zpracování byly
sestaveny výpočetní programy, které na základě dynamického měření umožňují simulovat
provozní zatížení strojů. Volené zatížení může být v souladu s příslušnými homologačními
předpisy pro městský a mimoměstský cyklus, 13-bodový cyklus, kontrolu brzdného účinku a
pro tahové charakteristiky. Pro konkrétní motorové vozidlo nebo mobilní stroj jsou naměřeny
a vypočteny aktuální hodnoty spotřeby paliva a brzdné dráhy a řidiči je doporučován způsob
řazení s ohledem na dosažení co nejnižší spotřeby paliva. Podrobněji je tato práce zaměřena
na tvorbu tahové charakteristiky a simulovaný provoz traktoru na modelovaném poli, zabývá
se vyhodnocováním spotřeby paliva a předpokládá, že vyhodnocování emisí výfukových
plynů bude řešitelné obdobně. Dynamický způsob měření navržený v disertaci poskytuje
obdobně přesné výsledky jako při homologačních měřeních a tudíž umožňuje provádět
servisní úkony na strojích s úsporou nákladů a pracnosti. Na identifikované problémy systém
upozorní a navrhne jejich řešení.
Klíčová slova: dynamické a kvazistatické měření, městský a mimoměstský cyklus, tahová
charakteristika, modelování polní práce, spotřeba paliva
Abstract
The thesis deals with mobile machine diagnostics problems with combustion engines and with
the influence of their technical conditions on operation parameters. In terms of processing,
computer programs which enable to simulate the operational load of machines on basis of
dynamic measuring were made. Selected load can conform to relevant homologation
regulations for urban and extraurban cycle, 13-punctual cycle, brake effect check and for
tractive characteristics. Actual values of fuel consumption and of braking trajectory are
measured and calculated for concrete motor vehicle or mobile machine and shift mode is
recommended to driver with reference to the lowest fuel consumption achievement. This
thesis is aimed on tractive characteristics processing and simulated tractor running on
proposed field in detail, it deals with fuel consumption analyse and it assumes the exhaust
emissions analyse to be solvable accordingly. Dynamic way of measuring proposed in the
thesis provides accordingly accurate results like homologation measuring and therefore it
allows to carry on service operation on machines with saving of cost and time. The method
will advise of problems identified in the thesis and suggest their solutions.
Keywords: dynamic and quasistatic measuring, urban and extraurban driving cycle, tension
characteristic, agricultural labour simulation, fuel consumption
3
Obsah
1.
Úvod ……………………………………………………………………………
1
Přehled současného stavu problematiky hodnocení motorových
vozidel ………………………………………………………………………….
4
Stávající metody měření hlavních parametrů spalovacích motorů ……….
1.1
1.1.1 Metody měření výkonových parametrů spalovacích motorů ………………
1.1.1.1 Měření při stacionárním zatěžovacím momentu ………………………..
1.1.1.1.1 Měření motorovým dynamometrem na zkušebním stanovišti ……...
1.1.1.1.2 Měření spalovacího motoru ve vozidle pomocí válcového
dynamometru ……………………..………………………………....
1.1.1.2 Měření výkonových parametrů dynamických způsobem ………….........
1.1.1.2.1 Válcové zkušebny pro dynamická měření ………………………….
1.1.1.2.2 Metoda měření při volné akceleraci ………………………………..
1.1.1.2.3 Kvazistatická metoda měření …………………………………….....
1.1.2 Metody měření spotřeby paliva ……………………………………………
1.1.2.1 Měření spotřeby paliva pomocí průtokoměrů ………………………….
1.1.2.2 Měření spotřeby paliva z emisí …………………………………………
1.1.3 Měření emisních složek výfukových plynů ……………………………….
Stávající metody hodnocení motorových vozidel ………………………….
1.2
1.2.1 Aplikace dynamických měření na městský a mimoměstský cyklus
osobních vozidel …………………………………………………………..
1.2.1.1 Homologační měření městského a mimoměstského cyklu …………….
1.2.1.2 Využití dynamických měření při tvorbě městského a mimoměstského
cyklu ……………………………………………………………………
1.2.1.2.1 Vstupní veličiny procesu simulace městského cyklu na počítači ….
1.2.1.2.2 Vytvoření celkové veličinové charakteristiky motoru………………
1.2.1.2.2.1 Měření otáček, točivého momentu a spotřeby paliva motoru
Š – 136 …………………………………………………………..
1.2.1.2.2.2 Vytvoření celkové veličinové charakteristiky ………………….
1.2.1.2.3 Aplikace dynamických měření na městský cyklus ECE 83 R ……..
1.2.1.2.3.1 Potřebný točivý moment motoru ……………………………….
1.2.1.2.3.2 Spotřeba paliva v simulovaném městském cyklu ………………
1.2.1.2.4 Aplikace dynamických měření na mimoměstský cyklus …………..
1.2.1.2.5 Spotřeba paliva ve smíšeném cyklu ………………………………..
1.2.1.2.6 Dílčí závěr …………………………………………………………..
1.2.2 Aplikace dynamických měření na 13-bodový test a městský jízdní cyklu
pro autobusy ……………………….………………………………………
1.2.2.1 Homologační měření 13-bodového testu ……………………………….
1.2.2.2 Dynamicky měřený 13-bodový test …….………………………………
1.2.2.2.1 Vstupní celková charakteristika motoru a princip metody …………
1.2.2.2.2 Zatěžovací tabulky pro cyklus EHK a ESC ………………………..
1.2.2.2.3 Spotřeba paliva podle cyklu EHK ……………………………….....
1.2.2.2.4 Spotřeba paliva podle cyklu ESC …………………………………..
1.2.2.3 Městský jízdní cyklus pro autobusy ……………………………………
1.2.2.3.1 Vstupní veličiny procesu simulace městského cyklu na počítači ….
1.2.2.3.2 Zásady pro návrh A-cyklu …………………………………………
1.2.2.3.3 Příklad zpracování jízdního segmentu A43 ………………………..
4
5
5
6
6
7
8
8
9
11
11
12
13
15
15
15
17
17
18
18
21
22
23
24
26
27
27
28
29
31
31
32
33
34
35
36
36
37
4
1.2.2.3.4 Spotřeba paliva v celém jízdním cyklu …………………………….
1.2.2.3.5 Dílčí závěr …………………………………………………………..
1.2.3 Aplikace dynamické kontroly brzdové soustavy vozidla …………………
1.2.3.1 Metody měření brzdné dráhy …………………………………………..
1.2.3.1.1 Měření brzdného zpomalení ………………………………………..
1.2.3.1.2 Kontrola brzdného účinku měřením brzdné dráhy na vozovce …….
1.2.3.1.3 Kontrola brzdného účinku měřením brzdné dráhy na válcové
zkušebně …………………………………………………………….
1.2.3.1.4 Kontrola brzdného účinku měřením brzdné síly na obvodě kol na
válcové zkušebně ……………………………………………………
1.2.3.1.5 Kontrola brzdného účinku měřením brzdné síly na obvodě kol na
plošinové zkušebně …………………………………………………
1.2.3.1.6 Shrnutí kontroly technického stavu brzd …………………………...
1.2.3.2 Dynamicky měřený brzdný účinek ……………………………………..
1.2.3.2.1 Data zvoleného vozidla …………………………………………….
1.2.3.2.2 Princip dynamického měření brzdného účinku …………………….
1.2.3.2.3 Stanovení brzdné síly ………………………………………………
1.2.3.2.4 Modelování brzdné dráhy za nestandardních podmínek …………..
1.2.3.2.4.1 Vliv pneumatiky a její adheze na brzdnou dráhu ………………
1.2.3.2.4.2 Vliv větru v ose vozidla ………………………………………..
1.2.3.2.4.3 Vliv sklonu svahu na brzdnou dráhu …………………………..
1.2.3.2.4.4 Vliv řazení převodových stupňů na brzdnou dráhu ……………
1.2.3.2.4.5 Vliv rychlosti reakce řidiče na dráhu do zastavení …………….
1.2.3.2.5 Dílčí závěr ……………………………………………………….…
Stávající metody měření tahových charakteristik traktoru ……………..
1.3
1.3.1 Standardní tahové zkoušky …………………………………………....….
1.3.2 Urychlené tahové zkoušky…………………………………………….......
1.3.3 Výpočtová tahová charakteristika …………………………………….......
40
41
42
43
43
44
44
44
45
45
46
46
47
48
51
51
54
54
55
56
56
57
58
59
60
2.
Cíl disertační práce ……………………………………………………….
61
3.
Metodika disertační práce ………………………………………………
62
4.
Návrh modelování tahové charakteristiky traktoru a jeho práce
na modelovém pozemku …………………………………………………
64
Návrh virtuální tahové charakteristiky traktoru …………………………
4.1
4.1.1 Návrh měření celkové charakteristiky motoru s výkonnostním regulátorem
4.1.1.1 Vstupní veličiny pro tvorbu celkové charakteristiky motoru ……….....
4.1.1.2 Měření motoru bez vnějšího zatížení (body 1 – 3) …………………….
4.1.1.3 Měření motoru při maximálním zatížení (body 7 – 9) …………………
4.1.1.4 Měření motoru při středním zatížení (body 4 – 6) …………………......
4.1.1.5 Sestrojení celkové veličinové charakteristiky motoru …………………
4.1.2 Návrh virtuální tahové charakteristiky ……………………………………
4.1.2.1 Zahrnutí problematiky prokluzu traktoru ………………………….......
4.1.2.2 Dostupnost traktoru v terénu a kontrola řiditelnosti ……………………
4.1.2.3 Vztah tahové síly a točivého momentu motoru ………………………..
4.1.2.4 Rychlost traktoru v závislosti na tahové síle …………………………...
4.1.2.5 Tahový výkon v závislosti na tahové síle ………………………………
4.1.2.6 Zpracování závislosti měřené spotřeby paliva ………………………….
4.1.3 Vytvořená virtuální tahová charakteristika měřeného traktoru Z 8045 ….
64
64
65
67
69
71
73
74
75
77
79
80
82
83
84
5
4.1.4 Problematika účinnosti traktoru Z 8045 …………………………………..
Návrh simulace jízdy traktoru Z 8045 na modelovaném pozemku ………
4.2
4.2.1 Tvorba modelovaného pozemku …………………………………………..
4.2.2 Systém práce traktoru na modelovaném pozemku ………………………..
4.2.2.1 Volba pracovního nástroje ……………………………………………..
4.2.2.2 Sklon svahu a úhel klesání nebo stoupání modelovaného pozemku …..
4.2.2.3 Stanovení odporu pracovního nástroje …………………………………
4.2.2.4 Stanovení odporu stoupání …………………………………………….
4.2.2.5 Stanovení odporu valení ……………………………………………….
4.2.2.6 Stanovení celkového jízdního odporu při jízdě na modelovaném
pozemku………………………………………………………………...
4.2.2.7 Stanovení potřebného točivého momentu motoru ……………………..
4.2.2.8 Stanovení otáček motoru ……………………………………………....
4.2.3 Stanovení spotřeby paliva na modelovaném pozemku …………………..
4.2.4 Stanovení celkové spotřeby paliva na celém pozemku …………………..
4.2.5 Výsledky simulace v různých systémech jízdy …………………………..
4.2.5.1 Systém jízdy traktoru po pozemku napříč vln …………………………
4.2.5.2 Systém jízdy traktoru po pozemku podél vln ………………………….
4.3
Hodnocení vlivu přesnosti měření na výslednou spotřebu paliva …………..
4.4
Dílčí závěr …………………………………………………………………..
86
86
86
88
89
90
91
92
93
94
95
100
102
105
106
106
107
108
111
5.
Diskuze ……………………………………………………………………..
115
6.
Závěr ………………………………………………………………………..
118
Literatura ………………………………………………………………….
120
Přílohy
Přílohy – obsah …………………………………………………………………………
Příloha 1.1a) - Závislost rychlosti na dráze a na čase – Sekce A1 a A2 ……………….
Příloha 1.1b) - Závislost rychlosti na dráze a na čase – Sekce A3 a A4 ……………….
Příloha 1.1c) - Závislost rychlosti na dráze a na čase – Sekce A5 a A6 ……………….
Příloha 1.2 - Protokol o stavu brzdové soustavy ……………………………………….
Příloha 1.3a) - Brzdná dráha vozidla na náledí při hloubce dezénu 0 mm …………….
Příloha 1.3b) - Brzdná dráha vozidla na vozovce o 0,4 mm vody při hloubce dezénu
1,6 mm ………………………………………………………………..
Příloha 1.3c) - Brzdná dráha vozidla na vozovce o 1,6 mm vody při hloubce dezénu
3 mm …………………………………………………………………..
Příloha 1.3d) Brzdná dráha vozidla na náledí při hloubce dezénu 5 mm ………………
Příloha 1.4a) - Brzdná dráha vozidla a odpor vzduchu při protivětru – 40 km.h-1 ……..
Příloha 1.4b) - Brzdná dráha vozidla a odpor vzduchu při protivětru + 40 km.h-1 …….
Příloha 1.5a) - Brzdná dráha vozidla při sklonu vozovky 10 % ……………………….
Příloha 1.5b) - Brzdná dráha vozidla při sklonu vozovky -5 % (jízda ze svahu) ………
Příloha 1.6a) - Brzdná dráha vozidla při zařazeném 2. rychlostním stupni …………….
Příloha 1.6b) - Brzdná dráha vozidla při zařazeném 5. rychlostním stupni …………….
Příloha 1.7a) - Dráha do zastavení vozidla při reakční době řidiče 0,2 s ………………
Příloha 1.7b) - Dráha do zastavení vozidla při reakční době řidiče 1,7 s ………………
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli ………….
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
6
Úvod
Silniční motorová doprava patří k nejrozšířenějším způsobům přepravy nákladů a osob
a tedy i k největším znečišťovatelům životního prostředí. Produkce jednotlivých složek je
vyjádřena v následujícím obrázku číslo 0.1. Hodnoty uvedené v grafu platí pro období roku
1990 až 2003 v České republice a jsou rozděleny do tří skupin:
- složky na něž se vztahují emisní limity (CO – oxid uhelnatý, NOx – oxidy dusíku,
HC - uhlovodíky, PM – pevné částice),
- složky vytvářející skleníkový efekt (CH4 – metan, N2O – oxid dusný, CO2 – oxid
uhelnatý),
- látky nelimitované s toxickým vlivem na lidské zdraví (Pb – olovo, SO2 – oxid
siřičitý).
Na celkové produkci
emisí se motorová vozidla
v EU podílejí přibližně 36 %
u oxidu uhličitého CO2,
30 % u oxidu uhelnatého
CO, 63 % u oxidů dusíku
NOx a 39 % u uhlovodíků
HC. Zpřísňováním emisních
limitů (EURO II, EURO III,
EURO IV, EURO V) bude
a)
zřejmě během deseti let
v důsledku
konstrukčních
úprav motorů v podstatě
vyřešen problém emisí CO,
NOx a HC, avšak do popředí
se dostanou nově sledované
karcinogenní
složky,
zejména
aromatické
uhlovodíky,
aldehydy,
polychlorované
dioxiny,
dibenzofurany
a
další,
b)
včetně rovněž škodlivého
CO2.
Výskyt jednotlivých
složek
je
závislý
na
spotřebovávaných druzích
paliva. Od roku 1990
výrazně vzrostla spotřeba
bezolovnatého
benzínu
Natural a poklesla spotřeba
c)
olovnatého benzínu, která
Obr. 0.1 Emisní bilance ze silniční dopravy v ČR [84]
skončila v roce 2000. S tím
souvisí
výrazný pokles
obsahu olova ve výfukových plynech. Nižší spotřeba paliva a nižší cena motorové nafty vede
uživatele k pořizování vozidel se vznětovým motorem a tím vrostl počet vyprodukovaných
pevných částic. S rozšířením vstřikovacích řídících jednotek bylo dosaženo většího využití
energie akumulované v palivu a poklesla tak tvorba oxidu uhelnatého. Spotřeba jednotlivých
druhů pohonných hmot je na obrázku číslo 0.2.
1
Na produkci emisí silničních vozidel se také podílí rostoucí počet zaregistrovaných
dopravních prostředků, ale zejména jejich vysoké průměrné stáří. K 1. 1. 2005 bylo v evidenci
České republiky registrováno 5 997 306 silničních vozidel a jejich průměrné stáří činí
16,6 roku. Zejména se na tak
vysokém průměrném stáří
podílejí motocykly, traktory
a jejich přípojná vozidla.
Během
roku
2004 došlo ke
zvýšení celkového počtu vozidel o 2,88 %
a zvýšilo se jejich průměrné
Obr. 0.2 Spotřeba pohonných hmot v silniční dopravě v ČR [84]
stáří o 0,07 %
roku.
Z dosavadního vývoje
důsledků rozvoje
silniční
dopravy lze vyvodit závěr, že
její udržitelný
rozvoj nezbytně
vyžaduje zásadObr. 0.3 Celkový počet silničních vozidel v ČR [84]
ní
opatření
v podobě intenzivního technického a legislativního působení na soustavné snižování ekologické zátěže a na
zvyšování bezpečnosti provozu motorových vozidel.
Technickou stránku dané problematiky, kterou se autor v předložené práci zabývá, lze
v podstatě rozdělit na dvě základní části. Jednak je to stávající poměrně dokonalý systém
homologačních měřících metod a předpisů, které vyvíjejí velice účinný tlak na soustavné
zdokonalování konstrukce vozidel a dále pak je to stávající málo účinný systém periodických
provozních kontrol, který zdaleka není schopen zachytit důsledky náhodných provozních
změn technického stavu vozidel, vedoucí k výrazným odchylkám od homologačně měřených
hodnot.
Uvedená problematika účinných periodických provozních kontrol motorových vozidel
je v současné době intenzivně preferována v některých státech USA, zejména v Kalifornii, a
lze očekávat, že tak, jako tomu v daném oboru již bylo vícekrát, se vyvíjená progresivní
opatření budou šířit i do Evropy.
Američané pomocí systému několikastupňových periodických kontrol vozidel a
s použitím investičně a provozně přijatelně levných prostředků dosahují [21], na rozdíl od
běžné evropské praxe, takové výstupy provozních měření, které jsou v korelačním vztahu
k přesným měřením homologačním. Dále pak příslušným represivním opatřením zabezpečují
2
poměrně malé odchylky od homologačně deklarovaného technického stavu vozidel po celou
dobu jejich provozu.
Uvedená myšlenka autora velice zaujala a v předložené práci prezentuje svůj přínos
k dané problematice. Základ autorova přínosu spočívá v tom, že hledá, zpracovává a
předkládá provozní měřící metody, jejichž výstupní data jsou přímo v jednotkách
homologačního měření, tudíž bezprostředně srovnatelná s legislativně deklarovanými
hodnotami nových vozidel, přičemž zůstává zachována investiční a provozní levnost měření a
tím i široká základna jeho využitelnosti.
Autor zde vychází z principů dynamických a kvazistatických měření [36], které
umožňují v krátkých časových okamžicích plně nahradit stabilní zatížení motoru zatížením
dynamickým, charakterizovat tak jeho silové a emisní chování a činit závěry pro provoz
motoru ve stabilních i přechodových režimech.
Poměrně dokonalé homologační měření městského a mimoměstského cyklu,
13-bodového testu, tahových charakteristik traktorů a brzdné dráhy velmi přesně vystihuje
podmínky provozu na pozemních komunikacích jak z hlediska produkovaných emisí, tak i
z hlediska aktivní bezpečnosti silničního provozu, na níž se brzdová soustava a její pomocné
systémy (např. ABS, brzdový asistent atd.) velkou měrou podílejí.
Velkým přínosem pro ekologii, ekonomiku i bezpečnost provozu by tudíž bylo, kdyby
se uvedená přesná měření mohla periodicky opakovat při technických kontrolách a mohly
z toho být vyvozovány závěry stimulující uživatele k důsledné kvalitní péči o technický stav
vozidel. Rovněž tak se jeví účelné rozšířit obdobu uvedených přesných měření v běžných
servisních pracovištích. Realizace je v zásadě možná za pomoci moderní výpočetní techniky
s využitím známých dynamických a kvazistatických metod.
V předložené práci využitá dynamická diagnostická hodnocení souhrnných provozních
vlastností užitkových motorových vozidel vycházejí z probíhajícího řešení projektu
COST 346 „Metoda měření na volných válcích pro testování emisí, spotřeby paliva a
technického stavu motorů nákladních automobilů traktorů a speciálních vozidel“ [23, 24, 25,
26], na němž se autor podílí, a navazuje na jeden z předcházejících dílčích úkolů tohoto
projektu „Kvazistatická metoda měření spotřeby paliva a produkce emisí spalovacích motorů“
[27]. Tato metoda byla v roce 1998 též částečně ověřována na nákladních automobilech a
zemědělských traktorech a nabízí z technického hlediska velice zajímavou a účelnou
alternativu stávajícího způsobu měření. Tento nový způsob měření se jeví jako velmi vhodný
pro aplikování do servisní praxe s investičními náklady, které jsou více jak desetinásobně
menší než u klasického homologačního měření.
Z uvedeného hlediska je předložená práce zpracována ve snaze nalézt metody účelně
využitelné jednak v systémech periodických emisních a technických kontrol motorových
vozidel, které by lépe prosazovaly zájmy společnosti na jejich bezpečném a ekologickém
provozu, a dále pak v systému servisních měření, kde by v zájmu uživatelů byly lépe
odhalovány a napravovány odchylky od bezpečného a ekonomického provozu vozidel.
3
1. Přehled současného stavu problematiky hodnocení motorových
vozidel
Současné metody měření motorových vozidel se historicky vyvíjely v průběhu téměř
celého minulého století bez podílu výpočetní techniky a teprve v posledních 10 až 15 letech
do tohoto oboru výpočetní technika intenzivně proniká. Problémem však je, že výpočetní
technika je využívána především pro kvalitnější, rychlejší a přehlednější zpracování výsledků
měření jak číselných, tabulkových i grafických, ale stále nedostatečně zasahuje do samotného
procesu měření a jeho vyhodnocení. Především se jedná o stávající nedostatečné využívání
rychlých dynamických dějů při práci motoru, ze kterých je možno moderními výpočetními
prostředky získat informace dostatečně přesné a ve větším rozsahu než při stabilním
zatěžováním na motorové brzdě. Dále pak se jedná o nedostatečné využívání možnosti
modelovat provozní režimy motorů a vozidel, s cílem rozpoznat důsledky jejich postupujícího
opotřebení.
Autor proto podrobil stávající systémy měření určité kritice, aby na základě poznání
jejich nedostatků vytýčil možnosti měření dynamických jevů s využitím moderní výpočetní
techniky. Řada stávajících měření je realizována při stabilních režimech práce motoru a
vozidlových systémů. Například měření točivého momentu motoru při stabilních otáčkách a
nebo měření účinku brzd při stabilních nízkých rychlostech má své specifické nedostatky,
jejíž podrobnější poznání může vést k vhodnějším dynamickým způsobům měření. Autor se
na svém pracovišti zúčastnil prací na dané problematice, jejichž výsledkem již byly některé
dynamické metody měření a jsou tudíž zařazeny již jako metody stávající, na něž autor v této
předkládané disertaci dále navazuje a předkládá svůj přínos.
Tato kapitola je rozdělena do tří částí. V první části jsou shrnuty stávající způsoby
měření hlavních parametrů spalovacích motorů (výkonů, spotřeby paliva, emisí) se
zaměřením na vhodnost uplatnění dynamických měření.
V druhé části kapitoly jsou obsaženy výsledky již dříve zpracovaných výzkumných
úkolů na nichž se autor podílel a jejichž výstupy jsou vstupem do předkládané práce.
Ve třetí části rozboru současného stavu se autor zaměřuje na možnosti měření
(standardní, urychlená a výpočtová tahová charakteristika) a vytvoření tahové charakteristiky
traktoru.
1.1 Stávající metody měření hlavních parametrů spalovacích motorů
Na silniční motorová vozidla a jejich části jsou kladeny požadavky bezvadného,
spolehlivého, ekologického a ekonomicky příznivého provozu. Zabezpečit tyto požadavky
nelze pouze kvalitní konstrukcí a výrobou, ale o vozidlo a jeho zařízení je nutno pečovat a
jejich funkci pravidelně kontrolovat, protože zdroje paliv nejsou nevyčerpatelné, dochází ke
znečišťování životního prostředí zplodinami výfukových plynů a může být ohrožen lidský
život.
Úkolem servisních pracovišť je kontrolovat jednotlivé funkce všech zařízení vozidla,
zejména ty, co mají dopad na bezpečnost silničního provozu, ale také na ekologičnost
provozu, protože silniční doprava patří k předním znečišťovatelům životního prostředí.
Z tohoto důvodu vznikly stanice technické kontroly pro vozidla v provozu. Pro vozidla nová
platí homologační měření, která s velkou přesností vystihují chování vozidla v silničním
provozu.
Hlavním parametrem spalovacích motorů z hlediska ekonomiky a ekologie provozu je
míra účinnosti přeměny chemické energie obsažené v palivu na mechanickou práci.
4
V případě, že se na stejné množství práce lépe využije energie obsažená v palivu, dopad na
životní prostředí bude menší. Nejvýznamnějším ukazatelem této účinnosti je měrná spotřeba
paliva [g.kWh-1], kterou lze charakterizovat jako komplexní diagnostický signál spalovacích
motorů. Na velikost měrné spotřeby paliva má vliv technický stav daného motoru, ale také
pokrok v konstrukci motoru. Aby bylo možné stanovit uvedený komplexní diagnostický
signál, tak je nutné, aby byly dostatečně přesně měřeny výkonové parametry a spotřeba paliva
motoru.
Tab. 1.1 – Přehled metod měření výkonových parametrů motorů [21]
Způsob zatížení
Stacionární (statické)
předvolené otáčky
motoru jsou
udržovány
zatěžovacím
momentem brzdy
(automobilové
motory)
zatěžovací moment se
volí nezávisle na
otáčkách (motory
s vlastní regulací)
Uložení
motoru
zkušební
stanoviště
Měření výkonu na
klikovém hřídeli nebo
jiném srovnatelném
místě
obvodu hnacích kol
(válcové zkušebny)
ve vozidle
(v místě
instalace)
klikovém hřídeli nebo
jiném srovnatelném
místě
vývodovém hřídeli
(traktory a užitková
vozidla)
obvodu hnacích kol
(válcové zkušebny)
Dynamické
urychlování
setrvačných hmot
zvoleným točivým
momentem
ve vozidle
klikovém hřídeli nebo
jiném srovnatelném
místě
přepočet výkonu na
klikový hřídel
Princip měřícího
zařízení
Absorpční dynamometry:
- elektromagnetické vířivé
brzdy
- hydraulické brzdy
- mechanické frikční brzdy
- vzduchové brzdy (vrtulové)
- tandemové brzdy
(kombinace)
Univerzální dynamometry:
- elektrodynamické motorgenerátory na stejnosměrný
nebo střídavý proud
Torzní dynamometry
(nebrzdí)
měření úhlového zrychlení
setrvačných hmot
(přídavné setrvačníky na
válcích)
měření úhlového zrychlení
klikového hřídele samotného
motoru (volná akcelerace)
nebo s přídavnými setrvačnými hmotami při jízdě na
určitý převodový stupeň
měření přímočarého
zrychlení celého vozidla
1.1.1 Metody měření výkonových parametrů spalovacích motorů
K měření výkonových parametrů spalovacích motorů, výkonu a točivého momentu
v závislosti na otáčkách, se využívá celá řada metod. Každá metoda měření má různé
požadavky na její provedení a s tím souvisí také rozdílná přesnost. Z hlediska zatížení, lze
rozdělit tyto metody na stacionární a dynamické. Podrobnější přehled uvádí tabulka číslo 1.1.
1.1.1.1 Měření při stacionárním zatěžovacím momentu
Obvykle se statickým (stabilním) zatížením spalovacího motoru rozumí takové zatížení,
které umožní nastavení předvolených otáček, které jsou v průběhu snímání jednotlivých
5
vstupů a výstupů z motoru konstantní. K udržování příslušného zatížení slouží celá řada
dynamometrů.
1.1.1.1.1 Měření motorovým dynamometrem na zkušebním stanovišti [21, 42, 72, 79]
Tento způsob měření spalovacího
motoru vychází z normy ISO 1585:1992
„Silniční vozidla – Zkoušky motoru – Výkon
netto“ nebo ČSN 30 2008 „Motory
automobilové - Zkoušky na brzdovém
stanovišti“. Motor je v tomto případě
demontován z vozidla a uložen na měřící
stanoviště, kde je dovybaven pouze
pomocným zařízením, které je nezbytné
k jeho provozu.
Měření výkonových parametrů motoru
na zkušebním stanovišti patří k základním
způsobům snímání parametrů na klikovém
Obr. 1.1 – Měření samotného motoru na hřídeli. Příslušná norma limituje přesnost
výkonovém dynamometru [79]
měření jednotlivých signálů včetně korekcí na
standardní podmínky. Z tohoto důvodu je také
toto měření považováno za plně průkazné. Z praktického hlediska se však i zde vyskytují
chyby měření, které mohou být například způsobeny vlastními ztrátami a hysterezí použitého
dynamometru, chybou snímačů reakční síly a případně také snímači teplot a atmosférického
tlaku, které se projeví jako chyba ve výpočtu korekčních činitelů na referenční atmosférické
podmínky.
Zkušební stanoviště je s ohledem na své vysoké pořizovací náklady, požadavky na čas a
pracnost vhodné zejména pro vývoj nových motorů, zkoušení při jejich výrobě a případně
homologační měření. Pro běžnou servisní a opravárenskou praxi je tento způsob měření
výkonových parametrů nevhodný i s ohledem na nestejné provozní podmínky v zabudovaném
stavu a ve stavu uložení na zkušebním stanovišti (například rozdílná sací a výfuková
soustava).
1.1.1.1.2 Měření spalovacího motoru ve vozidle pomocí válcového dynamometru [21, 34, 42, 72]
Některé uvedené nedostatky metody měření na zkušebním stanovišti řeší měření
spalovacího motoru ve vozidle na válcovém dynamometru. Tato metoda měření dosahuje
srovnatelných přesností měření jako předchozí metoda, ale pouze při měření výkonových
parametrů na obvodu hnacích kol. Ten je proti skutečnému výkonu motoru obvykle nižší.
Navíc dochází ve vozidlech při přenosu rychlosti a momentu k transformaci v převodových a
jízdních částech.
Lze tedy říci, že nejvýznamnější ztráty vznikají právě při přenosu energie z klikového
hřídele na hnací kola a jsou závislé na účinnosti částí jako je spojka, převodovka, kloubový
hřídel, rozvodovka, koncové převody apod. Dalšími ztrátami jsou ztráty, které se týkají
prokluzu a deformační práce pneumatiky s jistým vlivem ventilačních ztrát při jejich rotaci.
Velikost těchto ztrát je do jisté míry náhodného charakteru a není ani u vozidla stejné
typové řady obvykle shodná. Na velikost ztrát má vliv technický stav a mazání všech třecích
dvojic převodovek a rozvodovek a také řada faktorů, které se týkají pneumatiky jako je stav
dezénu a nahuštění. V hydraulických, elektrických a jiných soustavách se vyskytují
6
energetické akumulátory, které způsobují
kmitání soustavy. Obdobný problém hrozí
právě
i
v uvedených
mechanických
soustavách, kdy přelévání energie z jednoho
do druhého akumulátoru může ovlivnit
měření.
Velikost celkových převodových ztrát
při měření na válcových dynamometrech
uváděná v literatuře je značně nejednotná. Ve
starší literatuře se pohybuje až u 40 % a
v novější literatuře do 25 % užitečného
Obr. 1.2 – Měření silničního vozidla na výkonu motoru na klikovém hřídeli. I když
válcovém dynamometru [85]
jsou v praxi používány metody pro zjištění
ztrát, například decelerace motoru, korekční
výpočty na prokluz apod., tak je stanovení výkonových parametrů na klikovém hřídeli
zatíženo značnou chybou, což dokládají také experimenty, které provádí odborná periodika.
V následující tabulce číslo 1.2 jsou uvedeny výsledky z měření vozidla Škoda Felicia 1,9 D
v různých zkušebnách.
Tab. 1.2 – Hodnoty výkonových parametrů vozidla Škoda Felicia 1,9 D v různých
zkušebnách [21, 26]
Zkušebna
Jaroš Brno
Bosch
Maha Consulting
MEZservis Vsetín
Technology garage
Tabulkové hodnoty
Výkon [kW při min-1]
Točivý moment [Nm při min-1]
45,77 při 4028
46,10 při 4240
48,00 při 4380
42,66 při 4588
42,60 při 4545
47,00 při 4300
120,90 při 2328
115,80 při 2810
112,00 při 2780
100,20 při 3226
99,70 při 2970
124,00 při 2500 - 3200
Z tabulky vyplývá, že jsou v měřených hodnotách různými zkušebnami značné výkyvy
a jsou dosaženy odchylky přesahující i 20 % měřené veličiny, což je pro diagnostickou praxi
nepřijatelné. Na druhou stranu nelze tyto metody v žádném případě zamítnout, protože dokáží
přesně měřit zejména výkon na hnacích kolech. Ten je dále korigován a přepočítáván na
klikový hřídel, což je běžně výrobci udávaná hodnota, kterou měří na základě norem na
zkušebním stanovišti, které má odlišné podmínky od jiných firemních podmínek a zejména je
měřen jiný motor v jiném technickém stavu.
Uvedené důvody a praktické použití upozorňují na význam přenesených výkonových
parametrů z klikového hřídele na hnací kola. Výkon na hnacích kolech slouží přímo k pohybu
vozidla, kdežto výkon na klikovém hřídeli motoru musí pokrýt všechny dříve uvedené ztráty
zařízeních od motoru až po hnací kola. Zároveň by měření výkonu na hnacích kolech
umožnilo kromě stavu motoru kontrolovat také stav převodových a pojezdových ústrojí.
Z tohoto důvodu je válcová zkušebna vhodná. Jejím nedostatkem jsou však větší požadavky
na investice a proto se hodí do větších firem a servisních pracovišť.
1.1.1.2 Měření výkonových parametrů dynamických způsobem
Proti statickým metodám měření, kdy jsou výkonové parametry spalovacího motoru
měřeny při ustálených otáčkách a zatížení, tak jsou v případě dynamických metod měřeny při
7
dynamických režimech motoru, jako je urychlování (akcelerace) a zpomalování (decelerace)
jeho setrvačných hmot. Motor je tedy zatížen svou setrvačnou hmotností, kterou urychluje.
Velikost zatížení není dána absolutní hodnotou momentu setrvačnosti, ale polohou palivového
pedálu.
Měřený motor zpravidla urychluje setrvačné hmoty s plnou dodávkou paliva. Ve
výsledku není rozdíl v tom, zda při jízdě na vozovce jsou setrvačné hmoty vztaženy k celému
vozidlu nebo při urychlování samotného motoru (volná akcelerace), kdy setrvačné hmoty
odpovídají jeho pohybujícím se součástkám. Změní se pouze poměr velikosti zrychlení a
setrvačné hmoty, které jsou spolu v nepřímé úměře.
Na základě takto naměřených průběhů výkonových parametrů na otáčkách motoru lze
sestrojit dynamickou charakteristiku motoru, která je obdobná s vnější otáčkovou
charakteristikou motoru měřenou na zkušebním stanovišti za statických podmínek, ale nelze
je ztotožňovat, přestože mezi oběma druhy charakteristik nebývají výrazné rozdíly. Během
dynamického procesu totiž dochází k situaci, že při rozběhu motoru si neodpovídají
podmínky spalování s podmínkami přípravy spalování, protože dochází k fázovému posunu
charakteristik, který je způsobený setrvačností pracovního cyklu.
V široké praxi jsou relativně často upřednostňovány statické měření na zkušebních
stanovištích, i když se ve skutečném provozu tyto případy nevyskytují příliš často, ale spíše se
jedná o dynamické režimy práce motoru (doba akcelerace mezi různými rychlostmi), které
mají svůj význam především v otázce bezpečnosti předjíždění a plynulosti provozu. Statické
charakteristiky mají význam při posuzování vozidel v provozu na dálnicích a silnicích pro
motorová vozidla.
1.1.1.2.1 Válcové zkušebny pro dynamická měření [11, 21, 72]
Pro měření výkonových parametrů dynamickým způsobem na válcových zkušebnách se
využívá jejich setrvačníkové provedení, které je původně pro kontrolu rychloměrů a
tachografů, přezkoušení termostatů, teploměrů, činnosti spojky, řazení převodů, lokalizace
hluků apod. Zařízení je vybaveno válci, které jsou poháněny hnacími koly vozidla a v režimu
akcelerace se k nim pro zvýšení setrvačnosti připojují setrvačníky. Aby skutečné podmínky na
pozemních komunikacích byly adekvátní s měřícími podmínkami, tak je zapotřebí přesně tak
velkých setrvačníků jako je setrvačná hmota vozidla. V praxi se to řeší kombinací zapojování
různých setrvačníků nebo pomocí vzduchových a hydraulických brzd.
Měření výkonu a točivého momentu motoru je obvykle u tohoto typu zkušebny řešeno
pomocí vloženého členu mezi rotující válec a poháněný setrvačník. Vloženým členem může
být momentový převod nebo torzní dynamometr. V současné době jsou původní méně přesné
analogové zapisovače nahrazeny digitálním vyhodnocením. Nejmodernější zařízení umožňují
měření statické i dynamické.
Bohužel jsou mnohdy ještě v současné době dynamické metody měření brány jako
pouze pomocné a orientační, i když konstrukce setrvačníkové válcové zkušebny je jednodušší
a také řádově levnější, čímž by nalezly uplatnění v běžných servisních střediscích nejen
k orientačním zkouškám, ale k plnohodnotným zkouškám výkonových parametrů motoru.
1.1.1.2.2 Metoda měření při volné akceleraci [11, 21, 22, 42, 36, 37, 40, 41]
Měření výkonových parametrů pomocí volné akcelerace vnější silou nezatíženého
motoru je známo již několik desetiletí, ale bez objektivní podstaty. Pouze záleželo na
subjektivních zkušenostech mechanika, který měření prováděl. S rozvojem techniky se
8
postupně přešlo z méně přesných analogových přístrojů na digitální elektroniku a výpočetní
techniku, která již je objektivní.
Výhodou této metody vůči
výše popsaným metodám měření
výkonu a točivého momentu motoru
je vysoká přesnost a opakovatelnost,
protože jako jediná z metod není
ovlivněna ztrátami a hysterezí jako
je tomu u statických měření.
Přesnost měření na volných válcích
je ovlivněna pouze přesností měření
času, za který se pootočí klikový
hřídel motoru o určitý úhel.
Měření úhlového zrychlení a
úhlové rychlosti klikového hřídele
motoru s dostatečnou přesností na µs
Obr. 1.3 – Měření traktoru na volných válcích [22]
je poměrně snadnou záležitostí.
Problematické je stanovení momentu setrvačnosti motoru. První možností jak získat moment setrvačnosti motoru je informace
od výrobce, který dodá přesnou hodnotu momentu setrvačnosti přímo s motorem vozidla.
Tento způsob je velmi jednoduchý, ale v praxi se vyskytuje pouze ojediněle. Druhou
možností je změřit nové vozidlo a moment setrvačnosti vypočítat zpětně z naměřeného
točivého momentu. Možností třetí je měřit dostatečné množství vozidel a sledovat průběh
točivého momentu. V případě, že překračuje výrobcem udávanou hodnotu, pro motor bez
jakýchkoliv úprav, je hodnota momentu setrvačnosti snížena. Toto se opakuje, až se získá
poměrně přesný moment setrvačnosti, který se blíží hodnotě skutečné. Čtvrtou možností je
změřit motor s přívažkem o známé velikosti a moment setrvačnosti dopočítat. Z hlediska
provozu motoru lze moment setrvačnosti považovat za konstantní, jelikož se téměř nemění.
Případná chyba v nastavení momentu setrvačnosti je při měření významná, ale je chybou
systematickou a nemá tedy náhodný vliv na přesnost vlastního měření.
Kromě stanovení momentu setrvačnosti motoru je zde problém s parametry plnícího
vzduchu. Jde především o motory s turbodmychadlem a motory, které mají proměnnou délku
sacího potrubí. Zpoždění turbodmychadla je dané vlastním principem jeho práce a v závislosti
na vyspělosti konstrukce je ovlivněna jeho velikost. Přesto i u moderních motorů se téměř
v celém rozsahu během měření při volné akceleraci naměří hodnoty výkonových parametrů,
které by odpovídaly atmosféricky plněnému motoru.
Kromě uvedených nedostatků, které jsou podstatné, má metoda měření na volných
válcích také celou řadu předností. Kromě toho, že je zaručena velmi vysoká opakovatelnost
měření je toto měření prováděno bez demontáže motoru a dalších významných technických
zásahů. Významnou výhodou je také neomezený rozsah výkonově různých strojů, které jsou
měřeny se stejnou přesností jediným přístrojem. Nespornou výhodou jsou také nízké
pořizovací náklady proti klasickým metodám měření.
1.1.1.2.3 Kvazistatická metoda měření [11, 21, 36, 37, 40, 41]
Kvazistatická metoda využívá akcelerační princip a je charakterizována tím, že plná
akcelerace motoru působí jednorázově a nebo i opakovaně, vždy pouze v poměrně úzkém
pásmu otáček, při němž se zatížení motoru relativně ustálí. Toto zatížení lze měřit a současně
lze měřit i relativně ustálené vstupy do motoru (spotřebu paliva) a výstupy (škodlivé emise a
jiné charakteristiky).
9
Takto lze měřit poměrně snadno všechny druhy spalovacích motorů osobních a
nákladních silničních vozidel, autobusů, traktorů a samojízdných strojů. Jisté problémy
způsobuje měření vstupů a výstupů z motoru. Je totiž zapotřebí velmi citlivé zařízení, které je
schopno měřit v aktuálním čase, což zvyšuje ekonomické náklady.
Přestavení palivového pedálu z nulové do plné dodávky paliva je nutné provést během
několika setin sekundy, jelikož by mohlo dojít k nežádoucím částečným dostřikům paliva. U
vznětových motorů s výkonnostním regulátorem to není problémem, protože již malá změna
polohy palivového pedálu znamená plnou nebo nulovou dodávku paliva. U vozidel
vznětových s omezovacím regulátorem nebo vozidel se zážehovým motorem dochází
k dostřikům, které mohou zkreslit naměřená data o 1 až 3 %.
Obr. 1.4 – Kvazistatická měření točivého momentu [40, 41]
Na obrázku číslo 1.4 je příklad kvazistatického měření traktorového motoru. Otáčky
motoru kolísají v rozmezí 1460 – 1786 ot.min-1, střední měřící otáčky jsou tedy 1618 ot.min-1.
Těmto středním otáčkám odpovídá efektivní točivý moment 225 Nm a ztrátový točivý
moment 116 Nm. Zároveň s měřením výkonových parametrů probíhá zaznamenávání
spotřeby paliva. Při středních otáčkách a středním točivém momentu motoru dosáhla hodnota
měrné spotřeby paliva 247 g.kWh-1.
Měření bodu na obalové křivce lze poměrně snadno vyřešit kvazistatickým měřením.
V případě, že se bod nachází mimo obalovou křivku točivého momentu, je nutno použít jedno
z následujících řešení:
- U zážehových spalovacích motorů postačí pod palivový pedál umístit kolík, který
znemožní plnou dodávku paliva. Měřený bod leží pod obalovou křivkou tak hluboko,
jak je vysoký kolík podkládající palivový pedál. Lze se pohybovat v rozmezí od plně
zatíženého až po nezatížený motor. Vlastní měření se poté provádí stejně jako u
obalové křivky a to s využitím kvazistatického způsobu měření.
- U vznětových spalovacích motorů s rychlostním (omezovacím) regulátorem probíhá
měření stejným způsobem jako u motorů zážehových. K nastavení jiného než
maximálního zatížení slouží podložení palivového pedálu vhodně zvolenou velikostí
kolíku.
- U vznětových spalovacích motorů s výkonnostním regulátorem je to poněkud
složitější. Měření je provedeno tak, že se vozidlo rozjede na volných válcích a nastaví
10
příslušné otáčky ručním plynem. Poté následuje pomocí provozní brzdy snížení otáček
motoru zhruba o 100 ot.min-1. Na této hodnotě se nechá pár vteřin ustálit a poté se
uvolní brzdový pedál a měří se zrychlení motoru při návratu na původně nastavené
otáčky. Tento typ měření je použit u traktorových spalovacích motorů, které jsou ve
většině případů vybaveny výkonnostním regulátorem.
1.1.2 Metody měření spotřeby paliva
Počet vozidel a tím také spotřeba paliva v České republice neustále roste, což je
znázorněno na obrázku číslo 0.2 a 0.3. Na každý litr spáleného motorového paliva musí být
k dispozici zhruba 10 m3 vzduchu. Současně na zvyšující se spotřebu paliva má vliv také
rostoucí stáří motorových vozidel (jejich zhoršený technický stav a zastaralá konstrukce),
které je v současné době více jak 16,5 roku.
Se zvyšujícím se stářím vozového parku České republiky souvisí také zastarávání jejich
konstrukce, přičemž se odhaduje, že 10 % spotřeby paliva právě připadá na ztráty vlivem
konstrukce a dalších 10 % na ztráty, které souvisí se zhoršeným technických stavem
motorových vozidel.
Právě měrná spotřeby paliva je považovány za komplexní diagnostický signál, který
charakterizuje účinnost motoru. Bohužel v praxi se spotřeba paliva převážně udává v litrech
na 100 km provozu v podobě tří čísel, která charakterizují spotřebu paliva v simulovaném
městském cyklu, mimoměstském cyklu a ve smíšeném provozu, který je kombinací
předchozích dvou (36,8 % městský cyklus 63,2 % mimoměstský cyklus).
1.1.2.1 Měření spotřeby paliva pomocí průtokoměrů [11, 42]
Měření spotřeby paliva pomocí palivoměrů je poměrně jednoduché, ale má některé
problémy, které souvisí především se správným umístěním do palivové soustavy měřeného
spalovacího motoru a také s měřením a načítáním spotřeby paliva v průběhu dynamických
režimů.
Při připojení palivoměru nesmí být ovlivněny správné provozní parametry palivové
soustavy a musí být respektováno zpětné vracení přebytečného paliva do nádrže. Za těchto
dvou podmínek je zcela bezproblémové připojení palivoměru do starší soustavy vznětových
motorů s neproplachovaným vstřikovacím čerpadlem a zážehových motorů s karburátorem.
Problém s proplachováním soustavy je třeba řešit tak, aby byly zachovány všechny funkce
proplachování a současně nebyla měřená spotřeba paliva proplachovacím množstvím
zvětšena. U motorů se vstřikováním paliva je eliminace zpětného vracení paliva obtížná proto,
že je nutné dodržet také vstřikovací tlak, který charakterizuje podmínky pro vstříknutí
správného množství ve správný čas do příslušného válce spalovacího motoru. Poslední
konstrukce motorů mají vstřikovací tlak proměnný v závislosti na otáčkách motoru.
Akcelerační způsob měření spotřeby paliva klade na konstrukci měřiče spotřeby paliva
podstatně vyšší nároky, než je tomu u klasického statické zatěžování. Především se jedná o
přesnost, jemné rozlišení a co nejnižší setrvačnost mechanických a hydraulických systémů
použitého palivoměru. Lze použít běžné komerční palivoměry. V takovém případě je ovšem
nezbytně nutné eliminovat časové zpoždění odečítání spotřeby, způsobené zejména
setrvačností mechanismů, pasivními odpory použitého typu palivoměru a použitým potrubím,
resp. jeho pružností.
Jedná se zejména o objemová pístová nebo rychlostní měřidla, kde je měřící prvek
proudem kapaliny uváděn do rotačního pohybu. Rychlost je elektricky měřena a měřené údaje
jsou cejchovány přímo v litrech za minutu nebo cm3 za sekundu. Přesnost těchto průtokoměrů
11
bývá 1 až 2 % s tím, že nároky
na přesnost a kvalitu částí jsou
vysoké. Přesného měření lze
v praxi dosáhnout jednak volbou
průtokoměru o měřícím rozsahu,
který zabezpečuje, že měřený
průtok
zpravidla
prochází
nulovou hodnotou cejchovní
křivky nebo se využije výpočetní
techniky, která umožní korekci
podle
cejchovní
křivky
znázorněné například na obrázku
Obr. 1.5 – Příklad cejchovní křivky objemového číslo 1.5.
průtokoměru [42]
V současnosti jsou ve stádiu zkoušek nové konstrukce palivoměrů, které jsou
označovány jako aktivní palivoměry, ale bohužel nedosahují zatím potřebné přesnosti.
Aktivní palivoměry reagují na podtlak v sací větvi palivové soustavy. Měřící jednotkou může
být zubové čerpadlo poháněné přes magnetickou spojku malým elektromotorem, jehož otáčky
jsou obvykle řízeny diferenciálním podtlakovým regulátorem a elektronickými obvody. Další
variantou je aktivní palivoměr, jehož podstata spočívá v tom, že píst odměrného válce je přes
pohybový mikrometrický šroub poháněn elektromotorkem, který je elektronicky řízen tak,
aby jeho točivý moment, a tedy i systémový přetlak paliva v palivové soustavě byl ve všech
otáčkových režimech motoru v souladu s předepsaným.
1.1.2.2 Měření spotřeby paliva z emisí [11, 17, 21, 22, 42, 75]
Pro homologační měření je od 1. 1. 1997 v rámci Evropského společenství závazný
nový způsob určování spotřeby paliva stechiometrickým výpočtem ze změřených spalin. Dnes
se zpracovávají výsledky měření na počítači a není problém vypočítat z množství oxidu
uhelnatého CO, oxidu uhličitého CO2 a uhlovodíků HC množství spotřebovaného paliva. Při
schvalování nového typu vozidla se tedy změří pouze emise a z nich se vyhodnotí spotřeba
paliva.
Výhodou způsobu zjišťování spotřeby paliva ze spalin je to, že není třeba zasahovat do
palivové soustavy automobilu, připojením externího měřícího zařízení. To je u moderních
palivových soustav obtížné a pracné a v některých případech dokonce nemožné, vzhledem
k ovlivnění systémového tlaku paliva a tím základních parametrů měřeného motoru.
Nevýhodou jsou zejména podstatně vyšší investice na celý měřící systém.
Metoda počítané spotřeby paliva ze spalin se vyvinula z měření emisí vozidlových
motorů. Při „klasickém“ odběru vzorku z výfukového traktu spalovacího motoru je (zhruba
řečeno) při dodržování stejných podmínek pro spalování koncentrace škodlivin přibližně stálá
a se změnou režimu běhu motoru (klapka, otáčky) se mění výrazně průtok spalin. Pro výpočet
spotřeby paliva z těchto tzv. neředěných plynů je nutno zajistit přesné a kontinuální měření
nasávaného množství vzduchu např. pomocí bezztrátové dýzy.
Naopak při velkém průtoku ředícího vzduchu, několikanásobku průtoku spalin, se při
změně režimu běhu mění výrazně koncentrace škodlivin (podle okamžitého podílu spalin ve
vzorku přiváděném k analyzátorům) a průtok zředěných spalin je takřka neproměnný.
V tomto případě není nutné zajistit kontinuální měření hltnosti motoru, je však nutné zajistit
konstantní ředění v daném měření.
12
Analýza zředěných spalin byla předběžně ověřována na prototypu válcové zkušebny pro
kvazistatické měření, pro analýzu spalin byly použity běžné servisní analyzátory Atal AT 500
a pro kouřivost AT 600. Instalovaný ventilátor umožňoval ředění spalin s ohledem na měřený
motor Z8001 až 16-ti násobné. Tento stupeň ředění však nebylo možné s ohledem na velký
rozsah, malé rozlišení a chybu měření použitého analyzátoru spalin prakticky použít a byl
proto nastaven stupeň ředění 4-násobný. Jako porovnávací etalon spotřeby paliva byl zvolen
cejchovaný průtokoměr Mannesmann Kienzle KTZ 1043.900.
Ani jeden z experimentů použitých metod však nedosahuje přesností, které jsou běžné
pro servisní průtokoměry tj. cca 1,5 až 2 %. Metoda analýzy neředěných plynů provedená na
klasické výkonové brzdě vybavené přístroji s nadstandardní přesností sice vykázala lepší
výsledky tj. rozptyl -8 až 3 %, avšak její zpřesnění by bylo neúměrné vynaloženým nákladům
na ještě přesnější analyzátor a přesnější měření objemové účinnosti měřeného motoru, což by
bylo v rozporu se záměrem vyvinout relativně levné a tím dostupné technické řešení pro
servisní praxi.
Nadějněji se jeví počítání spotřeby paliva na základě metody konstantního ředění
emisních plynů jak vyplývá nejen z teoretických předpokladů a odborné literatury. I když
v tomto případě byly výsledky z titulu přesnosti, resp. odchylky od etalonu, v podstatě
dvojnásobně horší tj. ± 10%, vyskytovaly se tyto extrémy zejména ve velmi nízkých
koncentracích tj. na dolní hranici měřitelného rozsahu použitého analyzátoru. To je patrné na
následujícím obrázku číslo 1.6. S tím úzce souvisí stupeň ředění měřených plynů, kde je z
teoretických předpokladů a na základě praktických zkušeností doporučováno ředění v rozmezí
8 až 11ti-násobné. Pokud je stupeň ředění nižší, je obtížné udržet konstantní průtok ve všech
režimech práce motoru, což ovlivňuje výsledky. Určitým problémem je také filtrace většího
výskytu pevných částic při měření vznětových motorů, které mohou zanášet analyzátory
obvykle konstruované pouze pro měření zážehových motorů a ovlivňovat tak výsledky
měření.
Obr. 1.6 - Odchylka z ředěných emisí vypočtené spotřeby paliva v závislosti na hodnotách
etalonového průtokoměru Kienzle. (stupeň ředění 4x, max. odchylka ± 10%) [22]
Uvedené nedostatky lze odstranit použitím analyzátoru s vyšším rozlišením, menším
nebo přepínatelným rozsahem a menší chybou než mají standardní analyzátory.
1.1.3 Měření emisních složek výfukových plynů [11, 21, 42, 75, 77]
Ve skladbě zdrojů zatěžujících životní prostředí lze pozorovat významný přesun jejich
podílů. Zatímco emise z titulu průmyslové výroby klesají, je tomu u silniční dopravy právě
naopak jak je znázorněno na obrázku číslo 0.1.
13
Při spalování uhlovodíkového paliva se vzduchem vzniká dokonalou oxidací uhlíku
obsaženého v palivu oxid uhličitý CO2 a voda H2O. Při nedokonalé oxidaci těchto prvků je ve
spalinách přítomen oxid uhelnatý CO a vodík H2. Jelikož je jako okysličovadla použito u
spalovacího motoru vzduchu je významnou složkou spalin dusík N2. Kyslík O2 se objevuje ve
výfukových plynech pokud je ho v nasávané směsi přebytek, nebo z jiného důvodu
způsobeného spalovacím procesem. Za vysokých spalovacích teplot vznikají oxidy dusíku
NOx. Při nepříznivých podmínkách spalování způsobených špatným nastavením nebo
závadou na motoru obsahují spaliny výfukových plynů nespálené uhlovodíky HC různého
složení. Za nepřístupu vzduchu dochází uvnitř spalovacího prostoru k dekompozici molekul
uhlovodíků, jejímž výsledkem je přítomnost pevného uhlíku – sazí ve spalinách.
S výfukovými plyny odchází z motoru velmi malé množství dalších částic, kterými jsou
produkty degradace mazacího oleje, prach, popel, částečky rzi atd.
Síra obsažená v některých uhlovodíkových palivech vytváří během spalovacího procesu
motoru oxidy síry, které se následně objevují ve spalinách.
Význam kouřivosti je především u motorů vznětových, kde se projevuje mnohem
výrazněji než u motorů zážehových. Ke kvantitativnímu popisu kouřivosti slouží zejména tyto
metody [75]:
- filtrační metoda,
- opacimetrie,
- hmotnostní měření koncentrace částic.
K měření koncentrace plynných složek výfukových plynů produkovaných spalovacím
motorem se využívá řada metod, z nichž jsou nejběžnější tyto [75]:
- měření založené na principu absorpce infračerveného záření,
- měření založené na principu absorpce ultrafialového záření,
- měření s využitím chemické luminiscence,
- měření založené na principu změny elektrické vodivosti vodíkového plamene,
- analyzátory pracující na principu měření magnetických vlastností apod.
Z hlediska přesnosti měření je pro emisní analyzátory důležitá především jejich
pravidelná kalibrace, rychlost odezvy na skokové změny koncentrace a odpovídající rozsah
měřených koncentrací.
Největší přesnosti z hlediska měřícího rozsahu dosahují analyzátory nejčastěji ve 2/3 až
3/4 rozsahu stupnice. Dlouhodobá provozní praxe přinesla při měření jednotlivých koncentrací dostatečné informace pro odpovídající
měřící rozsah. Tento měřící rozsah je
vhodný při statickém nebo dynamickém
měření, kdy nedochází k ředění plynů.
V případě, že se běžné servisní analyzátory
s tímto rozsahem použijí při měření
ředěných spalin, budou se naměřené
hodnoty nacházet na spodním méně
citlivém okraji měřícího rozsahu, kde se
zvyšuje chyba měření.
S vhodným
rozsahem
stupnice
souvisí
také
pravidelné cejchování
analyzátoru, které kontroluje a nastavuje
shodu skutečného hodnoty koncentrace
s koncentrací měřenou. Obvykle se
Obr. 1.7 – Příklad analyzátoru ATAL pro
kontroluje nulová hodnota a hodnota ve 2/3
měření plynných složek výfukových spalin
14
až 3/4 měřícího rozsahu. Nulová hodnota se kontroluje dusíkem, ale z praktického důvodu se
k tomuto účelu v servisních analyzátorech používá čistého suchého vzduchu.
Z hlediska dynamických měření je důležitá rychlost odezvy na změnu složení
analyzovaného vzduchu (tj. aby analyzovaný vzduch prošel co nejrychleji připojovacím
potrubím, aparaturou až k měřícímu členu). Konstrukce analyzátorů s pracovní komorou není
pro dynamické měření vůbec vhodná vzhledem k velkému zpoždění reakce na změnu.
Přidělení odpovídající koncentrace pro konkrétní otáčky není možné.
1.2 Stávající metody hodnocení motorových vozidel
Pro posouzení technického stavu motorového vozidla v laboratorních podmínkách je
zapotřebí, co nejpřesněji simulovat skutečné provozní zatížení například v podobě:
− městského a mimoměstského jízdního cyklu pro osobní vozidla,
− 13-bodového testu pro nákladní vozidla,
− testu brzdné soustavy vozidla na válcích,
− tahové charakteristiky apod.
Uvedené testy jsou zpracované v podobě norem a vyhlášek a jsou kontrolovány
v homologačních stanicích, které jsou schopny dodržet přísná normovaná pravidla pro jejich
vykonávání. Běžná servisní pracoviště nejsou schopná tyto podmínky a pravidla splňovat
zejména s ohledem na požadované technické vybavení zkušebny a v některých případech na
vysokou pracnost a časovou náročnost.
Dynamický způsob měření se jeví jako servisně vhodnou alternativou těchto
homologačních měření s výsledky, které dosahují porovnatelných hodnot. Popisuje parametry
vozidla, které jsou v provozu velice důležité (průběh spotřeby paliva v městském a
mimoměstském cyklu, průběh brzdné dráhy vozidla atd.). Prozatím není dynamický způsob
měření motoru zcela univerzální. Na jeho univerzálnosti se neustále pracuje zejména
s ohledem na přesnost měření motorů s přeplňováním a motorů elektronicky řízených.
Autor v této kapitole upozorňuje na některé možnosti aplikace dynamických měření
řešených v rámci výzkumných záměrů na nichž se podílel, a které jsou zaměřeny na:
− městský a mimoměstský jízdní cyklus pro osobní vozidla,
− 13-bodový cyklus pro nákladní vozidla a autobusy,
− městský jízdní cyklus pro nákladní vozidla a autobusy,
− dynamickou kontrolu brzdného účinku.
1.2.1 Aplikace dynamických měření na městský a mimoměstský cyklus osobních vozidel
Aplikace dynamických měření na městský a mimoměstský jízdní cyklus osobních
vozidel byla řešena v projektu COST 319.10 „Diagnostický systém pro zlepšení ekonomiky a
ekologie provozu vozidlových motorů“, kde autor vystupoval jak spolupracovník.
1.2.1.1 Homologační měření městského a mimoměstského cyklu [21, 40, 60, 78]
Stávající městský a mimoměstský cyklus podle normy ECE 83 R je určen pro osobní
automobily a lehká užitková vozidla. Systém měření cyklu zůstává stejný podle uvedené
normy, pouze je neustále doplňován a upřesňován se zaměřením na emisní složky výfukových
plynů (EURO 1, EURO 2, EURO 3, EURO 4 – platné od roku 2005,
EURO 5 – předpokládaná platnost od roku 2010). Na autobusy a těžká nákladní vozidla se
15
však neaplikuje a spíše se
využívá 13-bodového testu
podle Evropské normy
EHK 49 nebo jeho evropská
novelizace ve formě ESC
(European
Stationary
Cycle) a ETC (European
Transient Cycle).
Princip
měření
Obr. 1.8 – Městský jízdní cyklus podle normy ECE 83 R [78]
městského cyklu na osobních automobilech a lehkých užitkových vozidlech spočívá v umístění vozidla na válcové
zkušebně, která dynamometry nastavuje průběh jeho zatížení. Toto zatížení působí na vozidlo
v běžném městském a mimoměstském provozu. Během měření je snímána spotřeba paliva a
emisní složky výfukových plynů. Rychlost vozidla a jeho zrychlení jsou přesně definované
v závislosti na čase včetně okamžiků, kdy je třeba přeřadit na vyšší či nižší převodový stupeň,
popřípadě zařadit neutrál. Příklad městského cyklu je uveden na obrázku číslo 1.8.
Na obrázku číslo
1.9 je podobné schéma
pro mimoměstský jízdní
cyklus. Na obrázku číslo
1.9a) je klasický cyklus
a na obrázku číslo 1.9b)
mimoměstský
cyklus
pro vozidla, která nemají
dostatečný výkon pro
dosažení
rychlosti
120 km.h-1. Maximální
rychlost
je
v tomto
případě omezena na
90 km.h-1.
a) Klasický mimoměstský cyklus
Vzhledem k tomu,
že měření obvykle provádí pracovník, není
možné přesně kopírovat
křivku rychlosti v závislosti na čase a tak je
vymezeno toleranční pole. Pracovník vidí tuto
křivku na monitoru, na
kterém je zobrazeno také
toleranční pole a jeho
momentální poloha. Měření tedy vyžaduje zkub) Mimoměstský cyklus pro vozidla s malým výkonem
šeného pracovníka nebo
Obr. 1.9 – Mimoměstský cyklus podle normy ECE 83 R [78]
nákladnou elektroniku,
která ho nahradí.
Během měření jsou snímány výfukové plyny do vaků, aby bylo možno provést
chemický rozbor a také zpravidla z emisí vypočítat spotřebu paliva.
16
Zkušenost pracovníka a jeho schopnost vést vozidlo v tolerančních polích se výrazně
projevuje na opakovatelnosti zkoušky a také na její přesnosti. Uvedený nedostatek by
nepůsobil v běžných servisních stanovištích proti homologačním žádný problém. Výrazný
nedostatek homologační metody je v potřebě drahých a rozsáhlých měřících zařízeních, které
jsou i řádově dražší než navrhované využití dynamické metody pro servisní diagnostiku
vozidel.
1.2.1.2 Využití dynamických měření při tvorbě městského a mimoměstského cyklu
V tomto bodě je popsáno měření městského jízdního cyklu aplikované na osobní
vozidlo Škoda Favorit 136 LS pomocí moderních dynamických metod. Mimoměstský cyklus
je jeho obdobou a jeho aplikace má stejné výhody i nevýhody jako popsaný městský cyklus.
Ukázka simulovaného cyklu je prováděna pouze na spotřebě paliva a předpokládá se, že
s měřením výfukových plynů také nebudou žádné problémy.
1.2.1.2.1 Vstupní veličiny procesu simulace městského cyklu na počítači
Základní vstupní veličiny popisují především parametry měřeného vozidla, kterým je
zmíněný vůz Škoda Favorit 136 LS:
- obvod hnacích kol (Lh = 1,72 m) – obvod hnacích kol je průměrná hodnota obou
hnacích kol, přičemž byla měřena vzdálenost 10 otoček předních kol na vozovce,
- hmotnost kola (Gh = 13 kg) – hmotnost kola je také měřena jako průměr levého a
pravého kola hnací nápravy,
- pohotovostní hmotnost vozidla (Gw = 860 kg) – pohotovostní hmotnost vozidla je
vytažena z tabulek pro daný typ automobilu a ověřena na vahách pro měření
tlumičů, které tuto hodnotu potvrdily s malou odchylkou, která byla zapříčiněna
rozdílností ve výbavě vozidla (montážní klíče, náhradní součástky apod.),
- čelní profil vozidla (Av = 1,89 m2) – čelní plocha je také převzata z tabulek (možné
měřit například projekční metodou),
- součinitel odporu vzduchu (cx = 0,36) – součinitel odporu vzduchu je u tohoto typu
vozidla převzat z tabulek, měřením není ověřen, ale je považován za správný,
přestože se jeho hodnoty mohou měnit v závislosti na počtu a umístění
aerodynamických spoilerů,
- volnoběžné otáčky motoru (no = 800 ot.min-1) – volnoběžné otáčky jsou změřeny
sběračem dat, vypočteny jako střední hodnota a mírně zaokrouhleny (skutečná
naměřená střední hodnota otáček je 797 ot.min-1),
- maximální otáčky motoru (nm = 5500 ot.min-1) – hodnota maximálních otáček motoru
je odvozena z tabulkové hodnoty otáček při maximálním výkonu + 500,
- moment setrvačnosti motoru (Im = 0,1418 kg.m2) – možnosti měření setrvačnosti
motoru jsou popsány v předešlých kapitolách (této hodnoty je dosaženo měřením
dostatečně velkého počtu vozidel),
- hustota vzduchu (φL = 1,202 kg.m-3) – hustota vzduchu je převzata z tabulek pro
nadmořskou výšku 200 metrů,
- hustota paliva (φb = 735 kg.m-3) – tabulková hodnota hustoty paliva při teplotě 15 °C
(725 – 740 kg.m-3 a korekce na 1 °C je 0,62 kg.m-3).
Další hodnoty, které jsou pro výpočet nezbytné, jsou uvedeny v příslušné části měření a
výpočtu. Patří sem například hodnoty točivého momentu motoru získané na základě
17
naměřeného a vypočteného úhlového zrychlení ε a známého momentu setrvačnosti motoru Im,
hodnoty spotřeby paliva a s nimi související cejchovní křivka palivoměru apod.
1.2.1.2.2 Vytvoření celkové veličinové charakteristiky
K měření je použito zařízení umožňující měření výkonových parametrů na principu
volné akcelerace motoru, při které je motor plně zatížen urychlováním setrvačných hmot a
překonáváním pasivních odporů. Měření lze realizovat rovněž v případě, kdy vozidlo je svými
hnacími koly umístěno na dvou párech volně se otáčejících válců, respektive mohou být hnací
kola též pouze nadzdvihnuta.
Při zařazeném převodu a různých nastavených polohách palivového pedálu je motor
rytmickým sešlapováním a uvolňováním brzdového pedálu střídavě brzděn a odbrzďován,
přičemž při každém odbrzdění je měřena akcelerace a jí úměrný točivý moment motoru,
včetně dodávky paliva. Postupně se tak získají různé body polí měřených veličin, přičemž na
jednotlivých bodech je nutno měřící proces ustálit s ohledem na časovou konstantu přístroje
měřícího danou veličinu. Zpravidla pro jeden bod stačí dvojí sešlápnutí a uvolnění brzdového
pedálu při nezměněné dodávce paliva. V tabulce číslo 1.3 jsou uvedeny zvolené měřící body.
Navržené měřící body jsou
voleny pouze jako orientační.
Tab. 1.3 - Popis měřených bodů
V praxi je přesné nastavení těchto
Otáčky motoru n
hodnot zdlouhavé a proto pro
0,4.nm
0,65.nm
0,9.nm
měření
plně
postačí
pouze
0
0
0
Točivý efektivní
orientační dosažení těchto hodnot. 9
moment motoru 0,5 . Mm 0,5 . Mm 0,5 . Mm
bodů je minimum, které je potřeba
Me
Mm
Mm
Mm
pro vytvoření celkové veličinové
charakteristiky. Čím více naměřených bodů je k dispozici, tím je měření a pozdější simulace přesnější. Pro použití v běžných
automobilových servisech a při tolerancích běžných měřících přístrojů postačí z hlediska
přesnosti tento systém měření 9 bodů.
1.2.1.2.2.1 Měření otáček, točivého momentu a spotřeby paliva motoru Š – 136
Během střídavého uvolňování a sešlapování brzdového pedálu jsou otáčky motoru
udržovány na střední předvolené hodnotě, která vychází z tabulky číslo 1.3. Zároveň jsou
snímány impulsy otáčení volných válců na nichž je vozidlo při měření uloženo spolu se
spotřebou paliva.
Jedna otáčka motoru představuje jeden časový impuls. Otáčky měřeného motoru se
vypočítají podle vztahu (1).
n
60
ti − ti− 1
-1
(1)
n – otáčky motoru [min ]
ti – následující časový impuls [s]
ti-1 – předchozí časový impuls [s]
Výsledky předchozího vztahu v grafické podobě jsou znázorněny na obrázku číslo 1.10,
který vyjadřuje závislost otáček motoru na časovém impulsu po odstranění extrémních hodnot
vyhlazením. Střední hodnota otáček je na předchozích obrázcích znázorněna červenou
přerušovanou čarou, je vypočtena jako průměrná hodnota a dosahuje v tomto případě
2024 ot.min-1.
18
Obr. 1.10 – Příklad měřených vyhlazených otáček motoru
Točivý moment motoru v jednotlivých bodech je také vypočítán z měřených impulsů
na základě vztahů, které jsou shodné s výpočtem a měřením vnější otáčkové charakteristiky,
která je představována pouze jednou akcelerací motoru s plnou dodávkou paliva. Efektivní
točivý moment se vypočte podle následujícího vztahu (2).
Im⋅ ε
Me
(2)
Me – točivý moment motoru [Nm]
Im – moment setrvačnosti motoru [kg.m2]
ε – úhlové zrychlení motoru [rad.s-2]
1
ε
4⋅π ⋅
tj+ 1
−
1
tj
tj + tj+ 1
(3)
tj – předchozí časový impuls [s]
tj+1 – následující časový impuls [s]
Na základě naměřených a vypočtených hodnot je na obrázku číslo 1.11 znázorněna
závislost vnějšího točivého momentu na otáčkách motoru. Maximální naměřený točivý
moment motoru Mm je 97 Nm při 3300 ot.min-1. Tabulkovou hodnotou je 100 Nm při
3000 ot.min-1. Níže uvedená tabulka číslo 1.4 shrnuje naměřené otáčky a točivý moment
v jednotlivých bodech
Obr. 1.11 - Vnější charakteristika točivého momentu motoru
Tab. 1.4 - Naměřené hodnoty otáček a točivého momentu
Efektivní
točivý
moment
Me [Nm]
Otáčky motoru n [ot.min-1]
0,4.nm
0,65.nm
0,9.nm
-1
-1
0 Nm – 2005 ot.min
0 Nm – 3426 ot.min
0 Nm – 4400 ot.min-1
29 Nm – 1976 ot.min-1
65 Nm – 3449 ot.min-1
55 Nm – 4383 ot.min-1
88 Nm – 2024 ot.min-1
91 Nm – 3426 ot.min-1
90 Nm – 4448 ot.min-1
19
V měřených bodech jsou kromě točivého momentu motoru a otáček měřeny vstupy do
motoru (spotřeba paliva) a mohou být také měřeny vystupující emisní složky výfukových
plynů, z nichž se dá následně vypočítat spotřeba paliva. Měření emisí a výpočet spotřeby
paliva z emisí je poněkud komplikované z důvodu časové prodlevy měřících přístrojů při
akceleraci a deceleraci motoru. V současné době se na řešení této problematiky podílí katedra
vozidel a pozemní dopravy a katedra jakosti a spolehlivosti strojů České zemědělské
univerzity v Praze.
Spotřeba
paliva
je
v uvedených bodech měřena
Tab. 1.5 - Technické parametry průtokoměru
pomocí průtokoměru Flowtronic
Flowtronic 205
205, který je zapojen do
Tech. parametr
Hodnota
palivové soustavy vozidla tak,
schopnost
2 až 80 l/h
aby nedošlo k chybě, která by
registrace
vznikla přepadem nadbytečného
přesnost
± 1,5 %
paliva zpět do nádrže. V případě
vozidla Škoda Favorit 136 LS je
impulsy
1 imp. = 0,6667 cm3
užito membránové benzínové
napájecí napětí
6 V stabilizovaných
čerpadlo a je zcela bez
provozní teplota
- 40 až 80 °C
problémů, když se přepad do
elektrický přípoj
vodotěsný
nádrže během měření zaslepí.
Základní technické parametry
provozní poloha
libovolná
použitého
průtokoměru
tlakový rozdíl
0,15 bar při 80 l/h (vstup-výstup)
Flowtronic 205 jsou uvedeny
v tabulce číslo 1.5.
V měřených bodech dochází k opakovanému přibrzďování a odbrzďování motoru. Při
dostatečném počtu opakování jsou relativně ustáleny všechny vstupy (spotřeba paliva) i
výstupy z motoru.
Aby bylo měření co nejpřesnější, je zohledněna ve výpočtech korekční křivka
palivoměru, která je znázorněna na obrázku číslo 1.12. Nepoužití korekční křivky palivoměru
může způsobit chybu měření v extrému až 25 % podle měřeného rozsahu průtoku paliva.
Čárkovanou červenou čarou je
uvedený koeficient korekce roven 1 a
měřený údaj průtoku palivoměru v cm3.s-1
se v tomto bodě rovná údaji skutečnému. U
tohoto palivoměru je to průtok 10,5 cm3.s-1.
Současně se snímáním otáček
motoru jsou snímány impulsy z palivoměru
v závislosti na časové ose. Jeden impuls
Obr. 1.12 - Korekční křívka palivoměru
představuje objem 0,66667 cm3 paliva.
Flowtronic 205
Rozdíl dvou po sobě jdoucích časových
impulsů v sekundách udává čas, během něhož bylo uvedené množství paliva spotřebováno.
Podle uvedeného vztahu (4) je vypočtena spotřeba paliva v cm3.s-1.
Pal
0.66667
ti+ 1 − ti
(4)
3 -1
Pal – spotřeba paliva [cm .s ]
tj – předchozí časový impuls [s]
tj+1 – následující časový impuls [s]
20
Střední hodnota spotřeby paliva (například v bodě 88 Nm – 2024 ot.min-1) 0,505 cm3.s-1
je pomocí korekční křivky palivoměru upravena na hodnotu 0,588 cm3.s-1. V g.s-1 se spotřeba
paliva získá podle uvedeného vztahu (5) a nabývá hodnoty 0,432 g.s-1.
Pal´
Pal kor⋅ ρ b
(5)
-1
Pal´ - spotřeba paliva [g.s ]
ρb – hustota paliva [g.cm-3]
Palkor – korigovaná spotřeba paliva [cm3.s-1]
Pro další výpočet je výhodné znát spotřebu paliva v závislosti na otáčkách klikového hřídele v
g.100ot-1. Pro získání tohoto údajů se použije vztah (6), který aplikovaný na předchozí
uváděné hodnoty přináší spotřebu paliva 1,293 g.100ot-1.
Pal 100
6000 ⋅ Pal´
n
(6)
-1
Pal100 – spotřeba paliva [g.100ot ]
Pal´ - spotřeba paliva [g.s-1]
n – příslušné otáčky motoru [ot.min-1]
1.2.1.2.2.2 Vytvoření celkové veličinové charakteristiky
Po naměření a vypočtení parametrů ke všem bodům je možné vytvořit celkovou
veličinovou charakteristiku motoru. Naměřené body jsou uvedeny v tabulce číslo 1.6.
Tab. 1.6 - Naměřené body
Označení bodu
Otáčky motoru
[ot.min-1]
Točivý moment
motoru [Nm]
Spotřeba paliva
[g.100ot-1]
1
2
3
4
5
6
7
8
9
2005
3426
4400
1976
3449
4383
2024
3426
4448
0
0
0
29
65
55
88
91
90
1,293
1,314
1,222
2,360
3,385
2,988
5,084
1,314
4,849
Z těchto naměřených bodů se vytvoří tři základní žebra celkové veličinové
charakteristiky a jejich propojením se vytvoří celková plocha charakteristiky. Jednotlivá žebra
se vytváří při otáčkách nízkých,
Tab. 1.7 - Žebra a měřené body
středních a vysokých. Hodnota otáček
Označení
Střední otáčky
Příslušné
je vždy stanovena jako střední pro
žebra
(min-1)
naměřené body
uvedené měřené body. Body a
hodnoty středních otáček jsou
2002
1+4+7
A
uvedeny v tabulce číslo 1.7.
3434
2+5+8
B
4410
3+6+9
C
Aby bylo žebro kompletní je
třeba vhodným způsobem proložit
21
výše uvedené tři body žebra.
K proložení je využita kubická
funkce CSPLINE programu Mathcad
2001 Professional, která doplní
hodnoty spotřeby paliva i v ostatních
bodech točivého momentu.
Za použití stejné kubické
funkce následuje propojení žeber
v ose otáček motoru. Tím dojde
k vytvoření
celkové
veličinové
charakteristiky, kterou je však nutné
ještě omezit průběhem vnějšího
točivého momentu, který předepisuje
pracovní oblast motoru. Výsledná
charakteristika je zobrazena na
obrázku číslo 1.13.
Obr. 1.13 - Celková veličinová charakteristika
1.2.1.2.3 Aplikace dynamických měření na městský cyklus ECE 83 R
V této části je simulován městský jízdní cyklus, který vychází z uvedené závislosti
na obrázku číslo 1.8. Tato závislost popisuje zrychlení vozidla a řazení převodových stupňů.
Před začátkem celé simulace je třeba zvolený jízdní cyklus naprogramovat formou
tabulky, která je vhodná nejen ke grafickému zpracování, ale také ke zpracování početnímu.
Příklad části takto naprogramovaného cyklu je v tabulce číslo 1.8 a na obrázku číslo 1.14.
Obr. 1.14 Naprogramovaný městský cyklus
22
Tab. 1.8 - Příklad naprogramovaného cyklu
Čas
[s]
Rychlost
[km.h-1]
10
11
12
13
14
15
16
17
18
19
0
0
1,875
5,625
9,375
13,125
15
15
15
15
Zrychlení Převodový
[m.s-2]
stupeň
0
0
1,042
1,042
1,042
1,042
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Čas
[s]
Rychlost
[km.h-1]
20
21
22
23
24
25
26
27
28
29
15
15
15
15
13,75
11,25
8,333
5
1,667
0
Zrychlení Převodový
[m.s-2]
stupeň
0
0
0
0
-0,694
-0,694
-0,926
-0,926
-0,926
0
1
1
1
1
1
1
0
0
0
0
1.2.1.2.3.1 Potřebný točivý moment motoru
Potřebný točivý moment motoru je získán na základě rozboru vnějších odporů vozidla
(jízdních odporů) a odporů vnitřních (setrvačnost motoru). Celková suma jízdních odporů
během simulovaného cyklu je vyjádřena vztahem (7), který je součtem odporu valivého,
odporu vzduchu a odporu zrychlení, a je zobrazena na obrázku číslo 1.15. Záporná velikost
odporu je pro další výpočet nahrazena odporem nulovým.
fFc(C)
290 + 0.22 ⋅ C + ρ L⋅ cx⋅ Av ⋅
C
2
2 ⋅ 3.6
2
+ Gw⋅ A (C) ⋅ υ
(7)
fFc(C) – celkový jízdní odpor [N]
cx – součinitel odporu vzduchu [-]
Av – čelní plocha vozidla [m2]
C – rychlost vozidla [km.h-1]
Gw – pohotovostní hmotnost vozidla [kg]
A(C) – zrychlení vozidla připadající příslušné rychlosti [m.s-2]
υ – součinitel vlivu rotačních částí [-]
ρL – hustota vzduchu [kg.m-3]
Obr. 1.15 - Celkový jízdní odpor vozidla v městském cyklu
Po zjištění celkových jízdních odporů je tento jízdní odpor převeden na točivý moment
a je k němu připojen ještě odpor částí motoru, které je třeba urychlovat a které také působí
proti pohybu vozidla.
23
Převedení celkového odporu vozidla na točivý moment motoru na klikovém hřídeli se
provede podle vztahu (8).
Mv
Lh
2⋅π
⋅
Fc
U
(8)
Mv – točivý moment motoru na pokrytí jízdních odporů [Nm]
Lh – obvod hnacího kola [m]
Fc – celková síla jízdních odporů [N]
U – celkový převodový poměr příslušného stupně [-]
Točivý moment potřebný na překonání odporu motoru proti zrychlení se vypočítá podle
vztahu (9) za užití známého momentu setrvačnosti motoru.
Mm Im⋅
2⋅ π ⋅ A⋅ U
Lh
(9)
Mm – točivý moment potřebný na překonání odporu motoru proti zrychlení [Nm]
A – zrychlení vozidla [m.s-2]
Lh – obvod hnacího kola [m]
U – celkový převodový poměr příslušného stupně [-]
Im – moment setrvačnosti motoru [kg.m2]
Součet točivého momentu potřebného na překonání jízdních odporů a točivého
momentu na překonání odporu zrychlení motoru udává potřebný moment motoru na projetí
městského cyklu. Průběh celkového momentu motoru M je uveden na obrázku číslo 1.16.
Obr. 1.16 - Potřebný točivý moment motoru na projetí městského cyklu
1.2.1.2.3.2 Spotřeba paliva v simulovaném městském cyklu
Aby bylo možné co nejpřesněji stanovit spotřebu paliva a přiblížit se tak skutečnému
městskému cyklu měřenému podle ECE 83 R na válcové zkušebně, je nutné ve výpočtu
počítat s účinnosti převodů a s prokluzem hnacích kol na válcích.
Účinnost převodů je stanovena na základě předchozích měření a koresponduje
s teoretickou hodnotou počítanou podle druhu soukolí a jejich počtu. Pro výpočet je brána
hodnota účinnosti 0,94, která je vztažena na celkové převody od motoru až na hnací kola.
Součinitel prokluzu kol vozidla na hladkých válcích δp je stanoven v závislosti na
hnací síle podle vztahu (10).
δp
1 − 3 ⋅ 10
−6
⋅ Fc − 3 ⋅ 10
−9
2
⋅ Fc
(10)
δp - prokluz hnacích kol na hladkých válcích [-]
Fc - celková síla jízdních odporů [N]
24
Na základě naměřené a vypočtené celkové charakteristiky motoru (spotřeba paliva),
závislosti otáček motoru, potřebného točivého momentu a prokluzu hnacích kol na čase
jízdního cyklu lze vypočítat spotřebu paliva v gramech za sekundu podle vztahu (11).
pQ
1
⋅
n
6000 δ p
 n
⋅ Pal 
 δp
,
Mm 
ηp

(11)
-1
pQ – spotřeba paliva [g.s ]
n – otáčky motoru [ot.min-1]
δp - prokluz hnacích kol na hladkých válcích [-]
Mm – točivý moment potřebný na překonání odporu motoru proti zrychlení [Nm]
ηp – účinnost převodů [-]
Pal(X,Y) – funkce pro získání příslušné hodnoty z plochy spotřeby paliva
v závislosti na parametru X (otáčky motoru) a Y (točivý moment motoru)
[g.100ot-1]
Průběh spotřeby paliva pQ v závislosti na čase městského jízdního cyklu je znázorněn na
obrázku číslo 1.17.
Obr. 1.17 - Průběh spotřeby paliva
Suma těchto hodnot udává spotřebu paliva za celý jízdní cyklus. Vypočte se podle
vztahu (12). Hodnota spotřeby paliva za celý cyklus je 66,93 g.cyklus-1.
pQ
∑
i
 1
 n Mm  
n
⋅
⋅ Pal 
,

 6000 δ p
 δp ηp 
−1
66.93 ⋅ g ⋅ cyklus
(12)
-1
pQ – spotřeba paliva [g.s ]
n – otáčky motoru [ot.min-1]
δp - prokluz hnacích kol na hladkých válcích [-]
Mm – točivý moment potřebný na překonání odporu motoru proti zrychlení [Nm]
ηp – účinnost převodů [-]
Pal(X,Y) – funkce pro získání příslušné hodnoty z plochy spotřeby paliva
v závislosti na parametru X (otáčky motoru) a Y (točivý moment motoru)
[g.100ot-1]
Během jízdního cyklu ujede vozidlo vzdálenost L1 rovnu 1018,3 m. V závislosti na tom
lze vypočítat spotřebu paliva v gramech na 100 km (13). Pro uvedené vozidlo v městském
cyklu je to 6572 g.100km-1.
pQ100
100000 ⋅ pQ
L1
−1
6572 ⋅ g ⋅ 100km
(13)
-1
pQ100 – spotřeba paliva [g.100km ]
25
pQ – spotřeba paliva [g.s-1]
L1 – ujetá vzdálenost během městského jízdního cyklu [m]
Spotřeba paliva v městském jízdním cyklu v praxi nejrozšířenějších jednotkách a to
v litrech na 100 km, je vypočtena podle vztahu (14) a dosahuje 8.94 l.100km-1.
pQLitre
100 ⋅ pQ
L1 ⋅ ρ b
−1
8.94 ⋅ l ⋅ 100km
(14)
-1
pQLitre – spotřeba paliva [l.100km ]
ρb – hustota paliva [g.cm-3]
pQ – spotřeba paliva [g.s-1]
L1 – ujetá vzdálenost během městského jízdního cyklu [m]
1.2.1.2.4 Aplikace dynamických měření na mimoměstský cyklus
Aplikace dynamických měření na mimoměstký jízdní cyklus předpokládá pouze
přeprogramování jízdního cyklu zobrazeného na obrázku číslo 1.18 včetně nového výpočtu
závislostí otáček a točivého momentu motoru na čase jízdního cyklu. Vztahy (7 až 14) jsou
shodné a tak lze v obrázku číslo 1.19 a 1.20 přímo zobrazit uvedené závislosti.
Spotřeba paliva je potom v celém jízdním cyklu 318,7 g.cyklus-1. Během
mimoměstského jízdního cyklu ujede vozidlo vzdálenost L2 rovnu 6954,6 m. Pro uvedené
vozidlo Škoda Favorit 136 LS ,simulované v mimoměstském cyklu, je to spotřeba paliva
4582 g.100km-1 což představuje spotřebu paliva v obvyklých jednotkách 6,23 l.100km-1.
Obr. 1.18 - Naprogramovaný mimoměstský jízdní cyklus
26
Obr. 1.19 - Průběh otáček motoru během jízdního cyklu
Obr. 1.20 - Potřebný točivý moment motoru na projetí mimoměstského jízdního cyklu
1.2.1.2.5 Spotřeba paliva ve smíšeném cyklu
Kromě spotřeby paliva v městském a mimoměstském cyklu se uvádí spotřeba paliva ve
smíšeném provozu (euromix). Kombinovanou spotřebu paliva lze orientačně vypočítat na
základě známých hodnot spotřeby paliva v městském a mimoměstském cyklu podle normy
1999/100/ES (15).
kpQ Litre
4.05mpQLitre + 6.96 ⋅ mmpQLitre
11.01
7.22 ⋅ l ⋅ ( 100km )
−1
(15)
-1
kpQLitre – kombinovaná spotřeba paliva [l.100km ]
mpQLitre – spotřeba paliva v městském cyklu [l.100km-1]
mmpQLitre – spotřeba paliva v mimoměstském cyklu [l.100km-1]
1.2.1.2.6 Dílčí závěr
Výsledná spotřeba paliva 8,94 l.100km-1 v městském cyklu, 6,23 l.100km-1
v mimoměstském cyklu a l.100km-1 ve smíšeném cyklu jsou pro měřené vozidlo Škoda
Favorit 136 LS poněkud vyšší hodnoty. Jsou pravděpodobně zapříčiněné zejména nastavením
vyšší bohatosti směsi 0,94, opotřebením funkčních ploch a vlivem nepřesnosti měření a
27
simulace. Díky zvýšené hodnotě bohatosti směsi jsou výkonové parametry poměrně blízko
hodnot nového vozidla i přesto, že má již najeto bezmála 120000 km.
Podle servisní knížky, která je u vozidla pravidelně vedena, je za posledních 7500 km
průměrná spotřeba paliva 7,45 litrů na 100 km. Tento výsledek by ukazoval na chybu menší
než 3 %. V simulaci je však počítáno pouze s pohotovostní hmotností vozidla, kdežto při
výpočtu spotřeby z provedených jízd není patrné, jakým způsobem bylo vozidlo zatížené. Je
odhadováno přibližně ½ zatížení, tedy hmotnost vozidla pohybující se v rozmezí 1050 až
1150 kg. V některých případech však byla celková povolená hmotnost vozidla překročena
přibližně o 50 kg.
Systém jízd také není zcela shodný s uvedeným poměrem pro výpočet spotřeby paliva
ve smíšeném cyklu. Převážná část jízd je vykonávána na komunikacích, kde je maximální
povolená rychlost 80 nebo 90 km.h-1. Pro jízdu Prahou bývají voleny komunikace s vyšší
povolenou rychlostí a minimem světelných křižovatek.
Osoba řidiče byla také během jízd opakovaně měněna. Její schopnost porozumět
požadavkům motoru vozidla je rozdílná a výsledkem by vždy byla jiná průměrná spotřeba
paliva.
Problém se zvýšenou nepřesností je také způsoben tím, že měření a zaznamenávání
skutečných dat bylo prováděno za nestejných provozních podmínek. Měření veličinové
charakteristiky bylo provedeno již na vozidlovém motoru v zahřátém stavu, kdežto ve
skutečném provozu se do spotřeby paliva promítá teplota motoru, zejména jeho ohřívání při
startu a současná funkce automatického obohacovače paliva. Také teplota prostředí během 1,5
ročního sledování zaznamenávala značných výkyvů. Rozdíl průměrné spotřeby paliva
v zimních a letních měsících činil až 8 %. Různý vliv podmínek představují i zmíněné
schopnosti řidiče volit vhodné převodové stupně.
V budoucnu se doporučuje doplnit simulaci městského a mimoměstského cyklu o
teplotní závislosti a měření spotřeby paliva výpočtem z výfukových emisí. Na metodě měření
spotřeby paliva z emisí při akceleračních režimech pracuje katedra vozidel a pozemní dopravy
ve spolupráci s katedrou jakosti a spolehlivosti strojů v rámci grantových projektů.
Měření spotřeby paliva pomocí průtokoměru přináší v současné době značné omezení,
protože se jedná o zásah do palivové soustavy vozidla a ovlivnění provozních podmínek,
které jsou zvláště u motorů s elektronickým řízením přesně definované. Přístupnost a možnost
montáže průtokoměru do palivové soustavy v motorovém prostoru je také obtížná a tudíž
z hlediska pracnosti nevhodná pro běžnou servisní praxi. Předpokládá se, že okamžité měření
emisních složek by tento problém vyřešilo.
Použití této metody měření by mohlo v běžných servisních stanovištích posloužit
uživatelům motorových vozidel jako orientační porovnání stavu měřeného vozidla s vozidlem
novým, popřípadě před a po provedené údržbě. V případě měření emisních složek také
k vyčíslení škodlivosti vozidla pro životní prostředí. V neposlední řadě by měření poskytlo
uživatelům informaci o spotřebě paliva nejen jako diagnostickém, ale také jako ekonomickém
signálu.
1.2.2 Aplikace dynamických měření na 13-bodový test a městský jízdní cyklu pro
autobusy
Aplikace dynamických měření na 13-bodový test a městský jízdní cyklu pro autobusy
byla řešena v rámci projektu COST 346.10 „Metoda měření na volných válcích pro testování
emisí, spotřeby paliva a technického stavu motorů nákladních automobilů, traktorů a
speciálních vozidel“, kde byl autor spoluředitelem.
28
1.2.2.1 Homologační měření 13-bodového testu [18, 21, 60, 78, 79, 80, 81]
Norma EHK 49 představuje 13-bodový testovací cyklus motoru za ustáleného stavu. Je
používána pro certifikaci velkých nákladních vozidel a autobusů na stanovení emisních
standardů a jejich kontrolu. Pro evropské podmínky byla nahrazena testem ESC (European
Stationary Cycle ) a ETC (European Transient Cycle).
Tab. 1.9 – Měřící body 13-bodového testu podle EHK a US [79]
Zatěžovací
bod
1
2
3
4
5
6
7
8
9
10
11
12
13
Otáčky motoru
Zatížení [%]
volnoběh
10
25
50
75
100
100
75
50
25
10
-
otáčky motoru při
maximálním točivém
momentu
volnoběh
otáčky při
jmenovitém výkonu
volnoběh
Váhový koeficient
EHK 49
US
0,25
0,20
0,08
0,08
0,08
0,08
0,08
0,08
0,08
0,08
0,25
0,08
0,25
0,20
0,10
0,08
0,02
0,08
0,02
0,08
0,02
0,08
0,02
0,08
0,25
0,20
Tab. 1.10 – 13-bodový cyklus ESC [80]
Zatěžovací
bod
1
2
3
4
5
6
7
8
9
10
11
12
13
A
B
C
Otáčky motoru
Zatížení [%]
Váhový koeficient
volnoběh
A
B
B
A
A
A
B
B
C
C
C
C
100
50
75
50
75
25
100
25
100
25
75
50
0,15
0,08
0,10
0,10
0,05
0,05
0,05
0,09
0,10
0,08
0,05
0,05
0,05
(
)
nn + 0.50 ⋅ ( nv − nn)
nn + 0.75 ⋅ ( nv − nn)
nn + 0.25 ⋅ nv − nn
Doba trvání
[min]
4
2
2
2
2
2
2
2
2
2
2
2
2
nn – nízké otáčky motoru odpovídající 50 % otáček motoru při
jmenovitém výkonu
nv – vysoké otáčky motoru odpovídající 70 % otáček motoru při
jmenovitém výkonu
13-bodový cyklus podle EHK 49 a ESC se provádí na výkonovém dynamometru, kde se
postupně mění otáčky a zatížení přesně podle předepsaných 13 bodů. Měřené výfukové emise
29
v každém bodě jsou vyjádřené v g.kWh-1. Výsledek testu je váženým průměrem těchto 13
bodů. Stav a váhové koeficienty podle normy EHK 49 jsou uvedeny v tabulce číslo 1.9 a na
obrázku číslo 1.21a). Kruhová oblast kolem bodů je úměrná váhovému koeficientu pro
příslušný bod.
Obdobně je řešen 13-bodový test podle ESC (European Stationary Cycle). Rozložení a
váhu jednotlivých bodů udává následující tabulka číslo 1.10 a obrázek číslo 1.21b).
a)
b)
Obr. 1.21 – Grafické zobrazení zatížení a otáček motoru při měření 13-bodového testu:
a) podle EHK 49 [79], b) podle ESC [80]
Tento 13-bodový test má velkou nevýhodu v tom, že je měřen pouze samotný motor,
který se umisťuje na brzdovou stolici. To zkresluje výsledky proti měření motoru umístěného
ve vozidle. Ve vozidle má motor úplně jiné provozní podmínky. Proti měření na stolici je
rozdílná např. sací a výfuková soustava motoru apod.
Z toho důvodu byl ještě společně s cyklem ESC zaveden cyklus ETC. ETC je zkušební
cyklus, založený na skutečných silničních měřeních v provozu, který se skládá z 1800
neustálených, každou sekundu se střídajících režimů zobrazených na obrázku číslo 1.22. Lépe
vystihuje skutečné silniční podmínky a je
složen ze 3 částí:
městský cyklus – první
část jízdního cyklu
s maximální
rych-1
lostí 50 km.h ,
mimoměstský cyklus –
druhá část jízdního
cyklu
s výraznou
počáteční akcelerací
a průměrnou rychlostí 72 km.h-1,
dálniční cyklus – třetí
část cyklu s průměrObr. 1.22 – Jízdní cyklus ETC [81]
nou
rychlostí
88 km.h-1.
30
Dynamický způsob měření aplikovaný na 13-bodový cyklus EHK 49 a ESC by mohl
přinést s dobrou přesností stejné výsledky, jako homologační 13-bodový test, aniž by bylo
zapotřebí vyjímat motor z vozidla a umísťovat ho na drahé měřící zařízení, které si nemohou
běžná servisní stanoviště dovolit a tak v reálném čase kontrolovat koncentrace a složení
výfukových plynů, spotřebu paliva a výkonové parametry obdobně podle uvedených norem.
1.2.2.2 Dynamicky měřený 13-bodový test
V této části je uvedeno využití dynamických měření pro simulaci 13-bodového cyklu.
Vozidlo není třeba umisťovat na válcové dynamometry, dotěžovat, nebo se jinak zabývat
prokluzem, popřípadě kompletní demontáží motoru z vozidla. Zkouška je méně pracná a
rychleji vyhodnotitelná, což je vhodné zejména pro běžnou servisní praxi.
1.2.2.2.1 Vstupní celková charakteristika motoru a princip metody
Mezi vstupy patří především naměřená celková charakteristika motoru zobrazená na
obrázku číslo 1.23. Způsob vytvoření této veličinové charakteristiky je obdobný jako
v předchozím případě u osobního vozidla. Nákladní vozidla a autobusy mají omezovací
regulátor, který umožňuje podobný systém měření. Pouze u vozidel s výkonnostním
regulátorem (zemědělské stroje, traktory) je nutné volit jiný způsob měření, který je vysvětlen
později u vytvoření virtuální tahové charakteristiky traktoru v kapitole číslo 4.
Po naměření
určitého
počtu
bodů (většího nebo
rovno 9) se vytvoří
žebra, tato žebra se
proloží a vytvoří se
celková charakteristika příslušného
motoru, nebo se
k vytvoření spojité
veličinové plochy
využije
funkcí
v softwarovém
prostředí MathCad
2001 Professional.
V tomto případě je
zobrazena plocha
motoru Škoda Liaz
Obr. 1.23 - Celková charakteristika motoru ML 635 - spotřeba
ML 635.
paliva v gramech za sekundu
Základem je kvazistatický způsob zatěžování vozidlových spalovacích motorů, který
vychází z moderních akceleračních metod měření a je charakterizován tím, že plná akcelerace
motoru působí opakovaně, vždy pouze v poměrně úzkém pásmu otáček, přičemž se zatížení
motoru relativně ustálí, lze jej měřit a lze současně měřit i relativně ustálené vstupy do
motoru, tj. spotřebu paliva, a výstupy, tj. škodlivé emise a jiné.
Princip metody:
- Vozidlo je hnacími koly umístěno na dvou párech volně se otáčejících válců a bez
použití dynamometru je motor při postupně různých nastavených polohách
palivového pedálu brzděn a odbrzďován pomocí střídavého sešlapování a
31
uvolňování brzdového pedálu, přičemž při každém odbrzdění je měřena akcelerace a
jí úměrný točivý moment motoru, včetně dodávky paliva a případně produkce
škodlivých emisí.
- Postupně se tak získají do určité míry náhodné body měřené veličiny a jejich
matematickým zpracováním se vytvoří veličinové pole v rozsahu daném otáčkami a
točivým momentem měřeného motoru.
- Souřadnice otáček jsou stanoveny s přesností 0,1 až 0,3 % a souřadnice užitečného
točivého momentu s přesností 0,5 až 1,5 % podle kvality snímačů. Měřit lze přitom
libovolnou veličinu vstupující do motoru a nebo z motoru vystupující, přičemž
přesnost měření je dána použitým měřícím přístrojem. Například při měření spotřeby
paliva je podle použitého typu palivoměru dosahována přesnost 1 až 2 %.
- Dále pak se při virtuálně simulovaných jízdních režimech, resp. virtuálně
simulovaném zatěžování, vozidlo pohybuje po jednotlivých bodech pro daný stav
motoru definovaného veličinového pole a výsledkem je integrované množství
spotřeby paliva a nebo jednotlivých produkovaných emisních složek např. při
13-bodovém testu, nebo při jiných vhodně volených režimech práce motoru,
případně na 100 km jízdy podle testu ECE 83 R.
1.2.2.2.2 Zatěžovací tabulky pro cyklus EHK a ESC
Pro simulace je zapotřebí vhodně modelovat požadavky normy pro 13-bodový test
formou tabulky. Pro uvedený motor Škoda Liaz ML 635 a 13-bodový test podle EHK je to
tabulka číslo 1.11 a pro stejný motor a test podle ESC tabulka číslo 1.12.
nj – jmenovité otáčky motoru,
nj = 2100 ot.min-1
n0 - volnoběžné otáčky motoru,
n0 = 650 ot.min-1
Mej = 757 Nm
Mej – jmenovitý točivý moment.
Tab. 1.11 - Měřící body 13-bodového testu podle EHK
Otáčky motoru
(min-1)
1
2
3
4
5
6
7
8
9
10
11
12
13
n0
0,5 . nj
0,5 . nj
0,5 . nj
0,5 . nj
0,5 . nj
n0
nj
nj
nj
nj
nj
n0
653
1050
1050
1050
1050
1050
653
2100
2100
2100
2100
2100
653
Točivý moment
(N.m)
0
0
0,1 . Mej
75,7
. 0,25 . Mej
189,25
0,5 . Mej
378,5
0,75 . Mej
567,75
Mej
757
0
0
Mej
757
0,75 . Mej
567,75
0,5 . Mej
378,5
0,25 . Mej
189,25
0,1 . Mej
75,7
0
0
Váha bodu
0,08333
0,08
0,08
0,08
0,08
0,25
0,08333
0,01
0,02
0,02
0,02
0,02
0,08334
V tabulkách číslo 1.11 a 1.12 je v každém řádku uveden vztah a pak skutečná hodnota
otáček a točivého momentu motoru. Součet veškerých významových vah u jednotlivých bodů
je jedna.
32
Tab. 1.12 - Měřící body 13-bodového testu podle ESC
1
2
3
4
5
6
7
8
9
10
11
12
13
Otáčky motoru [min-1]
volnoběh
653
A
1155
B
1260
B
1260
A
1155
A
1155
A
1155
B
1260
B
1260
C
1365
C
1365
C
1365
C
1365
Točivý moment [Nm]
0
0
Mej
757
0,5 . Mej
378,5
0,75 . Mej
567,75
0,5 . Mej
378,5
0,75 . Mej
567,75
0,25 . Mej
189,25
Mej
757
189,25
0,25 . Mej
Mej
757
0,25 . Mej
189,25
567,75
0,75 . Mej
0,5 . Mej
378,5
Váha bodu
0,15
0,08
0,10
0,10
0,05
0,05
0,05
0,09
0,10
0,08
0,05
0,05
0,05
1.2.2.2.3 Spotřeba paliva podle cyklu EHK
Vážený průměr spotřeby paliva v gramech za sekundu se vypočte na základě vztahu
(16), který vyhledá v charakteristice na obrázku číslo 1.24 příslušný bod, odečte spotřebu
paliva a vynásobí odpovídající hodnotou váhy.
13
Qpe 13
∑
Qp ( e13 r, 0 , e13 r, 1) ⋅ e13 r, 2
5.233 ⋅ g ⋅ s
−1
r = 1
(16)
-1
Qpe13 – vážená spotřeba paliva [g.s ]
e13r,0 – otáčky motoru [ot.min-1]
e13r,1 – točivý moment motoru [N.m]
e13r,2 – váha bodu [-]
Qp(e13r,0, e13r,1) – spotřeba paliva v příslušném bodě [g.s-1]
Obr. 1.24 - Rozmístění měřících bodů v celkové charakteristice motoru podle EHK
Aby bylo možné vypočítat měrnou spotřebu paliva, je zapotřebí vážený průměr
efektivního výkonu motoru. Ten se vypočítá na základě vztahů (17) a (18).
33
Pe
π ⋅ n ⋅ Me
(17)
30000
Pe13 Pe( e13 r, 0 , e13 r, 1) ⋅ e13 r, 2
53.44 ⋅ kW
(18)
-1
e13r,0 – otáčky motoru z matice e13 [ot.min ]
e13r,1 – točivý moment motoru z matice e13 [N.m]
e13r,2 – váha bodu z matice e13 [-]
Me – efektivní točivý moment motoru [N.m]
n – otáčky motoru [ot.min-1]
Pe – efektivní výkon motoru [kW]
Pe13 – vážený průměr efektivního výkonu motoru [kW]
Průběh efektivního výkonu a točivého momentu v závislosti na otáčkách motoru
měřeného vozidla Karosa je na obrázku číslo 1.25. Vnější momentová charakteristika slouží
také jako vstupní hodnota motoru podle níž se stanovují volnoběžné a jmenovité otáčky
motoru a jmenovitý točivý moment.
Obr. 1.25 - Efektivní točivý moment a výkon motoru Liaz ML 635
Měrná spotřeba paliva vypočtená podle 13-bodového testu EHK pro vozidlo Karosa je
podle vztahu (19) 352,5 g.kWh-1.
mpe13 3600 ⋅
Qpe 13
Pe13
352.5 ⋅ g ⋅ kWh
−1
(19)
Pe13 – vážený efektivní výkon motoru [kW]
Qpe13 – vážená spotřeba paliva [g.s-1]
mpe13 – měrná spotřeba paliva [g.kWh-1]
1.2.2.2.4 Spotřeba paliva podle cyklu ESC
Postup řešení tohoto 13-bodového cyklu podle ESC je zcela obdobný s výjimkou
přesného určení pracovních bodů podle tabulky číslo 1.12. Grafické znázornění měřených
bodů v celkové charakteristice motoru je na obrázku číslo 1.26.
S využitím stejných vztahů jako v předchozí kapitole (16 až 19) je získána vážená
spotřeba paliva 6,139 g.s-1, při středním zatížení 64,98 kW. Měrná spotřeba paliva je potom
340,1 g.kWh-1.
34
Obr. 1.26 - Rozmístění měřících bodů v celkové charakteristice motoru podle ESC
1.2.2.3 Městský jízdní cyklus pro autobusy
Norma ECE 83 R popisuje průběh měření osobních vozidel a lehkých užitkových
automobilů v městském a mimoměstském cyklu. Jedná se o jízdní cyklus, který popisuje
provoz vozidla ve městě, je zobrazen na obrázku číslo 1.8 a nebo mimo něj 1.9. Měření ve
skutečném provozu je nevýhodné zejména proto, že je velice časově a prostorově náročné.
Pro nákladní vozidla a autobusy je aplikován pouze 13-bodový cyklus. Důvodem, proč
není aplikován městský a mimoměstský jízdní cyklus jsou zejména:
− nemožnost dosáhnout předepsaných zrychlení,
− široký rozsah pohotovostní a celkové hmotnosti,
− požadované vysoké výkony dynamometrického brzdového stanoviště,
− s tím souvisí jeho vysoká cena,
− nutnost dotížit vozidlo na pohotovostní hmotnost (problematické zejména u autobusů)
nebo změna rozchodu válců zkušebny s ohledem na omezení prokluzu hnacích kol.
Autobusy a těžká silniční vozidla mají, na rozdíl od osobních automobilů, malý
přebytek výkonu a i při mírném stoupání se zpravidla rozjíždějí při plném okamžitém výkonu.
Motor zde tudíž pracuje na vnější otáčkové charakteristice a dosahované zrychlení je
vzhledem ke konstrukční variabilitě těchto vozidel rovněž velice rozdílné.
V provozu je nutno předpokládat časté rozjíždění a zastavování při různém sklonu
vozovky a při plném a částečném zatížení vozidla. Rozjíždění přitom probíhá zpravidla na
plný okamžitý výkon, pouze s omezením maxima zrychlení (například s ohledem na pohodlí
cestujících).
V navrženém A-cyklu zásadně není předepisováno řazení převodových stupňů a průběh
rychlosti vozidla v závislosti na čase. Postupně jsou stanovovány cíle dosáhnout při rozjíždění
vždy určitou rychlost v nejkratším čase. Dány jsou přitom dvě podmínky, a sice nepřekročit
předvolený součinitel adheze hnacích kol a předvolené maximum zrychlení vozidla.
Návrh je aplikován na motor ŠKODA LIAZ ML 635 u linkového autobusu
KAROSA C 734, avšak s ohledem na velmi omezené finanční zdroje nebylo možno provést
měření emisí. Jako příklad je tudíž model zkušebního úseku prezentován pouze na měření a
vyhodnocení spotřeby paliva.
35
1.2.2.3.1 Vstupní veličiny procesu simulace městského cyklu na počítači
Vstupní veličiny do procesu simulace jsou obdobné
městského cyklu pro osobní vozidla:
- valivý obvod hnacích kol,
- hmotnost hnacích kol redukovaná na jejich obvod,
- hmotnost ostatních kol redukovaná na jejich obvod,
- součet hmotnosti převodů redukovaná na obvod kol,
- pohotovostní hmotnost vozidla,
- celková hmotnost vozidla,
- čelní profil vozidla,
- součinitel odporu vzduchu,
- volnoběžné otáčky motoru,
- jmenovité otáčky motoru,
- maximální otáčky motoru,
- moment setrvačnosti motoru,
- celkový převodový poměr pro 1. stupeň,
- celkový převodový poměr pro 2. stupeň,
- celkový převodový poměr pro 3. stupeň,
- celkový převodový poměr pro 4. stupeň,
- celkový převodový poměr pro 5. stupeň,
- hustota vzduchu,
- hustota paliva.
Z těchto vstupních veličin se obdobným způsobem
charakteristika motoru znázorněná na obrázku číslo 1.23.
jako v předchozím případě
Lh = 3,202 m
m1 = 300 kg
m2 = 150 kg
mu = 50 kg
mp = 9680 kg
mc = 15440 kg
Sp = 7,388 m2
cx = 0,61
n0 = 650 ot.min-1
nj = 2100 ot.min-1
nm = 2300 ot.min-1
Im = 2,62 kg.m2
U1 = 20,3307
U2 = 11,2554
U3 = 6,7431
U4 = 5,07
U5 = 4,0205
ρv = 1,202 kg.m-3
ρp = 835 kg.m-3
vytvoří celková veličinová
1.2.2.3.2 Zásady pro návrh A-cyklu
A-cyklus je nově navržený městský cyklus pro nákladní vozidla a autobusy, který je
vytvořen na základě následujícího postupu. Zachovány zůstávají tři základní úseky rychlosti
vozidla 15, 32 a 50 km/h, s postupným řazením vždy od prvého převodového stupně a
s přestávkami mezi jednotlivými úseky při zastaveném vozidle. Vozidlo je zatěžováno
modelovou jízdou jednak po rovině a dále pak při stoupání 5% a klesání –5%. Tyto tři části
jsou modelově projety za úplného bezvětří, a to při celkové a pohotovostní hmotnosti vozidla.
Na rozdíl od městského cyklu ECE 83R není v navrženém A-cyklu jednoznačně
předepsán průběh rychlosti v závislosti na čase při jednotlivých zařazených převodových
stupních. Není tudíž jednoznačně předepsáno zrychlení rozjíždějícího se vozidla v závislosti
na čase a ani pevná doba jednotlivých úseků a celého cyklu, ale pouze jejich dráha. Zrychlení
vozidla je přitom variabilní, závislé především na poměru výkonu motoru k urychlované
hmotnosti vozidla. Zrychlení vozidla je omezeno:
- okamžitým maximálním točivým momentem motoru,
- předvoleným součinitelem adheze pneumatik hnacích kol (µ = 0,3),
- předvoleným maximálním zrychlením (Aa = 2,0 m.s-2) a zpomalením
(Ab = -0,8 m.s-2) vozidla.
Následující tabulka číslo 1.13 popisuje zvolené rozdělení a rozvržení jednotlivých
jízdních cyklů. Z důvodu velmi častého rozjíždění v městských podmínkách a zvláště pak
v Praze je zvolen výpočet jízdních cyklů na rovině a sklonu svahu 5 % z kopce a stejně tak do
kopce. Variabilní zatížení vozidla je nahrazeno dvěmi stavy a to vozidlem plně naloženým a
naopak vozidlem neobsazeným jedoucím pouze s pohotovostní hmotností.
36
Tab. 1.13 - Rozvržení A-cyklu do jednotlivých segmentů
Sekce
Segment
A11
A12
A13
A21
A22
A23
A31
A32
A33
A41
A42
A43
A51
A52
A53
A61
A62
A63
A1
A2
A3
A4
A5
A6
Legenda:
α úhel sklonu vozovky [%]
Cm rychlost vozidla [km.h-1]
Cm [km.h-1]
15
32
50
15
32
50
15
32
50
15
32
50
15
32
50
15
32
50
DS [m]
40
240
320
40
240
320
40
240
320
40
240
320
40
240
320
40
240
320
α [%]
mn [kg]
0
5
5760
-5
0
5
0
-5
DS dráha úseku [m]
mn hmotnost nákladu [kg]
1.2.2.3.3 Příklad zpracování jízdního segmentu A43
Podle tabulky číslo 1.13 probíhá simulace části jízdního cyklu v segmentu A43 při
těchto základních a dalších omezujících parametrech:
- jízdní dráha,
DS = 320 m
- maximální rychlost, Cm = 50 km.h-1
- jízda po rovině,
α=0%
- zatížení vozidla,
mn = 0 kg
- dolní provozní otáčky motoru,
n1 = 1,6 . n0 = 1040 ot.min-1
- horní provozní otáčky motoru,
n2 = 0,9 . nj = 1890 ot.min-1
- doba řazení jednotlivých přev. stupňů,
tr = 0,8 s
- doba stání vozidla před začátkem cyklu.
t0 = 20 s
Vstupní a předvolené hodnoty jsou zpracovány s cílem získat v závislosti na jízdní
rychlosti vozidla otáčky motoru, tomu odpovídající řazené převodové stupně a potřebný
točivý moment.
Na základě vstupních a předvolených hodnot lze stanovit závislost jízdní rychlosti na
otáčkách motoru pro jednotlivé převodové stupně s předepsanými dolními a horními
hranicemi otáček. Ke stanovení rychlostí v závislosti na otáčkách slouží vztah (20), který také
stanoví maximální rychlost vozidla Cmax = 100,35 km.h-1. Vhodné grafické zpracování je na
obrázku číslo 1.27.
Cx
0.06 ⋅ Lh ⋅ n
Ux
(20)
37
Cx – jízdní rychlost vozidla [km.h-1]
Ux – zvolený převodový stupeň [-]
n – otáčky motoru probíhající od dolní k horní předvolené hranici [ot.min-1]
Lh – obvod hnacích kol [m]
Obr. 1.27 - Závislost otáček motoru na rychlosti vozidla
Údaje o potřebném efektivním točivém momentu se získají rozborem celkového
jízdního odporu (odpor vzduchu, odpor valení, odpor stoupání) a akceleračně změřené vnější
otáčkové charakteristice motoru. Takto stanovené točivé momenty je třeba s ohledem na
požadované zrychlení a velikost součinitele adheze ještě omezit, což je znázorněno na
obrázku číslo 1.28. Toto omezení se v uvedeném případě týká pouze 1. převodového stupně.
Zároveň do rychlosti 10 km.h-1 jsou spojkou udržovány předvolené rozjížděcí otáčky a tomu
odpovídající točivý moment motoru.
Obr. 1.28 - Omezený efektivní točivý moment
Průběh segmentu A43 lze rozdělit do tří základních fází. Třetí fáze (tj. zpomalování a
zastavení vozidla) představuje předepsané snižování rychlosti, aby byla splněna jízdní dráha
DS. První fáze představuje stání vozidla 20 sekund na místě se spuštěným spalovacím
motorem. Ke konci této fáze je zařazen první rychlostní stupeň a přesně po 20 sekundách
nastává rozjezd. Rozjezdem je zahájena druhá fáze. Během této fáze vozidlo maximálně
zrychluje (u autobusu s omezením na pohodu cestujících) a řadí jednotlivé převodové stupně
38
tak, aby byly zachovány hranice předvolených otáček a současně bylo v co nejkratším čase
dosaženo rychlosti Cm. Touto rychlostí se vozidlo pohybuje tak dlouho, dokud nenastane
předepsaný a předem vypočítaný okamžik pro započetí zastavování vozidla, aby byl dodržen
úsek jízdní dráhy DS. Část pracovních fází jednotlivých úseků je znázorněna na obrázku
číslo 1.29.
a)
b)
c)
d)
e)
f)
Obr. 1.29 - Vybrané fáze segmentu A43 (C rychlost vozidla [km.h-1], T – čas cyklu [s])
a) stání vozidla; b) rozjezd vozidla; c) řazení převodových stupňů; d) dosažení rychlosti
Cm na 3. stupeň; e) pokus o řazení 4. stupně; f) jízda rychlostí Cm na 4. stupeň
Obr. 1.30 - Rychlost vozidla C a kumulovaná spotřeba paliva Qs v závislosti na dráze DS
39
Pokusem o zařazení 4. stupně se rozumí snaha zařadit vyšší převodový stupeň, který by
měl zaručit práci motoru při nižší spotřebě paliva. V případě kopce nebo v některých dalších
případech však nemusí být motor schopen vůz na vyšší převodový stupeň zrychlovat a proto
se simulovaný systém řazení vrátí zpět ke stupni nižšímu. Předchozí případ popisuje situaci,
kdy se tato akce podařila.
Výsledkem simulace je spotřeba paliva, která je stanovena v celkové veličinové
charakteristice na základě vypočtených otáček a efektivního točivého momentu motoru.
Kumulovaná spotřeba paliva spolu s jízdním segmentem A43 jsou zobrazeny na obrázku
číslo 1.30.
1.2.2.3.4 Spotřeba paliva v celém jízdním cyklu
Stejný postup je aplikován na všechny ostatní segmenty. Vypočtené hodnoty spotřeby
paliva jsou zaznamenány v tabulkách číslo 1.14 a 1.15. V tabulce číslo 1.14 jsou setříděny
segmenty podle pořadí a u každého segmentu je uvedena kumulovaná spotřeba paliva Qs [g] a
spotřeba paliva Ql [l.100km-1].
Tab. 1.14 - Kumulovaná spotřeba paliva Qs [g] a spotřeba paliva Ql [l.100km-1]
Qs [g]
Segment Cm [km.h-1] DS [m] α [%] mn [kg]
A11
15
40
55,0
A1
A12
32
240
0
144,0
A13
50
320
230,6
A21
15
40
75,1
A2
A22
32
240
5
5760
247,7
A23
50
320
323,1
A31
15
40
41,0
A3
A32
32
240
-5
83,1
A33
50
320
142,9
A41
15
40
45,5
A4
A42
32
240
0
109,9
A43
50
320
165,3
A51
15
40
57,1
A5
A52
32
240
5
0
199,3
A53
50
320
243,6
A61
15
40
33,3
A6
A62
32
240
-5
62,4
A63
50
320
108,3
Legenda: α (%) úhel sklonu vozovky DS (m) dráha úseku
Cm (km.h-1) rychlost vozidla mn (kg) hmotnost nákladu
Sekce
Ql [l.100km-1]
164,6
71,8
86,4
224,8
123,6
121,2
122,7
41,5
53,5
134,3
54,9
62,0
169,2
99,8
90,9
99,8
31,1
40,6
Během běžných autobusových zastávek dochází k výraznému ovlivňování čekajících
cestujících produkty spalování a proto je počítána spotřeba paliva v její oblasti. Jedná se o
dojezd vozidla do zastávky (40 m), stání (20 s) a odjezd ze zastávky (40 m). Během celého
tohoto minicyklu je kumulována spotřeba paliva. Zajímavější by bylo sledovat emise
výfukových plynů, které se za tuto dobu vyprodukují. Tato veličina se bohužel neměřila,
protože se neustále vyvíjí a zpřesňuje dynamická měřící metoda. Jinak se předpokládá, že
tento systém bude pracovat i z hlediska emisního zatížení okolního prostředí.
40
Tabulka číslo 1.15 uvádí hodnoty vypočtené a naměřené kumulativní a průměrné
spotřeby paliva za simulovaných provozních podmínek autobusu Karosa.
Tab. 1.15 - Kumulovaná spotřeba paliva Qs [g] a spotřeba paliva Ql [l.100km-1] za podmínek
Podmínky
Zatížení
Celý cyklus A
Bez zatížení
Celkem
Zatížení
Rovina
Bez zatížení
Celkem
Zatížení
Klesání
Bez zatížení
Celkem
Zatížení
Stoupání
Bez zatížení
Celkem
Rovina – zatížení
Rovina – bez zatížení
Stoupání – zatížení
Zastávka
Stoupání - bez zatížení
Klesání – zatížení
Klesání – bez zatížení
Qs [g]
1342
1024
2366
429
320
749
267
204
471
646
500
1146
97,3
84,1
105,3
93,5
92,6
70,8
Ql [l.100km-1]
89,4
68,2
78,8
85,8
64,0
74,9
53,3
40,8
47,0
129,1
99,8
114,4
145,7
126,0
157,7
140,0
138,6
106,0
Sestavení jednotlivých segmentů do celého jízdního cyklu je znázorněno v příloze
číslo 1.1. Z přílohy je patrno, že plně naložené vozidlo v sekci A2 při jízdě do kopce a stejně
tak prázdné vozidlo v sekci A5 při jízdě do kopce, nedosáhlo na daném intervalu předvolenou
rychlost. Výkon motoru k tomu nepostačuje. Podmínka maximálního zrychlení je však
dodržena.
1.2.2.3.5 Dílčí závěr
13-bodový test kontrolovaný podle homologačních předpisů EHK nebo ESC přináší
informace pouze o samotném motoru, který je navíc obvykle vyjmut z vozidla a zatěžován na
dynamometrické stolici. Jedná se o normovanou zkoušku a proto je tento druh
13-bodového testu simulován za užití kvazistatického měření, aby dosažené výsledky byly
s homologační zkouškou porovnatelné.
Výhoda kvazistatického měření je v tom, že motor je měřen za odpovídajících
provozních podmínek, které jsou představovány jeho uložením a použitím sacího a
výfukového systému vozidla, čímž se blíží skutečným provozním podmínkám. Během
akcelerace byla měřena spotřeba paliva, ale předpokládá se, že v brzké době bude též možné
měření emisních složek výfukových plynů a následné měření spotřeby paliva právě
z emisních složek, čímž by se omezil zásah do palivové soustavy vozidla.
Ve 13-bodovém testu podle EHK je motor vozidla Karosa zatížen středním momentem
386 Nm a výsledná měrná spotřeba paliva má hodnotu 352,5 g.kWh-1. U cyklu podle ESC je
střední zatížení 416 Nm a měrná spotřeba paliva 340,1 g.kWh-1. Jednoduchost tohoto řešení
pomocí kvazistatické metody přináší možnost dalšího využití.
41
Je navržený městský jízdní A-cyklus pro autobus Karosa, který vychází z městského
jízdního cyklu pro osobní vozidla, ale s předepsanou podmínkou dodržení předvolené jízdní
dráhy a využití maximálního zrychlení vozidla.
Celý cyklus je rozdělen do 18 segmentů, které nakonec dávají dohromady 6 městských
cyklů (jízdní cyklus do kopce, po rovině, z kopce a to celé jednou bez zatížení a ve druhém
případě se zatížením). Tabulka číslo 1.14 a 1.15 shrnuje výsledky simulace nejen během
městského cyklu, ale také v oblasti kolem autobusové zastávky, kde dochází k okamžitému
útoku na lidské zdraví vlivem škodlivých emisí.
Výhodou tohoto systému je zjednodušené časově nenáročné měření, které s příchodem
měřící techniky emisních složek výfukových plynů a z nich počítané spotřeby paliva bude
velmi praktické. Výsledkem bude množství spotřeby paliva a velikost zatížení životního
prostředí podle aktuálního stavu spalovacího motoru.
Současně se očekává, že by se dalo obdobného systému využít jako rádce řidiče,
kterého by vedl k ekonomické, současně ekologické a bezpečné jízdě ve skutečných
provozních podmínkách. K tomu je třeba rozvinout vhodné a přesné měřící metody
okamžitých provozních parametrů.
1.2.3 Aplikace dynamické kontroly brzdové soustavy vozidla [38, 47, 50, 66, 76, 85]
Aplikace dynamické kontroly brzdové soustavy vozidla je v současnosti řešena v
projektu s cílem poskytovat uživatelům informace o brzdné dráze za standardních, ale také
libovolných provozních podmínek. Na jejím zdokonalování a především zpřesňování neustále
pracuje kolektiv řešitelů, jehož je autor členem.
Spolehlivé a účinné brzdy s citlivým ovládáním jsou základem každého vozidla a
výrazně ovlivňují bezpečnost osob v silničním provozu. Neúčinné brzdy jsou často viníkem
dopravních nehod a smrtelných úrazů. Je proto nutné věnovat brzdám pravidelnou pozornost a
kontroly provádět s mimořádnou péčí. Brzdová soustava se posuzuje jako dvoustavový prvek.
Buď je její funkce v pořádku a dosahuje předepsaných brzdných účinků nebo má nějakou
závadu a brzdného účinku není dosaženo.
Souhrnným ukazatelem technického stavu brzd je brzdný účinek, který lze vyjádřit
měřenou brzdnou drahou nebo zpomalením vozidla, které jsou uvedeny v tabulce číslo 1.16 a
vychází se vztahů (21) a (22). Při diagnostice brzdové soustavy není posuzován jen brzdný
účinek, ale také celá řada dalších parametrů jako například hodnota tlaku ve vzduchojemu po
osmi za sebou jdoucích brzděních apod.
2
2
v0
v0
tn 

s c  tp +
+
K1 ⋅ v0 +
K2
2  2 ⋅a

tn 
1 
1
1
K1
⋅  tp +
K2
⋅
3.6 
2 2 ⋅a
2 
3.6
(21)
(22)
sc - brzdná dráha [m]
v0 - počáteční rychlost [km.h-1]
tp - doba prodlevy brzd [s]
tn - doba náběhu působení brzdného účinku [s]
a - brzdné zpomalení [m.s-2]
K1, K2 jsou konstanty, podle vyhlášky č. 341/2002 Sb. nabývají hodnot:
K1 = 0,1
(pro vozidla s mechanickými nebo hydraulickými
brzdami, není však stanoveno),
K1 = 0,15
(pro vozidla s pneumatickými brzdami),
42
K2 = 150
K2 = 130
K2 = 115
K2 = 103,5
(odpovídající brzdné zpomalení a = 5,8 m.s-2),
(odpovídající brzdné zpomalení a = 5,0 m.s-2),
(odpovídající brzdné zpomalení a = 4,4 m.s-2),
(odpovídající brzdné zpomalení a = 4,0 m.s-2).
Tab. 1.16 – Požadavky na brzdný účinek dle EHK–13, ES 71/320 a vyhlášky č. 341/2002 Sb. [76]
Kategorie vozidel podle
EHK – R 13
(druh, maximální hmotnost)
Nouzové
brzdění
Provozní brzdění
Počáteční rychlost v0
Přeprava osob
Autobusy
Osobní
automobily
M1
m
≤5t
M2
m≥5t
M3
80 km/h
60 km/h
sc = 50,7 m
500 N
0,36 s
5,8 m.s-2
sc = 36,7
sc = 93,4 m
sc = 64,4 m
Přeprava nákladů
Nákladní automobily
m≤3,5t
N1
3,5≤m≤12t
N2
m≥12t
N3
70 km/h
50 km/h
40 km/h
Max. brzdná dráha sc
Max. nožní síla Fa
Max. prodleva tp
Zpomalení a
700 N
0,54 s
5 m.s-2
sc = 53,1 m sc = 29,2 m sc = 19,9 m
700 N
0,54 s
4,4 m.s-2
Max. dráha sc
Max. ruční síla Fr
400 N
600 N
sc = 95,7 m sc = 51,0 m sc = 33,8 m
600 N
1.2.3.1 Metody měření brzdné dráhy
Z uvedené tabulky číslo 1.16 vychází požadavky, kterým musí vozidla vyhovět při
kontrolách ve stanicích technické kontroly. Lze z nich však také odvodit způsoby kontroly
brzd pro jiné účely než stanice technické kontroly, např. při údržbě strojů, při kontrole po
opravách brzd nebo jejich částí, při prototypových zkouškách a při přípravě na stanice
technické kontroly.
V principu lze vyjít z toho, že hodnota brzdné dráhy je dána vyhláškou č. 341/2002 Sb.
a pro takto dané hodnoty lze z uvedené rovnice odvodit hodnoty dalších veličin, které je
možno měřit. Tak lze dojít k následujícím užívaným způsobům diagnostiky brzd:
- kontrola brzdného účinku měřením brzdné dráhy na vozovce,
- kontrola brzdného účinku měřením brzdné dráhy na válcové zkušebně,
- kontrola brzdného účinku měřením brzdné síly na obvodě kol na válcové zkušebně,
- kontrola brzdného účinku měřením brzdné síly na obvodě kol na plošinové
zkušebně,
- kontrola brzdného účinku měřením brzdného zpomalení decelerometrem.
1.2.3.1.1 Měření brzdného zpomalení
Při tomto způsobu měření se pomocí decelerometru měří přímo brzdné zpomalení.
Naměřená hodnota se porovnává s požadovanou hodnotou brzdného zpomalení (vyhláška
341/2002 Sb.). Jde o měření souhrnné, které udává pouze výslednou (celkovou) hodnotu.
43
Nelze měřit nerovnoměrnost brzdění a posoudit přínos jednotlivých kolových brzd. Obtížně
se tak zjišťuje případná závada prvku brzdové soustavy.
Decelerometry jsou poměrně jednoduché přístroje, které pracují zcela automaticky.
Z měření pořídí záznam buď na papíře nebo v paměti, který lze použít pro vytištění protokolu
z měření a k dalšímu zpracování.
1.2.3.1.2 Kontrola brzdného účinku měřením brzdné dráhy na vozovce
Výhodou tohoto způsobu je, že zahrnuje všechny vlivy a zkouška je velmi blízká
skutečným provozním podmínkám. Je-li však cílem zkoušky zjistit technický stav, tj.
schopnost brzdové soustavy brzdit s předepsanou účinností, jsou některé provozní vlivy
rušivé a je nutno je eliminovat. Jsou to zejména:
- sklon zkušební vozovky (podélný i příčný),
- adhezní podmínky,
- vítr,
- ostatní provoz na vozovce (je-li zkouška prováděna na veřejné komunikaci).
Jestliže se tyto rušivé vlivy eliminují, znamená to značné komplikace při vlastním uspořádání
zkoušky a zkouška se jeví jako ne příliš výhodná. Proto se téměř nepoužívá pro účely
kontroly technického stavu brzd.
1.2.3.1.3 Kontrola brzdného účinku měřením brzdné dráhy na válcové zkušebně
Snahou je zachovat jednoduchou, snadno a přesně zjistitelnou a zákonem přímo
předepisovanou veličinu a zároveň odstranit hlavní nevýhody přímého měření na vozovce.
Uspořádání kontroly brzdného účinku měřením brzdné dráhy na válcové zkušebně je
takové, že se vozidlo umístí na válcovou zkušebnu, rozjede nebo roztočí motory zkušebny, na
počáteční rychlost v0 nebo rychlost jí blízkou a zabrzdí se při současném odpojení pohonu.
Změří se počet otočení válců zkušebny a vypočítá se ujetá brzdná dráha. Aby takto získané
výsledky byly srovnatelné s brzdnou dráhou měřenou na vozovce , musí být při brzdění
zmařeno stejné množství energie. Protože se v tomto
případě maří energie rotujících kol vozidla, která je
stejná jako při zkoušce na vozovce a rotujících válců
zkušebny, je zřejmé, že energie rotujících válců
zkušebny se musí rovnat pohybové energii posouvajících se hmot vozidla při zkoušce na vozovce.
Mechanické řešení uvedené podmínky je
nepohodlné. Proto se tento způsob měření (v popsané
podobě) téměř nepoužívá. Princip však umožňuje
měřit za nedodržení výchozí podmínky rovnosti
zmařených energií a výsledek početně korigovat na
Obr. 1.31 – Válcová zkušebna [85]
tuto podmínku.
1.2.3.1.4 Kontrola brzdného účinku měřením brzdné síly na obvodě kol na válcové
zkušebně
Základní vztah lze napsat ve tvaru (23):
Fc

k ⋅ Ik 


Rk
a ⋅  m1 + m2 +
2

(23)
44
Fc - celková brzdná síla [N]
a - výsledné brzdné zpomalení [m.s-2]
m1 - hmotnost vozidla [kg]
m2 - hmotnost nákladu [kg]
Ik - moment setrvačnosti kola [kg.m2]
k - počet rotujících kol [-]
Rk - poloměr valení kola [m]
Dosadí-li se do této rovnice hodnota brzdného zpomalení požadovaná vyhláškou
č. 102/1995 Sb., dostane se minimálně nutná celková brzdná síla (součet všech brzdných sil
na obvodě všech brzděných kol). Změří-li se potom skutečné brzdné síly na obvodě
jednotlivých kol, nesmí být jejich součet menší než tato minimálně nutná celková brzdná síla.
Navíc lze kontrolovat nerovnoměrnost brzdění levého a pravého kola stejné nápravy
(nerovnoměrnost nesmí být větší než 30%).
Při praktickém provádění této zkoušky ve stanicích technické kontroly se stanoví
celková nutná minimální brzdná síla, která se rozdělí na jednotlivé nápravy v poměru jejich
statického zatížení a při zkoušce se kontroluje, zda skutečná brzdná síla je větší než tato
minimální přípustná brzdná síla.
1.2.3.1.5 Kontrola brzdného účinku měřením brzdné síly na obvodě kol na plošinové
zkušebně
Základní myšlenka tohoto způsobu i postup vyhodnocení naměřených hodnot jsou
stejné jako u měření brzdných sil na válcové zkušebně, liší se pouze způsob měření. K měření
se používá plošinová zkušebna, která má dvě nebo
čtyři plošiny. Ty jsou posuvné a jsou vybaveny
snímači síly, umístěnými v podélném i příčném směru.
Zkoušené vozidlo najíždí na plošiny nízkou rychlostí
(asi 5 - 10 km.h-1). Při najíždění na plošiny řidič brzdí
tak, aby při přejezdu plošin působila plná brzdná síla,
která je na každé plošině nezávisle měřena.
Výhodou proti válcové zkušebně je jednodušší
provedení, nevýhodou obtížnější kontrola doby
prodlevy a náběhu působení brzdného účinku a doby
odbrzdění.
Z těchto důvodů je tento způsob méně rozšířený
než válcové zkušebny. Plošiny bývají často součástí
tzv. diagnostického stání, na kterém se provádí první,
souhrnná diagnostika. Plošiny umožňují měřit i boční
Obr. 1.32 – Plošinová zkušebsíly a z nich stanovit sbíhavost (rozbíhavost) kol.
na brzdného účinku [85]
1.2.3.1.6 Shrnutí kontroly technického stavu brzd
Téměř všechny uvedené způsoby kontroly brzd mají společnou nevýhodu, která spočívá
v tom, že se jedná o způsob „statický“ – měří se při malých rychlostech. To neodpovídá
reálné situaci a musí tomu být přizpůsobena kriteria pro vyhodnocení výsledků. Navíc jsou
tyto způsoby kontroly většinou investičně a provozně nákladné.
Trend, který se již zcela zřetelně projevuje v oblasti výzkumu a vývoje zkušebních
metod a zařízení, směřuje k dynamickým způsobům kontroly. Přitom kontrolované zařízení
pracuje buď přímo při normálním provozním nasazení, nebo ve stejném režimu. Jsou změřeny
45
vybrané vhodné ukazatele za relativně velmi krátký časový úsek práce zařízení. Při
vyhodnocení jsou posuzovány odchylky okamžitých průběhů sejmutých charakteristik od
normálních průběhů a z těchto odchylek jsou vyvozovány závěry o technickém stavu
zkoušeného zařízení.
Tento trend je podporován i vývojem samotných strojů a jejich systémů jako jsou u brzd
například ABS systémy, které musí být rovněž brány v úvahu při kontrolách brzd.
1.2.3.2 Dynamicky měřený brzdný účinek
Brzdová soustava motorového vozidla je aktivním prvekem bezpečnosti silničního
provozu a právě proto jsou na ni kladeny vysoké nároky. Bezvadná funkčnost brzdového
systému je pravidelně kontrolována každé dva roky při technických kontrolách.
Při těchto kontrolách se kontroluje velikost brzdné síly. Informace o tom, jak se projeví
tato síla na délce brzdné dráhy, bývá v tomto čísle uživatelům utajena. V případě, že se testuje
nové vozidlo, kontroluje se velikost brzdné dráhy na vozovce nebo na válcích. Jedná se však o
zkoušku převážně za standardních podmínek a pokud se kontroluje na vozovce, je tato
zkouška časově i prostorově náročná.
Následující navrhovaný dynamický systém kontroly brzdného účinku vychází z měření
na válcích a pomocí vhodného programového vybavení umožňuje simulovat různé podmínky
provozu.
1.2.3.2.1 Data zvoleného vozidla
Před vlastním měřením je třeba zajistit dostatečné informace, které se týkají základních
parametrů vozidla, eventuálně je využít z již vytvořených databází vozidel. Příklad měření a
vypočtených hodnot je uveden na vozidle Škoda Favorit 136 LS. Potřebné parametry tohoto
vozu jsou:
- hmotnost jednoho kola,
Gh = 10,56 kg
- statické zatížení pření nápravy,
Gp = 620 kg
- statické zatížení zadní nápravy,
Gz = 780 kg
- dovolené zatížení vozidla,
Gd = 370 kg
- rozvor náprav vozidla,
Ln = 2450 mm
- výška těžiště vozidla,
Lt = 720 mm
- maximální konstrukční rychlost,
Cm = 150 km.h-1
- obvod hnacích kol vozidla,
Lh = 1,72 m
- moment setrvačnosti motoru,
Im = 0,142 kg.m2
- jmenovité otáčky motoru,
nj = 5000 ot.min-1
- volnoběžné otáčky motoru,
n0 = 800 ot.min-1
- čelní profil vozidla,
Sp = 2,5 m2
- součinitel odporu vzduchu,
cx = 0,32
- prodleva a náběh brzd,
t1 = 0,25 s
- maximální síla na brzdový pedál, Fp = 500 N
- celkový převodový stupeň:
- 1. stupeň,
U1 = 12,885
- 2. stupeň,
U2 = 7,451
- 3. stupeň,
U3 = 4,935
- 4. stupeň,
U4 = 3,611
- 5. stupeň.
U5 = 2,793
46
Do dovoleného zatížení vozidla není započítána hmotnost řidiče, protože je součástí
pohotovostní hmotnosti celého vozidla včetně všech jeho povinných náplní. Doba prodlevy a
náběhu brzd je stanovena jako předvolená standardní hodnota 0,25 s. Předpokládá se, že
závada na vozidle tohoto druhu nebude příliš významná zejména proto, že se v silničních
automobilech užívají jednoduché a spolehlivé vymezovače vůle.
1.2.3.2.2 Princip dynamického měření brzdného účinku
Uvedený dynamický způsob měření spočívá ve snímání impulsů otáčejících se válců na
časovou základnu. Podle nich se vypočítává brzdná síla a další parametry hodnotící stav
brzdové soustavy. Způsob měření a získání příslušných časových impulsů probíhá podle
následujícího postupu.
Základem měření je přesné umístění a zajištění vozidla na válcích. Vzhledem k tomu, že
rychlost válců je 7 – 10x větší než na standardních válcích při státní technické kontrole, je
nutné dbát zvýšené opatrnosti při manipulaci s válci a vozidlovými brzdami.
Nejprve je nutno rozběhnout válce na obvodovou rychlost odpovídají rychlosti vozidla
62 – 67 km.h-1. Nepoháněná náprava je rozbíhána přímo elektromotory na válcích. Hnací
náprava vozidla se nejprve uvede do rychlosti kolem 65 km.h-1 spalovacím motorem vozidla a
poté dojde k připojení elektromotorů. Tato varianta rozběhu válců u hnací nápravy vozidla je
volena vzhledem k nižšímu výkonu elektromotorů měřícího zařízení a tím k jejich menšímu
namáhání, aby nemohlo dojít ke zkratu v jejich vinutí.
Válce se nechají na své maximální obvodové rychlosti ustálit a teprve poté dojde
k zapnutí programovatelného sběrače dat. 3 až 5 sekund se nechají válce pokračovat ustálenou
obvodovou rychlostí a pak následuje přibrzdění vozidla na rychlost kolem 20 km.h-1 pomocí
provozní, nouzové nebo ruční brzdy, jejíž funkce je kontrolována.
Po dosažení této rychlosti následuje uvolnění brzdového pedálu a čas pro opětovné
dosažení ustálené rychlosti válců. Toto dosažení původní obvodové rychlosti válců nelze
v žádném případě vynechat, jelikož by nebylo možno přesně stanovit brzdnou sílu na obvodu
kola, která je závislá jednak na části
zpomalování, ale také významnou měrou
na části, ve které jsou válce urychlovány.
Po dosažení ustálené rychlosti opět
následuje 3 – 5 sekund měření s ustáleným
chodem válců. Teprve potom je možné
zastavit měřící zařízení a elektromotory
pohánějící
válce,
čímž
dojde
k samovolnému zastavení vozidla vlivem
valivých a mechanických odporů.
Poté jsou data ze sběrače dat
označena a převedena do počítače pomocí
podpůrného programu MKLINK, který
vytvoří vhodný formát souboru k dalšímu
zpracování. Pracovně se označují data
Obr. 1.33 - Příklad naměřených dat pro
naměřená na přední nápravě jako A, na
hodnocení brzd
zadní nápravě B a pro ruční brzdu C.
Ukázka zaznamenaných dat je na obrázku číslo 1.33. V levém sloupci je čas od spuštění
měřícího zařízení (např. 21071176 = 21,071176 s) a ve sloupci pravém rozdíl dvou po sobě
jdoucích časových impulsů. Tento rozdíl se dále využívá k výpočtu zrychlení a zpomalení
válců a tím i celého vozidla.
47
1.2.3.2.3 Stanovení brzdné síly
Brzdná sílu se počítá podle vztahu (24) jako součin hmotnosti a zrychlení.
Fb
Ghr ⋅ a
(24)
Fb – brzdná síla [N]
Ghr – redukovaná hmotnost kol a válců na obvod kola [kg]
a - zrychlení válců [m.s-2]
Na vozovce brzděná hmotnost vozidla a setrvačných sil motoru je zde nahrazena
hmotností měřeného kola a hmotností dvojice válců, na kterých je vozidlo umístěno,
redukovaná na obvod kola a označená jako Ghr.
Zrychlení a zpomalení válců a se počítá z naměřených impulsů na časové základně, ze
kterých se počítá také rychlost vozidla C, kde dráhou v tomto případě je odvalovaný obvod
válců Lr a časem jsou časové rozdíly dvou po sobě jdoucích průchodů optickým snímačem.
Ci
3.6 ⋅
Lr
Ti + 1 − Ti
(25)
-1
Ci – rychlost v i-tém okamžiku [km.h ]
Lr – odvalovaný obvod válců [m]
Ti+1 – čas při i+1 okamžiku [s]
Ti – čas při i-tém okamžiku [s]
Je-li známa rychlost C lze na jejím základě stanovit obvodové zrychlení a zpomalení
válců a. Časem jsou opět časové rozdíly dvou po sobě jdoucích průchodů optickým snímačem
a rychlostí jsou těmto intervalům odpovídající vypočtené hodnoty rychlosti vozidla Ci.
ai
1
⋅
Ci+ 1 − Ci
3.6 Ti+ 1 − Ti
(26)
-2
ai – zrychlení v i-tém okamžiku [m.s ]
Ci – rychlost v i-tém okamžiku [km.h-1]
Ci+1 – rychlost v i+1 okamžiku [km.h-1]
Ti+1 – čas při i+1 okamžiku [s]
Ti – čas při i-tém okamžiku [s]
Z popsaného systému vyplývá, že výsledkem je část, kdy kola vozidla zpomalují a část,
kdy kola zrychlují. Z hlediska dalšího řešení je třeba obě části od sebe oddělit, což je
znázorněno na obrázku číslo 1.34.
Obr. 1.34 - Průběh rychlosti C a zrychlení a při měření levého předního kola
48
Během zpomalování (zelená křivka) jsou v činnosti brzdy vozidla, které musí překonávat
všechny setrvačné odpory a sílu elektromotorů, která je stanovena na základě části zrychlující
(černá křivka). Výsledné síly jsou na základě těchto vztahů (27) vypočítány.
F1
Ghr ⋅ a 1
F2
Ghr ⋅ a 2
(27)
F1 – síla během zpomalování [N]
F2 – síla během zrychlování (elektromotory) [N]
Ghr – redukovaná hmotnost kol a válců na obvod kola [kg]
a1 – zpomalení válců [m.s-2]
a2 – zrychlení válců [m.s-2]
Výsledná brzdná síla na obrázku číslo 1.35 je poté součtem absolutní hodnoty síly
vypočtené při zpomalení F1 s hnací silou elektromotorů F2 (28).
F
F2 + −F1
(28)
F – celková brzdná síla [N]
F1 – síla během zpomalování [N]
F2 – síla během zrychlování (elektromotory) [N]
Obr. 1.35 - Brzdná síla vozidla na obvodu levého předního kola
Brzdná síla při zpomalování je vyznačena zelenou křivkou, při zrychlování černou
křivkou a výsledná brzdná síla červenou křivkou, jako součet předchozích dvou sil.
Následující obrázky číslo 1.36 a 1.37 zobrazují vypočtené hodnoty rychlosti, zpomalení a
brzdné síly u měřeného vozidla Škoda Favorit 136 LS.
Z obrázků číslo 1.36 a 1.37 nebo v příloze číslo 1.2 je patrná značná nesouměrnost
brzdných sil kol na levé a pravé straně. Na přední nápravě vyvozuje větší sílu pravé kolo a na
zadní nápravě naopak kolo levé. Souměrnost kol přední nápravy zV je 32,4 % a vozidlo je
tedy stáčeno doprava (znaménko + doprava, znaménko – doleva). Naproti tomu souměrnost
kol zadní nápravy zH je –33 % a vozidlo se stáčí doleva. Vzhledem k tomu, že chyba je
diagonálně rozložena v pohledu na celé vozidlo, je souměrnost brzdného účinku zF jen 19 %
a vozidlo je stáčeno doprava.
Pravděpodobně se jedná o závadu jednoho ze dvou okruhů kapalinové brzdy. Důvodem
může být závada na hlavním brzdovém válci nebo ve vedení kapaliny k samostatným
brzdovým válečkům.
49
Obr. 1.36 - Rychlost, zrychlení a brzdná síla kol přední nápravy (< levé, pravé >)
Obr. 1.37 - Rychlost, zrychlení a brzdná síla kol zadní nápravy (< levé, pravé >)
V protokolu o provedené zkoušce brzd, zobrazeném v příloze číslo 1.2, se nachází ve
spodní části brzdná dráha vozidla za standardních podmínek. Je taktéž zobrazena na obrázku
50
číslo 1.38. Její délka je 57,8 m. Vyhláškou je dána maximální brzdná dráha
50,7 m. Měřené vozidlo nesplnilo předepsanou brzdnou dráhu a je nutné jej až do opravy
vyřadit ze silničního provozu.
Obr. 1.38 - Brzdná dráha měřeného vozidla Škoda Favorit 136 LS
Výsledkem tohoto modelování není jen brzdná dráha za standardních podmínek, ale
v další části jsou popsány možnosti simulace, tj. zapracovat do řešení otázku opotřebení
pneumatik, vliv větru, množství vody na vozovce a kombinace těchto podmínek.
Brzdná dráha v dalších bodech je řešena tak, že jsou všechny parametry popisující
provozní podmínky konstantní a mění se postupně pouze uvedený parametr. Standardní
podmínky pro výpočet brzdné dráhy jsou:
- výchozí rychlost vozidla – 80 km.h-1,
- konečná rychlost vozidla – 0 km.h-1,
- hmotnost nákladu – 370 kg,
- hloubka dezénu – 5 mm,
- stav vozovky – suchá = 0,
- sklon vozovky – 0 %,
- vozidlo brzděno – 1 (1 – ano, 0 – ne),
- převodový stupeň – 3.,
- bezvětří – 0 km.h-1,
- reakce řidiče – 0,5 s.
1.2.3.2.4 Modelování brzdné dráhy za nestandardních podmínek
1.2.3.2.4.1 Vliv pneumatiky a její adheze na brzdnou dráhu
Kvalita pneumatik a jejich stav velmi výrazně ovlivňuje jízdní vlastnosti silničních
vozidel, od rozjezdu počínaje přes stabilitu v zatáčkách až po délku brzdné dráhy. Z toho
důvodu také o stavu pneumatik hovoří vyhláška, která se však zabývá pouze tím, že na
vozidle musí být typ pneumatik předepsaných výrobcem, na jedné nápravě stejný a nakonec
jako mezně opotřebené pneumatiky pokládá takové, které mají hloubku dezénu pod 1,6 mm.
Z obchodního a reklamního hlediska každý výrobce o svých pneumatikách tvrdí, že jsou
nejlepší, ale praktickou možnost si rozdíl a jejich výjimečnost vyzkoušet uživatelé nemají.
Dynamický způsob kontroly brzdné dráhy má ve své simulaci zapracován vliv pneumatik na
délku brzdné dráhy. Vychází se z modelových dat, ale pokud by výrobci pneumatik poskytli
svá data a nebo bylo možné data měřit, byl by výsledek ještě přesnější a výrobci by mohli
dokázat, že jejich pneumatiky jsou skutečně ty nejlepší. Uživateli by tato simulace poskytla
informaci o délce brzdné dráhy při libovolně zvolených hodnotách hloubky dezénu.
Pneumatiky určené pro stejný druh provozu od různých výrobců nemusí a zpravidla
nemívají stejné jízdní vlastnosti při konkrétních podmínkách. Nemusela by být stanovena
hloubka vzorku tak pevně. Stejného účinku mohou dosáhnout pneumatiky jednoho výrobce o
hloubce 1,6 mm a od jiného výrobce s hloubkou dezénu 1 mm.
51
Vše ale vychází z přesného a podrobného popisu jak se daná pneumatika chová za
aktuálních podmínek. Zejména jaká je její adheze v závislosti na hloubce jejího vzorku a
podmínkách provozu (suchá vozovka, množství vody na vozovce, zledovatělá vozovka).
S valením pneumatiky po vozovce úzce souvisí valivý odpor, který je nulový pouze u
stojícího vozidla. Odpor valení souvisí s rychlostí jízdy, stavem pneumatiky, zejména jejím
huštěním. Pro další výpočet se předpokládá optimální huštění pneumatik, ale očekává se, že
kdyby bylo dostatek informací, bylo by možné závislost odporu valení upravit tak, aby
respektoval i tlak nahuštění pneumatiky. Během brzdění je odpor valení silou kladnou,
protože pomáhá vozidlo zastavit.
Tabulka číslo 1.17 uvádí příklad dat pro simulování chování pneumatiky za
proměnných podmínek, které panují na pozemní komunikaci.
Tab. 1.17 - Adheze pneumatiky za různých podmínek provozu
Hloubka
dezénu
Stav povrchu
Suchá vozovka
Vrstva vody 0,2 mm
Vrstva vody 1 mm
Vrstva vody 2 mm
Náledí
0 mm
1 mm
3 mm
5 mm
7 mm
9 mm
0,83
0,65
0,42
0,27
0,06
0,80
0,61
0,30
0,15
0,02
0,75
0,55
0,20
0,02
0,01
0,90
0,50
0,40
0,22
0,06
0,85
0,35
0,27
0,15
0,02
0,80
0,15
0,07
0,03
0,02
Nová pneumatika – 9 mm
Opotřebená pneumatika – 1 mm
Obr. 1.39 - Součinitel adheze v závislosti na pojezdové rychlosti a stavu vozovky
Grafická podoba tabulkových hodnot, které jsou vhodným způsobem upraveny a
převedeny do závislosti na rychlosti vozidla, je zobrazena na obrázku číslo 1.39. Jsou
52
zobrazeny pouze dva stavy a to pneumatika nová a pneumatika opotřebená na 1 mm. Další a
to i nepopsané stavy pneumatiky jsou získány početním proložením.
Pro měřené vozidlo Škoda Favorit 136 LS obsahuje tabulka číslo 1.18 brzdnou dráhu
pro různá nastavení stavu vozovky a hloubky dezénu. Ostatní nastavené hodnoty a grafické
zpracování je vidět v příloze číslo 1.3, kde černá křivka znázorňuje optimálně řízenou
brzdnou sílu, aby nedošlo k prokluzu kol (smyku) vozidla, červená křivka symbolizuje
brzdnou dráhu za standardních podmínek, silná modrá křivka představuje brzdnou dráhu za
nastavených podmínek a tenká modrá křivka znázorňuje dráhu do zastavení vozidla, která
zahrnuje brzdnou dráhu prodlouženou o reakci řidiče.
Tab. 1.18 - Brzdná dráha (v metrech) v závislosti na hloubce dezénu a stavu vozovky
Dezén
Vozovka
Suchá
0,4 mm vody
0,8 mm vody
1,2 mm vody
1,6 mm vody
2 mm vody
Náledí
0 mm
0,5 mm
1 mm
1,6 mm
2 mm
3 mm
5 mm
58,7
58,7
73,1
88,8
94,3
95,6
276,7
58,7
58,7
72,1
87,5
93,4
95,2
275,7
58,7
58,7
71,2
86,2
92,4
94,8
274,7
58,7
58,7
70,2
84,7
91,3
94,4
273,4
58,7
58,7
69,5
83,8
90,6
94,1
272,6
58,7
58,7
67,9
81,5
88,9
93,4
270,6
58,7
58,7
65,0
77,3
85,6
92,0
266,7
Uvedené hodnoty v tabulce jsou simulovány na vozidle, v jehož brzdové soustavě se
objevila výše zmíněná závada. Proto za standardních podmínek není dosaženo maximální
dovolené brzdné dráhy pro osobní vozidlo 50,7 m. Přesto si lze povšimnout, že nová
pneumatika (5 mm dezénu) zkrátila brzdnou dráhu na vozovce s větším množstvím vody (1,2
až 2 mm) proti pneumatice opotřebené (1,6 mm dezénu) o 2,5 až 7 metrů. Je tedy možné říci,
při šířce přechodu pro chodce 3 metry, že kvalitní pneumatiky tudíž mohou případnému střetu
s chodcem zabránit a zachránit život nejen chodci, ale i řidiči.
V příloze číslo 1.3 je kromě brzdné dráhy a dráhy do zastavení vozidla možné sledovat
také průběh síly působící na pedál brzdy. Ne vždy je možné plně sešlápnout brzdový pedál,
protože by došlo ke ztrátě kontaktu kola s vozovkou, tj. ke ztrátě ovladatelnosti vozidla. Tento
nedostatek odstraňuje systém ABS. V případě simulace brzdné dráhy na počítači se
předpokládá, že vozidlo je systémem ABS vybaveno, nebo řidič vozidla je zkušený a
pohybuje se při brzdění na hranici adheze, která je zobrazena na obrázku číslo 1.40.
Obr. 1.40 - Adhezní a brzdná síla v závislosti na rychlosti vozidla
53
1.2.3.2.4.2 Vliv větru v ose vozidla
Silniční vozidlo představuje předmět, který zaujímá v prostoru určitý objem a tento
předmět se pohybuje médiem, kterým je okolní vzduch. Každé médium klade odpor pohybu
tělesa a stejné je to s vozidlem na silnici, kterému vzduch klade odpor proti pohybu. Velikost
odporu vzduchu je závislá na součiniteli odporu vzduchu vozidla cx, velikosti jeho čelní
plochy SP, kvadrátu rychlosti C2 a hustotě vzduchu ρ, která se sice s výškou mění, ale lze ji
v běžných podmínkách pokládat za konstantní.
Řešení předpokládá vítr zpředu a zezadu, ale neřeší problém bočního větru.
V následující tabulce číslo 1.19 je průběh brzdné dráhy měřeného vozidla pouze v závislosti
na směru a síle větru ( „+“ vítr ve směru jízdy vozidla, „-“ vítr proti směru pohybu vozidla).
Tab. 1.19 - Vliv větru na délku brzdné dráhy
Rychlost a směr větru
(km.h-1)
Brzdná dráha (m)
- 120
- 80
- 40
0
40
80
120
50,7
54,0
56,8
58,7
59,7
60,2
61,6
Při rychlosti větru 120 km.h-1 proti směru pohybu vozidla došlo ke zkrácení brzdné
dráhy o 13,5 % na vzdálenost 50,7 m, což je brzdná dráha, která je předepsaná vyhláškou jako
maximální, pokud jsou brzdy v pořádku a za standardních podmínek, tedy za bezvětří. Těžko
by bylo možné najít končiny, kde rychlost větru je neustále 120 km.h-1. V našich oblastech se
běžně pohybuje pod 40 km.h-1 a odchylka je tedy maximálně 1 metr, ale i ten může mít cenu
života. Grafický příklad průběhu brzdné dráhy je v příloze číslo 1.4.
1.2.3.2.4.3 Vliv sklonu svahu na brzdnou dráhu
Sklon vozovky se na vozidle projevuje jako tzv. odpor stoupání FS, který není závislý
na rychlosti vozidla a je tudíž po celou dobu jízdy konstantní, jestliže se uvažuje vozovka bez
proměnného sklonu.
V případě změny sklonu svahu jsou vypočtené výsledky brzdné dráhy znázorněny
v tabulce číslo 1.20. a další dva jsou graficky zpracované v příloze číslo 1.5.
Tab. 1.20 - Brzdná dráha v závislosti na sklonu vozovky
Sklon vozovky (%)
- 10
-5
-2
0
2
5
10
Brzdná dráha (m)
73,9
65,4
61,2
58,7
56,4
53,3
48,8
Z tabulky číslo 1.20 je patrné, že brzdná dráha vozidla při sklonu 10 % je přibližně o
20 % kratší než brzdná dráha na rovině. Stejné je to v případě opačného sklonu – 10 %, ale
dochází k prodloužení brzdné dráhy. Svah o sklonu větším jak 10 % se vyskytuje v menší
míře a předpokládá se, že řidiči jsou si většího sklonu vědomi a řídí opatrněji. Častěji se
v praxi řidič setká se svahem o sklonu 5 %. Zde dochází k prodloužení či zkrácení brzdné
dráhy kolem 10 % její původní hodnoty (brzdná dráha za standardních podmínek).
V běžném provozu je řidič na svah větší 6 % upozorňován značkou o nebezpečném
klesání a ve většině případů automaticky dbá zvýšené opatrnosti. Co ale svahy menší?
Například na svahu 2 % se brzdná dráha zkrátí přibližně o 4 %. V opačném případě se o 4 %
prodlouží.
54
Zajímavostí
je sledovat, jak
bude
vypadat
dráha do zastavení
vozidla
v případě jízdy ze
svahu o sklonu
4 %, pokud řidič
bude brzdit pouze motorem a nepoužije-li
provozní
brzdu.
Situace je zobrazena na obrázku
číslo 1.41.
Je patrné,
že vozidlo, které
Obr. 1.41 - Průběh brzdné dráhy na svahu o sklonu – 4 % bez užití k zastavení
na
provozní brzdy
svahu o sklonu
– 4 % bude brzdit
pouze na zařazený třetí rychlostní stupeň a nepoužije provozní brzdu, nezastaví. Rychlost
vozidla, které se nahoře na svahu bude pohybovat rychlostí 80 km/h, se ustálí po 7,5 km na
rychlosti 26 km/h (modrá křivka – jedná se o její vrchní polovinu vycházející z rychlosti
80 km/h), kde se vyrovnají odpory vozidla se silou, která je vyvozena sklonem svahu. Stejný
případ nastane, pokud se vozidlo na tomto svahu odbrzdí a bude mu poskytnut dostatečný
impuls na rozjezd. Opět se rychlost vozidla ustálí na 26 km/h, ale tentokrát k jejímu dosažení
potřebuje pouze 2,2 km (modrá křivka – jedná se o její spodní polovinu vycházející z nulové
rychlosti).
1.2.3.2.4.4 Vliv řazení převodových stupňů na brzdnou dráhu
Každý zkušený řidič ví, že sjíždět ze svahu se zařazeným rychlostním stupněm přináší
jisté výhody a to se ještě zanedbává případná pokuta od dopravní policie, pokud řidič vozidla
s celkovou hmotností více jak 3,5 tuny sjíždí ze svahu bez zařazeného rychlostního stupně.
Vozidlo, které sjíždí ze svahu se zařazeným rychlostním stupněm, je mnohem lépe
ovladatelné. Mnoho řidičů udává, že při jízdě ze svahu na neutrál šetří palivo. Vůbec si
neuvědomují, že volnoběh motoru je druhým nejbohatším režimem, hned po uvádění motoru
do chodu (startování). Dnešní moderní vstřikovací systémy rozpoznají, že motor jede bez
zatížení se zařazeným rychlostním stupněm a automaticky nastaví minimální dodávku paliva,
případně dodávku paliva zcela zastaví.
Je nutné však počítat s tím, že těsně před zastavením je nutné vyšlápnout spojku a
vyřadit převodový stupeň, aby nedošlo k zhasnutí motoru. Touto hranicí jsou zde voleny
volnoběžné otáčky motoru 800 ot.min-1. Simulovaný systém neuvažuje s postupným
přeřazováním převodových stupňů na nižší, dokáže stanovit brzdnou dráhu s po celou dobu
zařazeným zvoleným převodovým stupněm.
K brzdění motorem slouží ztrátový točivý moment. Převodové stupně jsou pouhým
mezičlánkem mezi motorem a hnacími koly, které velikost točivého momentu motoru
upravují podle zvoleného převodového stupně. K jeho stanovení se použije měření založené
na akceleračním principu a popsané v předchozích kapitolách.
55
V tabulce číslo 1.21 je zaznamenána délka brzdné dráhy, pokud vozidlo bude v jednom
případě brzdit a v druhém nikoliv, se zařazenými různými převodovými stupni. První
převodový stupeň je vynechán, jelikož by byly překročeny jmenovité otáčky motoru
(5000 ot.min-1). Jen pro zajímavost by měl motor při rychlosti 80 km.h-1 a 1. zařazeném
stupni přibližně 10000 otáček za minutu. Simulace na počítači tento problém zatím neřeší, což
je jejím nedostatkem. Dva příklady brzdné dráhy jsou uvedeny v příloze číslo 1.6.
Tab. 1.21 - Brzdná dráha [m] v závislosti na zařazeném převodovém stupni
Převodový stupeň
Vozidlo brzděno
Vozidlo nebrzděno
2.
58,8
415,2
3.
58,7
4.
58,8
632,3
540,5
5.
59,0
700,8
Pokud vozidlo není brzděno provozní brzdou, klesá brzdná dráha s nižším převodovým
stupněm. Téměř stejně je tomu pokud je vozidlo brzděno se zařazeným rychlostním stupněm.
Brzdná dráha klesá až po třetí převodový stupeň a poté se začne opět zvyšovat. Důvodem
tohoto zvýšení je setrvačnost motoru, která je větší než ztrátový točivý moment motoru a
takto vzniklá síla se naopak snaží vozidlo urychlit. Tento problém souvisí s velikostí motoru a
zejména s jeho setrvačnou hmotností. Pro razantní brzdění na nižší převodový stupeň je proto
doporučeno brzdit s vyšlápnutou spojkou, aby k výše popsané situaci nedocházelo.
1.2.3.2.4.5 Vliv rychlosti reakce řidiče na dráhu do zastavení
Rozdíl v brzdné dráze a dráze do zastavení je právě v reakci řidiče. Dráha do zastavení
reakci řidiče zahrnuje a brzdná dráha nikoliv. Ve všech grafech v přílohách je dráha do
zastavení vozidla znázorněna tenkou modrou křivkou. Řešit problematiku rychlosti reakce
řidiče je spíše věcí dopravních psychologů než techniků.
Reakční doba je prostředník mezi rozhodováním a konáním. Její vliv na dopravních
nehodách vzrůstá se vzrůstající rychlostí silničních vozidel a podílí se na ní také zkušenosti,
únava řidiče a další vlivy jako jsou léky, drogy a alkohol.
Změna reakcí řidiče se projevuje ve změně dráhy do zastavení velmi značnou měrou. To
je patrno z tabulky číslo 1.22 a z přílohy číslo 1.7.
Tab. 4.21 - Dráha do zastavení vozidla při proměnné době reakce řidiče
Doba reakce řidiče (s)
0,2
0,4
0,6
0,8
1,0
1,5
2,0
Dráha do zastavení (m)
63
68
72
76
81
92
103
Reakce řidiče v oblasti pohybující se blízko 0,2 sekundy není běžná pro typického
řidiče v silničním provozu. Touto reakcí se mohou pochlubit pouze špičkový řidiči soutěžních
automobilů. Běžná reakce řidiče se pohybuje v oblasti 0,5 až 0,9 sekundy a má na ni vliv celá
řada činitelů např. pozornost, věk řidiče, zkušenosti, alkohol, dopravní situace atd. Doba
reakce řidiče pod vlivem alkoholu je nevyzpytatelná, protože představuje souhrn nedostatku
pozornosti, motorických schopností a schopnosti uvědomění. Statisticky běžná reakce opilého
řidiče je 1,7 s.
1.2.3.2.5 Dílčí závěr
Kontrola brzdové soustavy je důležitá z hlediska aktivní bezpečnosti silničního provozu.
Uvedený systém kontroly brzdného účinku má za cíl jednoduchou servisní aplikaci, která
56
poskytne objektivní informace o velikosti brzdné dráhy nejen za standardních podmínek, ale i
za vybraných provozních podmínek.
Uživateli vozidla by byly poskytnuty informace o stavu brzdové soustavy vozidla jako
celku, ale také aktuální vliv stavu na skutečný provoz. To znamená, jak velká by přibližně
byla brzdná dráha za stanovených provozních podmínek. Systém umožňuje vytištění
protokolu, ve kterém jsou vyjmenovány brzdné dráhy za různých provozních podmínek.
Systém je nepatrně náročnější na měření a zpracování dat oproti klasickému měření ve
stanicích technické kontroly, ale poskytuje širší množství informací, které jsou měřením při
vyšší rychlosti objektivnější než měření brzdné síly na pomaluběžných brzdách.
Dynamická kontrola brzd je zatím ve stádiu vývoje a bude třeba v budoucnu i její
praktické ověření. V současnosti jsou hlavní nedostatky této metody v oblasti pneumatik a
jejich chování na vozovce. Je třeba v budoucnu získat informace od širokého spektra výrobců
o rozmanitých typech pneumatik nebo jejich vlastnosti jednoduše měřit.
Současně také systém neřeší uspokojivě otázku brzdění se zařazeným převodovým
stupněm a to zejména s ohledem na jejich postupné přeřazování, aby byl k brzdění využit i
dostatečný ztrátový točivý moment motoru. Brzdění se odehrává pouze při jednom zvoleném
převodovém stupni. Zároveň je třeba vyřešit otázku omezení a volby převodového stupně, aby
nedocházelo k případům, že vozidlo brzdí na 1. převodový stupeň z 10000 ot.min-1. Tedy, aby
nedocházelo k překročení jmenovitých otáček motoru.
Dále se v řešení předpokládá, že vítr působící na vozidlo má směr pouze v podélné ose
vozidla. Nejsou řešeny otázky bočního větru nebo větru, který na vozidlo působí v obecném
směru.
Jsou vyjmenovány některé hlavní nevýhody, jejímž řešením je třeba se dále zabývat.
Výhodou systému je uživateli blízká představa délky brzdné dráhy než představa o tom jak se
projeví brzdná síla, která je obvykle měřena ve stanicích technické kontroly. Systém
dynamického hodnocení stavu brzdové soustavy má také výhodu v libovolné simulaci
provozních podmínek.
1.3 Stávající metody měření tahových charakteristik traktoru [11, 34, 42]
Nejdůležitější skupina zkoušek se zabývá v prvé řadě výkonností, tahovými vlastnostmi,
posouzením jízdních vlastností jako je průjezdnost, řiditelnost, rozložení měrných tlaků,
hospodárnost práce apod. Tyto zkoušky určují parametry pro zlepšení a využití určitých prvků
traktorů a označují se jako typové.
Mezi nejdůležitější typové zkoušky patří tahové a výkonové zkoušky a jsou stanoveny
normou. Zkoušky je možno provádět v laboratořích, což umožňuje porovnání výsledků mezi
laboratořemi, v polních podmínkách, nebo na zkušebních drahách. Význam zkušebních drah je
pro porovnání výsledků zkoušek. Ideálním případem je ověření výsledků na zkušební dráze a
v polních podmínkách na podložce, která je pro práci traktoru typická, a kterou nelze na umělé
dráze vytvořit.
Mezi povinné zkoušky patří:
- Zkouška na hlavním vývodovém hřídeli – Tato zkouška slouží k určení
charakteristiky motoru. Vývodový hřídel se připojí na komutátorový dynamometr,
což je v podstatě komutátorový derivační motor napájený do statoru. Moment M,
který vzniká při zatěžování, působí na stator, ale v opačném směru než na rotor.
- Zkouška motoru – Tato zkouška se nemusí provádět je-li vozidlo vybaveno
vývodovým hřídelem. Musí se však provést tehdy, pokud vývodový hřídel
57
nemůže přenést plný výkon traktoru, nebo není-li vývodový hřídel mechanicky
spojen s motorem traktoru.
- Tahové zkoušky – Popsáno v následujících bodech.
- Zjištění poloměru otáčení a prostoru pro zatáčení.
- Určení polohy těžiště.
- Brzdění, měření hluku, zvedací síla, výkon hydraulického čerpadla apod.
Mezi nepovinné zkoušky patří:
- zkouška na řemenici traktoru (u starších typů traktorů),
- dodatkové zkoušky pro určení speciálních hodnot motoru,
- zvláštní zkoušky pro určení speciálních údajů (výkony na jiné než smluvní
podložce, horské atmosférické podmínky, spouštění motoru za nízkých
teplot).
Při tahových zkouškách se zjišťují tyto parametry, nebo se pomocí naměřených hodnot
vypočítávají:
- tahová síla traktoru,
- odpor valení,
- pracovní rychlost traktoru (měří se čas při známé délce zkušebního úseku v = s / t),
- prokluz hnacích kol (měří se nejčastěji pomocí otáček kol a vývodového hřídele),
- spotřeba paliva (spotřeba pro daný úsek a další se vypočítávají).
K určení hodnot se volí různé přístroje a způsoby měření. Standardní měření probíhá
přesně podle metodiky a jednotlivé hodnoty se určují postupně bod po bodu. Urychlená
zkouška byla vyvinuta pracovníky České zemědělské univerzity v Praze a zatěžování je
prováděno plynule během jedné jízdy traktoru. Výpočtová metoda představuje způsob
zjišťování všech parametrů na základě dříve provedených měřeních a ostatní parametry se
dopočítávají.
1.3.1 Standardní tahové zkoušky [34, 42]
Standardní tahovou zkoušku je možno provádět na zkušební vozovce, ale zpravidla se
měří na poli (měřící dráha), tedy při podmínkách, ve kterých daný traktor pracuje.
Problematické u tohoto typu zkoušek je značná časová a také vysoká prostorová náročnost jak
je vidět na obrázku číslo 1.42. Během zkoušek se provádí:
- Měření tahové síly – K měření se užívají tahové dynamometry elektrické, hydraulické
nebo mechanické. Silové čidlo se umísťuje mezi zkoušený traktor a traktor, který je
určen pro vyvození zatěžující síly a bývá označován jako dynamometrický měřící
vůz. Zatěžující síla má být během celého měřeného úseku konstantní. Měřících jízd se
podniká několik s různou tahovou silou a ve stále nových drahách, protože předchozí
dráha již obsahuje stopu, která ovlivňuje měření. Schéma měřících jízd a délka
jednotlivých úseků měřící dráhy jsou uvedeny na obrázku číslo 1.42. Tahový výkon
Pt je roven součinu tahové síly Ftx a rychlosti traktoru v na měřeném úseku.
- Měření střední hodnoty rychlosti – Rychlost traktoru v se měří pomocí stopek na
předem známé délce zkušební dráhy L. Střední rychlost v se potom vypočte jako
poměr délky dráhy L a času potřebného k jejímu projetí t. Se zapnutím stopek se
automaticky zapnou i ostatní měřící přístroje. Při měření traktoru na poli je nutné
jezdit pokaždé v jiné dráze a to vždy tam a zpět se stejnou tahovou silou, aby došlo
k vyloučení vlivu větru a sklonu povrchu.
- Měření prokluzu – Nejvýhodnější pro měření prokluzu je využít změny otáček kol.
Měří se počet otáček hnacích prokluzujících kol a současně počet otáček pátého kola,
58
Obr. 1.42 – Způsob provedení tahové zkoušky na poli
které se odvaluje
bez prokluzu, nebo s prokluzem,
který je zanedbatelný.
- Měření spotřeby
paliva – Spotřeba paliva se měří
pomocí palivoměru, za konstantního zatížení
a rychlosti traktoru. Při známé
době
průjezdu
úsekem
t
a
množství spotřebovaného paliva
Q se snadno určí
spotřeba paliva
v g.s-1, popřípadě
v g.kWh-1.
1.3.2 Urychlené tahové zkoušky [34, 42]
Standardní tahové zkoušky traktorů jsou prostorově a časově náročné a proto byly na
České zemědělské univerzitě v Praze navrženy urychlené tahové zkoušky, které uspoří asi
polovinu času a potřebují asi 10 krát méně prostoru. Urychlené tahové zkoušky se dělí do dvou
kategorií:
- UTZ 1 – Tento typ urychlené tahové zkoušky probíhá tak, že je od začátku měření
postupně zvyšováno zatížení traktoru až po jeho maximální hodnotu při 100 %
prokluzu. Problémem jsou zde nutné korekce na setrvačné síly traktoru.
- UTZ 2 – Tento typ zkoušky je obdobou předchozího s tím rozdílem, že se zatěžování
mění po skocích. Na každém stupni se vždy na krátkou dobu ustálí. Výhodou proti
předchozí metodě je, že není potřeba korigovat setrvačné síly traktoru.
Oba způsoby měření jsou znázorněny na obrázku číslo 1.43. Zpomalení nebo zrychlení
během měření by mělo být menší než 0,03 m.s-2, aby měření nebylo ovlivněno setrvačnou
silou. Jsou však nutné přístroje, které měří okamžité hodnoty veličin.
Během měření je zaznamenávána tahová síla Ftx, úhlová rychlost hnacích kol ωh,
zkoušeného vozu, úhlová rychlost měřícího kola ωm (měřícím kolem je motocyklové kolo,
které se volně otáčí a je na něm snímač úhlové rychlosti) a hodinová spotřeba paliva Mp.
Z takto naměřených hodnot se vypočítá:
- Skutečná rychlost – Skutečná rychlost traktoru vsk se vypočte jako součin poloměru
měřícího kola rm a úhlové rychlosti měřícího kola ωm.
- Teoretická rychlost – Teoretická rychlost traktoru vt je rovna součinu poloměru kola
měřeného traktoru rh a jeho úhlové rychlosti ωh.
- Prokluz – Prokluz se stanovuje obdobným způsobem jako v předchozím případě,
pouze s tím rozdílem, že počet otáček kola měřeného a měřícího vozidla je nahrazen
skutečnou a teoretickou rychlostí traktoru.
59
Obr. 1.43 – Systém měření UTZ 1 a UTZ 2
1.3.3 Výpočtová tahová charakteristika [34, 42]
Velká časová a prostorová náročnost měření tahových zkoušek na poli vedla k rozvinutí
výpočtových metod. Pro sestrojení výpočtové tahové charakteristiky je nutné znát následující
závislosti veličin:
- otáčková charakteristika motoru – závislost efektivního výkonu motoru Pe, točivého
momentu M a spotřeby paliva Mp na otáčkách motoru n,
- veškeré parametry traktoru jako jsou převodové poměry, rozvor, mechanické
účinnosti, tíha traktoru a její rozložení, součinitel odporu valení atd,
- závislost prokluzu δ na tahové síle Ftx nebo součiniteli odporu valení µ.
Nejproblematičtější se jeví stanovení otáčkové charakteristiky motoru. Změny aktuální
otáčkové charakteristiky mohou poměrně snadno a rychle způsobit velké ekonomické a
ekologické ztráty.
Dynamický způsob měření umožňuje snadno získat okamžité parametry otáčkové
charakteristiky motoru a tím tuto výpočtovou metodu značně zpřesnit. Dále se nabízí možnost
využít této metody k modelování průjezdu traktoru různě zvolenou drahou. Je možné
modelovat pozemek majitele traktoru a rozličné způsoby zatížení pro dosažení velmi přesného
odhadu spotřeby paliva a vyprodukovaných emisí. Využít by se tato metoda dala i v podobě
porovnání dvou různých typů traktorů pro určité parametry pozemku (rozloha, sklon, půdní
typ atd.) a způsob nasazení.
60
2. Cíl disertační práce
Neustálé zvyšování počtu silničních motorových vozidel má za následek poškozování
životního prostředí, které úzce souvisí nejen s jejich počtem, ale také s jejich konstrukčním
řešením a aktuálním technickým stavem. Rozvoj motorizace vyžaduje také nové vhodné
měřící a vyhodnocovací metody.
Nová konstrukční řešení a nové typy vozidel jsou kontrolovány pomocí normovaných
homologačních měření. Z praktického hlediska je však zapotřebí také kontrolovat změnu
technického stavu v provozu. K těmto kontrolám by měla sloužit běžná servisní pracoviště,
která by uživatelům zajistila informace podobné jako u homologačních měření, jejichž
aplikace by měla vliv na ekologii a ekonomiku provozu.
Obecným cílem autorova snažení je snaha přispět k tomu, aby se běžná servisní
měření co nejvíce přiblížila standardním homologačním měřením. Předpokládá to
především nalézt metodu, která by se svou přesností a vypovídací schopností blížila
homologačním postupům pro vozidlové motory a přitom byla přijatelně investičně i provozně
náročná a tudíž dobře využitelná jak v běžné servisní praxi, tak při legislativně předepsaných
kontrolách emisí vozidel.
Autor na základě svého rozboru vidí cestu ve využití a rozšíření dynamických měření
spalovacích motorů a výpočetní techniky, která za poslední roky udělala významný krok
kupředu a umožňuje v krátkém čase data nejen naměřit, ale také zpracovat a vyhodnocovat.
Výsledkem práce jsou výpočetní programy, které umožňují zpracovávat dynamicky
naměřená data. Rozsáhlejší ověření výpočetních programů a porovnání s výsledky měření
nebylo možno z ekonomických důvodů zahrnout do této práce, ale autor ve výsledcích a
rozborech navrhovaných programů upozorňuje na přednosti a nevýhody, které je nutné dále
rozpracovat a zvýšit tak přesnost nových metod měření.
Cílem autorovy práce je:
- návrh dynamického měření spalovacích motorů s výkonnostním regulátorem,
využitelné pro vytvoření veličinových charakteristik motoru,
- návrh virtuální tahové charakteristiky traktoru,
- návrh modelu práce traktoru na simulovaném pozemku.
61
3. Metodika disertační práce
Dynamické metody měření jsou v technické diagnostice motorových vozidel do určité
míry málo využívané a jejich zavedení by mohlo přinést efekt v podobě rychlejších a
provozně bližších zatěžovacích režimů s využitím, které by se v servisních pracovištích blížilo
běžným způsobem prováděným homologačním zkouškám.
Autor se v této práci zaměřuje na 3 body, které jsou uvedeny v předchozí kapitole a
vychází z rozboru současného stavu hodnocení motorových vozidel.
Návrh dynamického měření spalovacích motorů s výkonnostním regulátorem je
zaměřen na vytvoření celkové veličinové charakteristiky motoru s cílem vyhodnocovat
spotřebu paliva (kapitola 4.1.1). Až budou k dispozici dostatečně přesná dynamická měření
emisních složek výfukových plynů, bude možné stejným způsobem vyhodnocovat i jejich
dopad.
Postup tvorby celkové veličinové charakteristiky motoru s výkonnostním regulátorem:
- Na základě dynamicky měřené vnější charakteristiky motoru je navrženo 9 měřících
bodů tak, aby bylo možné jejich proložením získat celkovou veličinovou
charakteristiku motoru. Označení bodů a jejich přibližné umístění je znázorněno na
obrázku číslo 3.1.
- Měřící body
s označením 1,
2, 3 jsou body,
které jsou měřeny bez vnějšího zatížení
(traktor není
třeba
umísťovat na volné
válce).
Jsou
nastaveny měřící otáčky a
po dostatečně
dlouhou dobu
je zaznamenávána spotřeba
paliva.
- Měřící body
s označením 4,
5, 6 jsou body,
Obr. 3.1 Rozmístění bodů a jejich označení v požadované
které jsou měcelkové charakteristice motoru
řeny při středním efektivním točivém momentu. Jsou měřeny tak, že se nastaví otáčky motoru o
100 vyšší než jsou požadované měřící a na ně se potom přibrzdí pomocí provozní
brzdy. Během doby brzdění je snímána spotřeba paliva po dobu minimálně 15
sekund. Nakonec je pedál brzdy uvolněn a během doby rozběhu je dynamicky
snímáno zrychlení s cílem určit zatěžující točivý moment.
- Měřící body s označením 7, 8, 9 jsou měřeny tak, že jsou střídavým sešlapováním a
uvolňováním plynového pedálu udržovány zvolené měřící otáčky a současně je
snímána spotřeba paliva, která se relativně ustálí (kvazistatický způsob měření).
62
-
Pomocí softwarového prostředí MathCad 2001 je s využitím funkcí CSPLINE a
INTERP vytvořena prostorová závislost spotřeby paliva na točivém momentu a
otáčkách motoru (celková charakteristika motoru).
Návrh
virtuální
tahové
charakteristiky
traktoru vychází z klasické výpočtové metody a
aktuální měřené celkové
charakteristiky
motoru.
Postupně jsou virtuálně
vypočítávány v uvedeném
softwaru
závislosti
hodinové spotřeby paliva,
rychlosti, tahového výkonu
a prokluzu na tahové síle
(kapitola 4.1.2). Takto
vypočtenou
virtuální
charakteristiku autor v závěru porovnává s tahovou
charakteristikou stanovenou
pouze na základě výpočtové metody ze stanObr. 3.2 Softwarové prostředí Mathcad 2001 Professional
dardních měření.
Virtuální charakteristiku dále autor využívá v návrhu modelu práce traktoru na
simulovaném pozemku (kapitola 4.2). Model umožní porovnání různých typů traktorů, nebo
kontrolu traktoru po údržbě a opravě z hlediska efektivnějšího využití. Návrh je autorem
vytvořen na základě následujícího postupu:
- Dříve navrženou virtuální tahovou charakteristiku a celkovou charakteristiku motoru
autor zpracoval tak, aby byla vhodným vstupem do simulované práce traktoru na
modelovaném pozemku.
- V softwarovém prostředí MathCad 2001 je modelovaný pozemek vhodným
způsobem naprogramován jako prostorová závislost převýšení v metrech (jsou
vytvořeny terénní vlny).
- Na základě zpracování jízdních odporů autor vypočítává potřebný točivý moment,
který je postupně upravován podle zvoleného převodového stupně tak, aby bylo
dosaženo minimální měrné spotřeby paliva.
- Podle zvoleného převodového stupně a velikosti zatížení jsou zpracovány otáčky
motoru v závislosti na poloze traktoru na pozemku.
- Na základě závislostí efektivního točivého momentu a otáček motoru na poloze
v modelovaném pozemku je pro konkrétní úsek odečtena z celkové charakteristiky
motoru spotřeba paliva, která je nakonec kumulována a zpracována autorem jako
spotřeba paliva v litrech na 100 km.
- Jednotlivé simulované spotřeby paliva pro různé nastavené vstupní podmínky jsou
uvedeny v závěrečných tabulkách, kde jsou vzájemně porovnány.
Na závěr jsou porovnány výsledky ve stanovené spotřebě paliva, pokud dojde
k nepřesnostem během měření jak v nastavení otáček a točivého momentu, tak v měření
spotřeby paliva. Současně jsou autorem shrnuty výhody a úskalí, která při měření a simulaci
mohou nastat.
63
4. Návrh modelování tahové charakteristiky traktoru a jeho práce
na modelovém pozemku
4.1. Návrh virtuální tahové charakteristiky traktoru
Tahová charakteristika traktoru patří mezi základní zkoušky, kterými se hodnotí
vlastnosti a schopnosti zvoleného traktoru při provozních podmínkách. Lze ji získat na
základě pracného a zdlouhavého měření, výpočtem na základě již dříve naměřených nebo
získaných parametrů (převážně z dokumentace), nebo lze využít dynamického měření, které
představuje kompromis mezi dvěma předchozími. Jsou naměřena aktuální data motoru, která
se promítnout do spotřeby paliva a vzniku emisí, ostatní parametry a data jsou převzata
z tabulek a dokumentace [3].
Autor v následující části měří a vypočítává tahovou charakteristiku na traktoru
Zetor 8045. Výchozí pro provedení simulace je celková charakteristika motoru, která se měří
rozdílným způsobem. Proti vznětovým motorům nákladních vozidel a autobusů je totiž
traktorový motor vybaven výkonnostním regulátorem na rozdíl od regulátoru omezovacího.
4.1.1 Návrh měření celkové charakteristiky motoru s výkonnostním regulátorem
Autor při měření celkové charakteristiky motoru vychází stejně jako v předchozích
případech z kvazistatického měření 9 bodů měřených na volných válcích. Umístění vozidla na
válcích je zobrazeno na obrázku číslo 4.1. Čím více bodů v charakteristice se naměří, tím je
výsledná simulace přesnější. Pro běžnou servisní praxi bude výhledové postačovat z hlediska
přesnosti i z hlediska pracnosti měření 9 bodů [18, 19, 36, 37, 40, 41].
Obr. 4.1 - Umístění vozidla na volných válcích
Rozdílnost měření se promítne pouze u tří bodů, které jsou ve středu charakteristiky (při
částečném zatížení motoru). Měření bodů na vnější charakteristice při plném zatížení a měření
bodů bez zatížení se provádí obdobně jako v předchozích případech tvorby celkových
charakteristik u motorů s omezovacím regulátorem.
Během měření byla snímána spotřeba paliva pomocí mechanického palivoměru
Mannesmann Kienzle, který je zobrazen na obrázku číslo 4.2. Autor předpokládá, že
v případě kvalitních a rychle reagujících emisních měřících přístrojů by bylo možné stanovit
64
spotřebu paliva výpočtem z emisí a zároveň stanovit dopad provozu vozidla na životní
prostředí.
Obr. 4.2 - Palivoměr Mannesmann Kienzle
4.1.1.1 Vstupní veličiny pro tvorbu celkové charakteristiky motoru
Základní vstupní hodnoty motoru s výkonnostním regulátorem a měřících přístrojů pro
zpracování virtuální tahové charakteristiky:
- zdvihový objem motoru,
Vm = 4562 cm3
- počet válců motoru,
z=4
- jmenovité otáčky motoru,
nj = 2200 ot.min-1
- jmenovitý točivý moment motoru, Mj = 250 N.m
- moment setrvačnosti motoru,
Im = 1,67 kg.m2
- konstanta palivoměru,
KPal = 3,0303 cm3.impuls-1
- počet otáček motoru na impuls,
Kot = 1 ot.impuls-1
- počet otáček na cyklus motoru,
Kim = 2 ot.cyklus-1
ρ = 835 kg.m-3
- měrná hmotnost paliva.
Aby bylo možné správně zvolit střední a maximální hodnoty zatížení motoru a zároveň
aby bylo možné omezit celkovou charakteristiku z hlediska pracovní oblasti motoru, je třeba
znát průběh vnější otáčkové charakteristiky. Zároveň je podle vnější otáčkové charakteristiky
posouzen stav a funkčnost regulátoru, který ovlivňuje nastavení středního momentu (zatížení
motoru přibližně polovinou maximálního točivého momentu) a předvolených otáček motoru.
Vnější otáčková charakteristika je naměřena pomocí akcelerační metody a na základě
časových impulsů zobrazených například v tabulce číslo 4.1 se vypočítají otáčky a točivý
moment motoru.
2π
εj
nj
−
2π
(T j+ 2 − T j+ 1) (T j+ 1 − T j)
T j+ 1 − T j
(29)
60
T j+ 1 − T j
(30)
(31)
-2
εj – úhlové zrychlení motoru [rad.s ]
65
Tj, Tj+1, Tj+2 – časové impulsy měření [s]
nj – otáčky motoru [min-1]
Io – moment setrvačnosti motoru [kg.m2]
Mj – točivý moment motoru [N.m]
Tab. 4.1 - Příklad naměřených dat pro vnější charakteristiku (časové impulsy snímače otáček
motoru [s], v – pokračování dat)
∨
∨
∨
∨
∨
0,09145130
1,52556480
2,89145160
4,24471830
5,18490950
0,18397620
1,61631550
2,98148140
4,33733530
5,22375530
0,28514520
1,70730160
3,07059190
4,42985940
5,26144780
0,38738440
1,79847050
3,15978620
4,52136930
5,29804400
0,48775810
1,88965780
3,24913560
4,60921180
5,33367230
0,58703890
1,98040590
3,33828960
4,68438220
5,36836440
0,68566420
2,07145910
3,42676740
4,75045100
5,40225870
0,78370380
2,16260950
3,51575880
4,81039660
5,43536260
0,87905640
2,25377670
3,60564460
4,86601340
5,46777840
0,97335470
2,34457170
3,69583620
4,91829300
5,49949200
1,06704620
2,43561320
3,78557690
4,96774390
5,53058360
1,16014690
2,52686840
3,87607030
5,01486000
5,56108020
1,25190070
2,61847640
3,96769090
5,05985820
5,59103630
1,34328500
2,70983460
4,06018980
5,10309220
5,62048190
1,43447980
2,80088950
4,15225120
5,14471950
5,64943310
∨
∨
∨
∨
∨
Efektivní hodnota točivého momentu motoru Me je získána z hodnot úhlového zrychlení
motoru. Úhlové zpomalení motoru slouží pro výpočet ztrátového točivého momentu Mo.
Součtem efektivního a ztrátového točivého momentu je indikovaný točivý moment motoru
Mi. Všechny tři hodnoty točivého momentu jsou uvedeny v obrázku číslo 4.3.
Obr. 4.3 - Vnější charakteristika motoru – indikovaný, efektivní a ztrátový točivý moment
66
Podle vnější charakteristiky motoru jsou voleny měřící otáčky 1000, 1500 a
2000 ot.min-1. V následujících kapitolách autor popisuje způsob, jakým jsou naměřeny
zvolené body celkové veličinové charakteristiky a jaký význam má sklon charakteristiky
regulátoru.
4.1.1.2 Měření motoru bez vnějšího zatížení (body 1 – 3)
Vozidlo v tomto případě nemusí být umístěno na volných válcích. Měří se spotřeba
paliva bez zatížení. K nastavení měřících otáček motoru je použito ručního plynu.
Problém s přesností je podmíněn otáčkami průtokoměru paliva Mannesmann Kienzle.
Impulsy otáček průtokoměru jsou snímány a zaznamenány do počítače na stejnou časovou
řadu jako impulsy od měřiče otáček motoru, což je znázorněno na obrázku číslo 4.4.
Vzhledem k tomu, že není vidět v jaké je průtokoměr poloze, je nutné první a poslední
necelou otáčku z výpočtu vyloučit. V případě nulového vnějšího zatížení a nízkých otáček
motoru může vzniknou chyba v důsledku toho, že se průtokoměr otočí méněkrát. Pro
zmenšení této chyby doporučuje autor měřit minimálně 30 sekund nebo použít citlivější
palivoměr.
Obr. 4.4 - Počet impulsů měření otáček motoru a průtokoměru
Chyba je také závislá na konstrukci zvoleného průtokoměru a na jeho objemu, kterým
se indikuje jedna otáčka. Zvýšení přesnosti by přineslo snímání otáček palivoměru vícekrát za
jednu otáčku.
V každém bodě se počítají střední otáčky motoru ns, střední indikovaný točivý moment
Mis a indikovaná měrná spotřeba paliva mi. Střední otáčky motoru se vypočítají podle vztahu
(32).
ns
60PI Ot
TPI − T0
-1
(32)
ns – střední otáčky motoru [ot.min ]
PI – pořadí posledního impulsu [-]
Ot – počet impulsů na jednu otáčku motoru [-]
TPI – čas posledního impulsu [s]
T0 – čas prvního impulsu [s]
67
Střední indikovaný točivý moment motoru je v tomto bodě roven ztrátovému točivému
momentu přesně podle naměřených středních otáček motoru. Vztah lze napsat v následujícím
tvaru (33).
Mis
( )
−Mo ns
(33)
Msi – střední indikovaný točivý moment motoru [Nm]
M0(ns) – ztrátový moment v závislosti na otáčkách motoru [Nm]
Měrná indikovaná spotřeba paliva mi vychází z naměřené spotřeby paliva Qs v cm3.s-1 a
vypočítaného středního indikovaného výkonu motoru Pis ve W.
Qs
( PIP − 1) KPal
Tp
PIP − 1
Ps
mi
−π ns
30
(34)
− Tp
0
(35)
( )
M o ns
3600ρ Qs
(36)
Ps
Qs – střední spotřeba paliva [cm3.s-1]
PIP – index posledního impulsu z palivoměru [-]
Kpal – konstanta palivoměru [cm3.impuls-1]
TpPIP-1 – čas posledního impulsu z palivoměru [s]
Tp0 – čas prvního impulsu z palivoměru [s]
Ps – střední indikovaný výkon motoru [W]
ns – střední otáčky motoru [min-1]
M0(ns) – ztrátový moment v závislosti na otáčkách motoru [N.m]
ρ - měrná hmotnost paliva [kg.m-3]
mi – indikovaná spotřeba paliva [g.kWh-1]
Na základě těchto vztahů (32 až 36) byly naměřeny a vypočteny hodnoty, které jsou
uvedeny v tabulce číslo 4.2 pro první tři body měřené celkové veličinové
charakteristiky motoru 1 – 3.
Tab. 4.2 - Měřené body bez vnějšího zatížení (body 1 – 3)
1
-1
Střední otáčky motoru ns [min ]
999,3
Střední indikovaný točivý moment Mis [N.m]
90,8
-1
Indikovaná měrná spotřeba paliva mi [g.kWh ]
167,1
2
1501,2
116,1
136,9
3
1994,1
140,8
123,1
4.1.1.3 Měření motoru při maximálním zatížení (body 7 – 9)
Měření bodů 7 – 9 při maximálním zatížení se od předchozího měření liší. V tomto
případě je motor měřeného vozidla kvazistaticky zatěžován. Střídavě jsou nastavovány plná a
nulová dodávka paliva v předepsaném pásmu otáček motoru podle zvoleného bodu. Výsledky
měření jsou zpracovány podle vztahů (37 až 39).
ni
ωi
60Ot
Ti+ 1 − Ti
(37)
2π
(Ti+ 1 − Ti)
(38)
68
εi
ω i+ 1 − ω i
Ti+ 1 − Ti
(39)
-1
ni – otáčky motoru v i-tém intervalu měření [ot.min ]
Ot – počet impulsů na jednu otáčku motoru [-]
Ti+1 – čas měření v bodě i+1 [s]
Ti – čas měření v bodě i [s]
ωi – úhlová rychlost motoru v bodě i [rad.s-1]
ωi+1 – úhlová rychlost motoru v bodě i+1 [rad.s-1]
εi – úhlové zrychlení motoru v bodě i [rad.s-2]
Závislost otáček motoru, úhlové rychlosti a úhlového zrychlení na měřených impulsech
je znázorněna na obrázku číslo 4.5. Z naměřených a vypočtených hodnot otáček motoru se
stanovuje střední hodnota otáček ns.
Střední hodnota otáček motoru
ns je stanovena jako průměrná hodnota.
Z hlediska
předchozí volby by
se měla pohybovat
velmi
blízko
předepsaných otáček měření.
Střední india)
kovaný
točivý
moment Ms se
stanoví na základě
střední
velikosti
úhlového zrychlení
motoru v blízkosti
středních měřících
otáček ns. Velikost
a tvar úhlového
zrychlení v závislosti na otáčkách
b)
motoru je znázorněn na obrázku
číslo 4.6. A představuje
kladnou
velikost zrychlení a
B představuje zápornou
velikost
zrychlení. Červené
body udávají velikost zrychlení A
v blízkosti středc)
Obr. 4.5 – Parametry motoru: a) otáčky motoru, b) úhlová rychlost a c) ních měřících otáček. Opačně modré
úhlové zrychlení motoru
body udávají veli-
69
kost zrychlení B v oblasti středních otáček motoru. Střední hodnoty těchto vybraných bodů
potom udávají střední zrychlení As a zpomalení Bs motoru, které použité ve vztahu (40) určují
velikost středního indikovaného točivého momentu Mis.
Mis
As I o I v − Bs I o I v
(40)
Mis – střední indikovaný točivý moment motoru [N.m]
As – střední zrychlení motoru [rad.s-2]
Bs – střední zpomalení motoru [rad.s-2]
Io – moment setrvačnosti motoru [kg.m2]
Iv – koeficient zvýšení momentu setrvačnosti s ohledem na volné
válce [-]
Obr. 4.6 - Příklad zrychlení a zpomalení motoru v závislosti na jeho otáčkách
V bodech 7-9 lze kromě indikované měrné spotřeby paliva mi vypočítat také efektivní
měrnou spotřebu paliva me. Aby bylo možné vypočítat měrnou spotřebu paliva je nejprve
nutné odečíst celkové množství spotřebovaného paliva během měření se zohledněním
problematiky necelých otáček palivoměru.
( PIP − 1) KPal
Qs
Tp
PIP − 1
− Tp
(41)
1
3 -1
Qs – střední spotřeba paliva [cm .s ]
PIP – index posledního impulsu z palivoměru [-]
Kpal – konstanta palivoměru [cm3.impuls-1]
TpPIP-1 – čas posledního impulsu z palivoměru [s]
Tp0 – čas prvního impulsu z palivoměru [s]
Dále autor stanovuje střední indikovaný výkon motoru Ps, který se vypočte na základě
vypočítaného indikovaného točivého momentu motoru během celého měření Mi.
Mi
i
Ps
( )
Io Iv Ei − Mo ni
2πOt
TPI − T1
∑ Mi
i
i
(42)
(43)
Ps – střední indikovaný výkon motoru [W]
70
Ei – úhlové zrychlení motoru [rad.s-2]
M0(ni) – ztrátový moment v závislosti na otáčkách motoru [Nm]
Mii – indikovaný točivý moment motoru v průběhu měření [Nm]
Ot – počet impulsů na jednu otáčku motoru [-]
Io – moment setrvačnosti motoru [kg.m2]
Iv – koeficient zvýšení momentu setrvačnosti s ohledem na volné válce [-]
TPI – čas posledního impulsu [s]
T0 – čas prvního impulsu [s]
Měrná indikovaná a efektivní spotřeba paliva se potom vypočte podle vztahů (44) a
(45).
mi
me
3600ρ Qs
(44)
Ps
mi
Mis
(45)
( )
Mis + Mo ns
Ps – střední indikovaný výkon motoru [W]
Qs – střední spotřeba paliva [cm3.s-1]
mi – indikovaná spotřeba paliva [g.kWh-1]
ρ - měrná hmotnost paliva [kg.m-3]
me – efektivní měrná spotřeba paliva [g.kWh-1]
ns – střední otáčky motoru [ot.min-1]
M0(ns) – ztrátový moment v závislosti na otáčkách motoru [Nm]
Mis – střední indikovaný točivý moment motoru [Nm]
Na základě těchto vztahů byly naměřeny a vypočteny hodnoty, které jsou uvedeny
v tabulce číslo 4.3 pro měřené body 7 – 9 na vnější otáčkové charakteristice motoru.
Tab. 4.3 – Měřené body na vnější charakteristice (body 7 – 9)
7
-1
Střední otáčky motoru ns [min ]
1241
Střední indikovaný točivý moment Mis [Nm]
332
-1
Indikovaná měrná spotřeba paliva mi [g.kWh ]
183
-1
Efektivní měrná spotřeba paliva me [g.kWh ]
263
8
1588
342
156
241
9
2066
352
151
257
4.1.1.4 Měření motoru při středním zatížení (body 4 – 6)
Měření bodu 4 – 6 při středním zatížení je odlišné od předchozích dvou způsobů měření
z důvodu použití výkonnostního regulátoru, který je používán zejména u traktorů a jiných
zemědělských vozidel.
Systém měření představuje nejprve zpracování sklonu regulační větve z předchozího
obrázku číslo 4.3. V tomto případě je tato charakteristika skloněna přes 200 otáček za minutu
a proto před měřením je nutné nastavit otáčky o 100 vyšší než jsou požadované měřené
otáčky motoru.
Po nastavení příslušných otáček je vozidlo na válcích rozjeto na známý rychlostní
stupeň (v uvedeném příkladě na 4.) tak, aby otáčky motoru odpovídaly začátku měření.
Následně je vozidlový motor zatížen provozní brzdou tak, aby otáčky klesly o 100 a
pohybovaly se blízko hranice požadovaných otáček.
71
Aby bylo možné stanovit velikost zatížení je nutné získat odpovídající hodnotu
zrychlení, která autor obdrží tím, že vyšlápne spojku a motor se snaží zvýšit otáčky na
původní nastavené. V okamžiku měřících otáček, které by měly odpovídat předvoleným, se
odečte velikost úhlového zrychlení a po vynásobení momentem setrvačnosti autor dostane
odpovídající točivý moment motoru.
Moment setrvačnosti je nutné v tomto případě redukovat, protože při vyšlápnutí spojky
jsou všechny momenty setrvačnosti za spojkou odstaveny (nezapočítávají se do momentu
setrvačnosti zejména hřídele a ozubená kola převodovky).
Pro bod 3 byly nastaveny počáteční otáčky motoru při jízdě na 4. rychlostní stupeň
přibližně 2100 ot.min-1. Během měření byly provozní brzdou sníženy přibližně na
1950 ot.min-1. Na konci měření byla vyšlápnuta spojka a otáčky se zvýšily na původní
nastavené. Závislost otáček na měřených impulsech i je znázorněna na obrázku číslo 4.7.
Obr. 4.7 - Příklad otáček motoru během měření
Otáčky se vypočítají z měřených dat podle dříve uvedených vztahů (37 až 45). Střední
otáčky ns jsou střední hodnotou vypočtených otáček v intervalu měřených impulsů od 0 do
220. Během této části je také zaznamenávána spotřeba paliva. Zbývající část slouží ke
stanovení zrychlení motoru, které odpovídá středním otáčkám. Měřený impuls, kde je tato
podmínka splněna, je označen jako ih.
Stejných vztahů (37 až 39) autor používá pro výpočet zrychlení motoru. Ze zrychlení
vybírá tu hodnotu, která je vypočtena pro měřený impuls ih. Velikost tohoto zrychlení se
použije pro výpočet středního točivého momentu motoru Ms. Příklad zrychlení je uveden na
obrázku číslo 4.8.
Obr. 4.8 - Příklad zrychlení motoru během měření
72
Měří se jak výše uvedené časové impulsy otáček motoru, tak impulsy z palivoměru.
Zpracování spotřeby paliva je taktéž obdobné jako v předchozích bodech. Na základě toho
autor doplňuje tabulku číslo 4.4 zbývajících 3 bodů (4 – 6).
Tab. 4.4 - Měřené body při středním zatížení (body 4 – 6)
4
-1
Střední otáčky motoru ns [min ]
1054
Střední indikovaný točivý moment Mis [Nm]
186
-1
Indikovaná měrná spotřeba paliva mi [g.kWh ]
256
-1
Efektivní měrná spotřeba paliva me [g.kWh ]
516
Tab. 4.5 – Měřené body 1 - 9
1
Střední otáčky motoru
999
ns [min-1]
Střední
indikovaný
točivý moment Mis 90
[Nm]
Indikovaná
měrná
spotřeba paliva mi 167
[g.kWh-1]
Efektivní
měrná
spotřeba paliva me
-1
[g.kWh ]
5
1449
327
177
271
6
1948
343
144
242
2
3
4
5
6
7
8
9
1501
1994
1054
1449
1948
1241
1588
2066
116
140
186
327
343
332
342
352
136
123
256
177
144
183
156
151
-
-
516
271
242
263
241
257
4.1.1.5 Sestrojení celkové veličinové charakteristiky motoru
Obr. 4.9 - Neomezená celková veličinová charakteristika motoru
73
Na základě všech naměřených dat v tabulce číslo 4.5 autor s využitím funkcí CSPLINE
a INTERP v softwarovém prostředí Mathcad 2001 Professional vytváří požadovanou
celkovou veličinovou charakteristiku motoru.
Obrázek číslo 4.9 znázorňuje datové pole užitečné měrné spotřeby paliva v závislosti na
otáčkách a na užitečném točivém momentu, přičemž datové pole je zobrazeno v celém
rozsahu stupnice užitečného točivého momentu. Tento typ zobrazení je standardně používán
při vyhodnocování na klasické výkonové brzdě.
Neomezené datové pole užitečné měrné spotřeby paliva autor omezuje pracovní oblastí
motoru, což je znázorněno na obrázku číslo 4.10 v závislosti na otáčkách a na užitečném
točivém momentu. Datové pole je omezeno dříve změřenou vnější otáčkovou charakteristikou
motoru.
Obr. 4.10 - Omezená celková veličinová charakteristika motoru
4.1.2 Návrh virtuální tahové charakteristiky
Aby bylo možno sestavit virtuální tahovou charakteristiku vozidla (tj. navrhovaná
virtuální tahová charakteristika založená na výpočtové tahové charakteristice s využitím
dynamického měření pro získání celkové veličinové charakteristiky motoru, která odpovídá
aktuálnímu technickému stavu motoru) je nutné znát nejen celkovou charakteristiku motoru,
ale také celou řadu rozměrových, hmotnostních a převodových parametrů zvoleného traktoru
Zetor 8045:
- hmotnost traktoru,
G = 4180 kg
- rozvor náprav,
L = 2,385 m
- vzdálenost těžiště od zadní nápravy,
c = 1,000 m
- vzdálenost těžiště od přední nápravy,
d = 1,385 m
- vzdálenost závěsu od zadní nápravy,
e = 0,865 m
- výška závěsu,
f = 0,427 m
- výška těžiště,
h = 0,733 m
- poloměr předního kola,
r1 = 0,478 m
74
- poloměr zadního kola,
- rozchod kol zadní nápravy,
- mechanická účinnost převodů,
- koncový převod,
- převod – 1. stupeň,
- převod – 2. stupeň,
- převod – 3. stupeň,
- převod – 4. stupeň,
- převod – 5. stupeň,
- převod – 6. stupeň,
- převod – 7. stupeň,
- převod – 8. stupeň,
r2 = 0,732 m
B = 1,500 m
ηm = 0,9
ik = 1
i1 = 260,4
i2 = 165,21
i3 = 103,98
i4 = 73,03
i5 = 89,26
i6 = 56,63
i7 = 35,25
i8 = 25,04
4.1.2.1 Zahrnutí problematiky prokluzu traktoru
Traktor je vozidlo, které převážně pracuje v polních podmínkách a výraznou měrou do
jeho práce zasahuje prokluz. Proto autor do simulace zahrnuje velikost prokluzu, který
z hlediska tvorby virtuální tahové charakteristiky zpracovává v závislosti na tahové síle.
Tab. 4.6 - Standardní prokluzy – vztahy [3]
Prokluz
µl
Rovnice pro velikost prokluzu δ a prokluzovou účinnost ηδ
SP 1
0,85
δ1
SP 2
0,70
δ2
SP 3
0,90
δ3
0.127 ⋅ µ − 0.095 ⋅ µ
2
ηδ
0.890 − µ
0.149 ⋅ µ − 0.135 ⋅ µ
0.920 − µ
0.890 − µ
1
2
2
ηδ
0.740 − µ
0.076 ⋅ µ − 0.055 ⋅ µ
2
0.095 ⋅ µ − 1.127 ⋅ µ + 0.890
0.135 ⋅ µ − 1.149 ⋅ µ + 0.740
0.740 − µ
2
2
2
ηδ
0.055 ⋅ µ − 1.076 ⋅ µ + 0.920
3
0.920 − µ
µ - součinitel záběru, µl - limitní součinitel záběru při 100 % prokluzu
Tab. 4.7 - Standardní prokluzy – hodnoty [3]
µ
0,00
0,10
0,20
0,30
0,40
0,50
0,55
0,60
0,65
0,70
0,75
0,80
0,85
0,90
SP 1
0,0
1,5
3,1
5,0
7,3
10,2
12,1
14,5
17,7
22,2
29,8
45,4
100,0
-
SP 2
0,0
2,1
4,5
7,4
11,2
17,0
21,7
29,1
44,3
100,0
-
SP 3
0,0
0,9
1,8
2,9
4,2
5,8
6,8
8,1
9,7
11,9
15,3
21,3
35,6
100,0
75
U smluvních tahových zkoušek traktorů byly domluveny závislosti standardních
prokluzů na součiniteli záběru. Pro kolové traktory jsou to standardní prokluz SP 1 (strniště),
SP 2 (podmítnutý pozemek) a SP 3 (betonový povrch). V následujících tabulkách číslo 4.6 a
4.7 jsou uvedeny hodnoty a vztahy potřebné pro výpočet standardních prokluzů a hodnoty
standardních prokluzů.
Na obrázku číslo 4.11 je uvedená závislost podle předchozích tabulek číslo 4.6 a 4.7
zpracována graficky v závislosti na součiniteli záběru až do hodnoty maximálního
100 % prokluzu kol na zvolené podložce.
Obr. 4.11 - Závislost prokluzu δ na součiniteli záběru µ
Závislost prokluzu na tahové sílu se stanoví v závislosti na její maximální velikosti,
která odpovídá 100 % prokluzu (46).
Fmax
(
)
G ⋅ cos( β ) ⋅ µ l − G ⋅ sin( β ) + G ⋅ cos( β ) ⋅ ψ 2
tx
ψ 2 ⋅ tan ( α ) + 1 − tan ( α ) ⋅ µ l
(46)
Fmaxtx – maximální tahová síla při 100 % prokluzu [N]
G – tíhová síla traktoru [N]
β - úhel stoupání [°]
α - sklon síly Ftx [°]
µl - součinitel záběru při 100 % prokluzu [-]
ψ - součinitel odporu valení [-]
Součinitel odporu valení ψ vyjadřuje poměr předsunutí normálové reakce kola od
vozovky a poloměru kola a lze ho pro určitý typ kola a určitý typ půdy považovat za
konstantní. V případě strniště se součinitel valení ψ1 pohybuje v rozmezí 0,05 až 0,1 pro
suché strniště a pro vlhké 0,08 až 0,12. V případě výpočtu je volena hodnota ψ1 = 0,08.
V případě valení na čerstvé oranici je rozmezí 0,15 až 0,18, na ulehlém kolem 0,12. Pro
výpočet je pro součinitel valení na oraništi volena hodnota ψ2 = 0,15. V případě, že se traktor
při přejezdech pohybuje po betonových komunikacích, je hodnota ψ3 = 0,02.
Na základě maximální tahové síly autor stanovuje stupnici, podle níž se bude počítat
průběh součinitele záběru µ. Volit kroky stupnice je nutné podle výkonu počítače, aby příliš
jemný krok nepůsobil výrazné zpomalení výpočtu. Po dosazení vypočítaného součinitele
záběru µ do vztahů pro výpočet prokluzu δ, uvedených v tabulce číslo 4.6, jsou získány
požadované závislosti prokluzu na tahové síle traktoru. Jejich grafické zpracování je
znázorněno na obrázku číslo 4.12.
76
µ
G ⋅ sin( β ) + ( G) ⋅ cos( β ) + Ftx ⋅ tan ( α ) ⋅ ψ 2 + Ftx
i
i


G ⋅ cos( β ) + Ftx ⋅ tan ( α )
i
(47)
µ - součinitel záběru [-]
G – tíhová síla raktoru [N]
β - úhel stoupání [°]
Ftx – proměnná tahová síla traktoru [N]
α - sklon síly Ftx [°]
ψ - součinitel odporu valení [-]
Obr. 4.12 - Závislost prokluzu na tahové síly
4.1.2.2 Dostupnost traktoru v terénu a kontrola řiditelnosti
Dostupnost traktoru představuje velikost úhlu stoupání, kterou může motor traktoru
překonat, aniž by byla porušena jeho stabilita a řiditelnost.
Pro softwarové omezení volby úhlu stoupání autor v této části provádí výpočet příčných
a podélných stabilit traktoru. V těchto podmínkách je třeba počítat s celkovou výslednou
silou, která je součtem všech sil působících na traktor.
Stanovení řiditelnosti traktoru (tj. schopnosti udržet a měnit směr jízdy) upozorňuje na
bezpečné vedení řídících kol a tedy na nutnost, aby na těchto kolech byla dostatečná
normálová reakce (48).
Z
k ⋅ Gt
(48)
Z – normálová reakce síly na přední nápravu (řiditelnou) [N]
k – koeficient bezpečnosti (podle typu nářadí a prováděné činnosti) [-]
Gt – tíha traktoru [N]
Stabilitu traktoru lze rozdělit na stabilitu příčnou a na stabilitu podélnou. Limitní úhel,
který vychází z momentových podmínek pro příčnou stabilitu, autor počítá podle vztahu
(49).
 h  ⋅ 180
β p atan 
B
π

 2 
(49)
βp – limitní úhel pro příčnou stabilitu [°]
h – výška těžiště [m]
77
B – rozchod kol [m]
U podélné stability se ještě rozlišuje zda se traktor pohybuje směrem ze svahu nebo
směrem do svahu. Z momentových podmínek pak vycházejí vztah (50), který omezuje úhel
stoupání (pracovní podmínky traktoru).
 c − r2 ⋅ ψ 
β dk := atan 

 d + r1 ⋅ ψ 
β zk := atan 

h


h
(50)
βdk – limitní úhel pro podélnou stabilitu (jízda do kopce) [°]
βzk – limitní úhel pro podélnou stabilitu (jízda z kopce) [°]
c – vzdálenost těžiště od zadní nápravy [m]
d – vzdálenost těžiště od přední nápravy [m]
h – výška těžiště [m]
r2 – poloměr zadního kola [m]
r1 – poloměr předního kola [m]
ψ - součinitel valení [-]
Z předchozích vztahů (49) a (50) pro daný traktor bez vnějšího zatížení tahovou silou a
zrychlení vychází, že limitní velikost svahu je 44°.
Na základě těchto a dalších podmínek lze stanovit pracovní oblast traktoru, která udává
schopnost vyvinout potřebnou tahovou sílu na proměnlivém sklonu. Mezi omezující
podmínky patří:
− Mez řiditelnosti – Mez řiditelnosti, s přihlédnutím k vnějším silám (kromě
odporu vzduchu), se vypočte podle vztahu (51). Při tomto a při všech ostatních
výpočtech týkajících se traktoru autor vyjímá odpor vzduchu z toho důvodu, že
při malých rychlostech, kterými se traktor pohybuje (5 – 10 km.h-1), je tento
odpor zanedbatelný.
F1tx
cos( β ) ⋅ c − sin( β ) ⋅ h − k ⋅ L − r2 ⋅ ψ
f + tan ( α ) ⋅ e
⋅G
(51)
− Mez možností motoru – Mezí možností motoru se rozumí schopnost
traktorového motoru zdolat zvolené stoupání v závislosti na zvoleném
převodovém stupni a jeho celkovém převodovém poměru včetně poloměru
hnacích kol.
η m ⋅ Mmax ⋅ ic
r2
F2tx
− G ⋅ ( sin( β ) + cos( β ) ⋅ ψ )
1 + ψ ⋅ tan ( α )
(52)
− Mez prokluzu – Ve většině případů je tato podmínka spolu s podmínkou
řiditelnosti hlavní omezující. V polních podmínkách nastává situace, kdy motor
je schopen dodat na kola dostatečnou hnací sílu, ale kola nejsou schopna přenést
tuto sílu na podložku. Mez prokluzu je ovlivněna konstrukčním uspořádáním
traktoru (pohon jedné 4x2 (53) nebo obou náprav 4x4 (54)) a velikostí limitního
součinitele záběru (druh podložky a stav pneumatik).
((
G ⋅ ψ ⋅ r2 + sin( β ) ⋅ h + cos( β ) ⋅ d
µl
L
F3tx
1 + tan ( α ) ⋅ ψ
µl
)) − G ⋅ (sin(β ) + cos(β ) ⋅ ψ )
−
[ f + tan ( α ) ⋅ ( L + e ) ]
L
(53)
78
F4tx
((
G ⋅ sin( β ) + cos( β ) ⋅ ψ − cos( β ) ⋅ µ l
))
tan ( α ) ⋅ µ l − ( 1 + tan ( α ) ⋅ ψ )
(54)
F1tx – tahová síla s omezením řiditelnosti [N]
F2tx – tahová síla s omezením schopnosti motoru [N]
F3tx – tahová síla s omezením konstrukce 4x2 [N]
F4tx – tahová síla s omezením konstrukce 4x4 [N]
G - hmotnost traktoru [kg]
L - rozvor náprav [m]
c - vzdálenost těžiště od zadní nápravy [m]
d - vzdálenost těžiště od přední nápravy [m]
e - vzdálenost závěsu od zadní nápravy [m]
f - výška závěsu [m]
h - výška těžiště [m]
r2- poloměr zadního kola [m]
ηm - mechanická účinnost převodů [-]
ic – celkový převod [-]
β – úhel stoupání [°]
α – sklon tahové síly [°]
Grafické zpracování je znázorněné na obrázku číslo 4.13, kde zeleně šrafována je
pracovní oblast pro traktor 4x2 a fialově šrafována oblast pro traktor 4x4. Měřený traktor
Zetor 8045 umožňuje obě konstrukční varianty.
Obr. 4.13 – Příklad pracovní oblasti traktoru pro 5. převodový stupeň
4.1.2.3 Vztah tahové síly a točivého momentu motoru
Závislost tahové síly na točivém momentu motoru autor počítá podle vztahu (55), kde
proměnnou je točivý moment v rozsahu od nulového do maximálního, který byl naměřen
během měření vnější otáčkové charakteristiky Mmax = 315 Nm. Vztah tahové síly a momentu
je vypočítán pro všechny převodové stupně s omezením tahové síly, která byla vypočtena
při prokluzu. Prokluz je v tomto okamžiku roven jedné a je znázorněn na obrázku číslo 4.11.
Pro uvedené tři druhy povrchu je maximální tahová síla:
- strniště – Fmax = 31605 N,
- oranice – Fmax = 22635 N,
- beton – Fmax = 35925 N.
79
M ⋅ η m ⋅ ic
Ftx
r2
− G ⋅ ( sin( β ) + cos( β ) ⋅ ψ )
1 + ψ ⋅ tan ( α )
(55)
Ftx – tahová síla [N]
M – točivý moment motoru [Nm]
r2- poloměr zadního kola [m]
ηm - mechanická účinnost převodů [-]
ic – celkový převod [-]
β – úhel stoupání [°]
α – sklon tahové síly [°]
ψ – součinitel valení [-]
Fialovou barvou na obrázku číslo 4.14 je zobrazena závislost tahové síly na točivém
momentu motoru bez omezení. Jedná se v podstatě o maximální možnou sílu, kterou je motor
traktoru schopen vyvinout na kolech na daný převodový stupeň (100 kN – 1. převodový
stupeň). Kola traktoru jsou však schopna na podložku přenést pouze omezenou sílu, která je
znázorněna modrou barvou
(dále se s ní pracuje ve stanovení virtuální tahové
charakteristiky).
Obr. 4.14 - Závislost tahové síly na velikosti točivého momentu
4.1.2.4 Rychlost traktoru v závislosti na tahové síle
První závislostí udávanou v tahových charakteristikách je závislost pojezdové rychlosti
traktoru na velikosti tahové síly pro zvolené převodové stupně.
v
2 ⋅ 3.6 ⋅ π ⋅ ( 1 − δ ) ⋅
n
r2 ⋅
60
ic
v – pojezdová rychlost [km.h-1]
r2- poloměr zadního kola [m]
δ - prokluz [-]
ic – celkový převod [-]
n – otáčky motoru [ot.min-1]
(56)
80
V tomto vztahu jsou proměnnou veličinou otáčky motoru, které jsou stanoveny
z předchozích měření v rozsahu 0 až 2500 ot.min-1. Současně je proměnnou veličinou
prokluz, který je dosazován podle otáček motoru a točivého momentu z vnější charakteristiky
pro příslušný převodový stupeň.
Obr 4.15 - Závislost pojezdové rychlosti traktoru na otáčkách motoru při různých zařazených
převodových stupních
Uvedený obrázek číslo 4.15 znázorňuje pojezdovou teoretickou rychlost traktoru v´
v případě, kdy je prokluz kol nulový. Maximální teoretická rychlost traktoru je kolem
27 km.h-1. V případě zavedení prokluzu klesne tato rychlost na skutečnou maximální rychlost
25,5 km.h-1. Tahová závislost skutečné pojezdové rychlosti v na tahové síle je znázorněna na
obrázku číslo 4.16.
Obr. 4.16 - Skutečná rychlost traktoru v závislosti na tahové síle
81
Vyšší převodové stupně umožňují vyšší pojezdové rychlosti, ale nabízejí menší tahovou
sílu. Naopak nižší převodové stupně nabízejí vyšší tahovou sílu, ale nižší pojezdovou
rychlost. Navíc u nižších převodových stupňů nelze využít celý rozsah vnější charakteristiky
motoru, protože tahová síla je omezena v závislosti na prokluzu na strništi hodnotou 31605 N.
Z hlediska obvykle požadovaných pracovních podmínek se zdá nejvýhodnější 3. až 5.
převodový stupeň.
4.1.2.5 Tahový výkon v závislosti na tahové síle
Tahový výkon stanovuje autor na základě známé tahové síly a skutečné pojezdové
rychlosti traktoru.
Ftx ⋅
Pt
v
3.6
1000
(57)
Pt – tahový výkon traktoru [kW]
Ftx – tahová síla traktoru [N]
v – skutečná pojezdová rychlost traktoru [km.h-1]
Pro jednotlivé převodové stupně je tahový výkon znázorněn na obrázku číslo 4.17.
Obalová křivka výkonů jednotlivých převodových stupňů určuje pro každou tahovou sílu
maximální tahový výkon a velmi úzce souvisí s tahovou účinností. Bývá označována jako
potenciální charakteristika traktoru Pp.
Obr. 4.17 - Tahový výkon traktoru v závislosti na tahové síle
Zeleně šrafovaná místa představují ztráty, které jsou způsobeny konečným počtem
převodových stupňů. V případě plynulých převodů tyto plošky odpadají a celé potenciální
82
pole je pokryto. Na velikost a počet ztrátových ploch má vliv rozložení a počet převodových
stupňů, vhodný tvar přetěžovací větve vnější otáčkové charakteristiky, zejména velikost
zálohy točivého momentu.
Podobné obalové křivky lze nakreslit i pro předchozí skutečnou pojezdovou rychlost
traktoru a pro spotřebu paliva se stejným závěrem jako v tomto případě u tahového výkonu.
4.1.2.6 Zpracování závislosti měřené spotřeby paliva
Stanovení spotřeby paliva vychází z naměřené a vypočtené závislosti měrné spotřeby
paliva na otáčkách a točivém momentu motoru, která je uvedena v kapitole 4.1.1.5 na obrázku
číslo 4.10.
a)
b)
Obr. 4.18 - Spotřeba paliva: a) v g.kWh-1, b) v Litr.h-1
83
V této ploše se na základě známé tahové síly, ze které autor získává potřebný točivý
moment a na základě otáček motoru vyplývajících ze skutečné rychlosti traktoru nalezne bod
a jemu odpovídající spotřeba paliva v g na kWh. Na základě vztahu (58) se vypočte spotřeba
paliva v litrech za hodinu a je zobrazena na obrázku číslo 4.18.
HS
(
)
MSP i , Me i ⋅
Pe
ρ
(58)
-1
HS – spotřeba paliva [Litr.h ]
MSP(i,Mei) – měrná spotřeba paliva v předepsaném bodě [g.kWh-1]
Pe – efektivní výkon motoru [kW]
ρ - hustota paliva [kg.m-3]
Průběh měrné spotřeby paliva MSP i hodinové spotřeby paliva HS je pro všechny
převodové stupně v tahové charakteristice shodný. Pouze je jejich tvar rozložen do
odpovídajícího rozsahu pracovní tahové síly příslušného převodového stupně. Tím pádem
minimální měrná spotřeba paliva pro jednotlivé stupně odpovídá různě velké tahové síle. Je
vhodné volit takový převodový stupeň, aby měrná spotřeba paliva byla nejmenší.
Poslední významnou závislostí v tahové charakteristice traktoru je již dříve uvedená
závislost velikosti prokluzu na tahové síle.
4.1.3 Vytvořená virtuální tahová charakteristika měřeného traktoru Z 8045
Na obrázku číslo 4.19 autor shrnuje virtuální tahovou charakteristiku traktoru
Zetor 8045. Tahová charakteristika je získána na základě kvazistatické metody v kombinaci se
stávající výpočtovou metodou.
Kvazistatická měřící metoda umožnila poměrně snadné a rychlé získání celkové
veličinové charakteristiky motoru, která definuje jeho pracovní schopnosti. Další parametry
byly postupně na základě této naměřené charakteristiky vypočítány.
Měřená tahová charakteristika za skutečných polních podmínek přináší nejobjektivnější
informace, ale vzhledem ke své velké časové a prostorové náročnosti by mohla být v běžné
servisní praxi nahrazena kombinací kvazistatické a výpočtové metody. Samostatná výpočtová
metoda pracuje s tabulkovými a grafickým závislostmi naměřenými dříve a nepřináší tedy
aktuální hodnoty technického stavu vznětového motoru.
Tahovou charakteristiku získanou na základě uvedeného postupu by bylo možno použít
pro snadné a rychlé porovnání s tahovou charakteristikou nového traktoru a posloužila by
k rozhodnutí, zda provést s ohledem na získané výsledky změny v nastavení, aby bylo
dosaženo bezpečné, ekonomické a ekologicky přívětivé práce stroje.
Velmi zajímavou možností, která z předchozího vyplývá by byla simulace pracovního
nasazení na libovolném pozemku, který by byl modelován podle skutečné předlohy. Po
uskutečnění jízdy s různými pracovními nástroji by pak bylo možno odpovědět na otázku
velikosti spotřeby paliva a vyprodukovaných škodlivých emisních složek výfukových plynů
při porovnávání různých typů traktorů.
Na základě tohoto porovnání by bylo možno vyslovit závěr, který traktor je pro dané
pracovní podmínky a určené nasazení nevhodnější s ohledem na velikost spotřeby paliva,
vyprodukovaných emisí a tím ohleduplnější k životnímu prostředí.
Tento problém řeší autor v kapitole 4.2 této práce. Problém je řešen pouze z pohledu
spotřeby paliva, ale autor předpokládá, že při vhodné volbě měřících přístrojů bude také zcela
bezproblémové vyhodnocení produkce emisních složek a v pozdější době také vyhodnocení
spotřeby paliva přímo z produkce emisních složek výfukových plynů vznětového spalovacího
motoru.
84
Obr. 4.19 - Celková tahová charakteristika traktoru Z 8045
85
4.1.4 Problematika účinnosti traktoru Z 8045
Jednotlivé druhy účinností a celková tahová účinnost jsou uvedeny v obrázku číslo 4.20.
Nejvyšší celkové tahové účinnosti 67,9 % je dosaženo při velikosti tahové síly
17,2 kN. Pro práci traktoru je z tohoto hlediska nejvhodnější zatížení blížící se právě této
hodnotě tahové síly.
V modelování práce traktoru na simulovaném pozemku je právě s tímto ohledem volen
tříradličný pluh Servo 25 jehož odpor a tedy potřebná tahová síla se pohybuje v rozmezí
18 – 19 kN.
Obr. 4.20 - Účinnost traktoru Zetor 8045
4.2 Návrh simulace jízdy traktoru Z 8045 na modelovaném pozemku
Jako vstupní hodnoty pro tuto simulaci slouží parametry získané v předchozí kapitole
číslo 4.1 pro stanovení virtuální tahové charakteristiky traktoru Z 8045. Kromě tahové
charakteristiky je potřeba znát další závislosti proměnných provozních parametrů a konkrétní
hodnoty konstantních parametrů:
- charakteristiku spotřeby paliva a produkce emisních složek získanou na základě
kvazistatického měření,
- parametry pozemku (sklon svahu, rozměry apod.),
- podmínky pracovního nasazení (vlhkost zeminy a s ní související velikost odporu
půdy),
- volba převodového stupně řidičem, nastavení otáček motoru, systém jízdy na
modelovaném pozemku apod.
4.2.1 Tvorba modelovaného pozemku
Vzhledem k moderní měřící technice je získání údajů o skutečném pozemku poměrně
snadnou záležitostí. S úspěchem lze použít měřící techniku založenou na principu GPS s jejíž
pomocí se zjistí velikost pole a také jeho sklon.
V následující simulaci autor pozemek pouze simuluje a neodpovídá to tedy žádnému
skutečnému pozemku. Zatím se jedná o návrh metody, kterou bude třeba později ověřit
v praxi. Rozměr pozemku je volen jako čtvercový o straně 1 km (velikost pozemku je 100
hektarů).
86
Vlastní návrh pozeku je zapsán do matice o 10000 buňkách a příklad je na obrázku
4.21. V matici jsou vepsány převýšení proti základní hodnotě. Vzhledem k tomu, že má
matice pouze 10000 buněk, tak je nutné ji vhodným způsobem interpolovat, aby z původní
nespojité plochy na obrázku číslo 4.22 vznikla plocha spojitá na obrázku číslo 4.24.
Obr. 4.21 - Část matice zadaných hodnot převýšení
Obr. 4.22 - Nespojitá plocha modelovaného pozemku
Obr. 4.23 - Upravené matice pro použití interpolačních funkcí
K vytvoření spojité plochy pozemku autor používá funkce programu Mathcad 2001
Professional INTERP doplněné funkcí CSPLINE. Pro použití těchto funkcí je třeba vstupní
87
hodnoty z původní matice Pozemek upravit do tvaru na obrázku číslo 4.23, kde RPxy jsou
velikosti stran pozemku v rozsahu od 0 do 1000 metrů. Matice RP představuje vybrané
parametry převýšení pozemku z původní matice.
Po této úpravě lze použít níže uvedenou rovnici (59) pro interpolaci pozemku, kde rp
představuje hodnotu řádku v matici Pozemek a sl hodnotu sloupce v téže matici. Výsledkem
interpolace je spojitá plocha pozemku na obrázku číslo 4.24.

 rp 
RP ( rp , sl) := interp cspline ( RPxy , RP) , RPxy , RP , 


 sl 
(59)
Obr. 4.24 - Spojitá plocha pozeku
Uvedený pozemek je smyšlený, ale stejným způsobem by bylo možné i naměřená data
ze skutečného pozemku proložit, aby v každém bodě byly potřebné informace pro simulaci.
4.2.2 Systém práce traktoru na modelovaném pozemku
Systémem práce na modelovaném pozemku se rozumí způsob jízdy traktoru volený
řidičem. Pro simulovaný pozemek autor volí dva způsoby jízdy:
- podél – jízda v řádku pozemku přes terénní vlny,
- napříč – jízda ve sloupci pozemku podél terénních vln.
V obou případech autor předpokládá, že jízda probíhá přes celý pozemek. Způsob
otáčení a nájezd do další pracovní řádky autor v následující simulaci vynechává stejně jako
problematiku překrývání při obracení.
Pokud se bude respektovat otáčení na pozemku a vzájemné překrývání pracovní plochy
nástroje, tak dojde ke změně měrné i celkové spotřeby paliva. Suma celkové spotřeby paliva
se bude zvyšovat, ale vhodnou volbou systému jízdy lze jízdní spotřebu snižovat v závislosti
na velikosti překrytí, což je zobrazeno na obrázku číslo 4.25.
V tomto případě traktor obrací takovým směrem, aby během obrátky směřoval jízdu
z kopce a nikoliv do kopce, kdy vzroste nejen celková spotřeba paliva, ale také jízdní spotřeba
paliva. Způsob překrývání a otáčení je závislý na volbě řidiče a na složitosti rozměrů
pozemku a proto jej autor v práci zanedbává. Pokud řidič dodrží běžné překrytí, tak
systematická chyba celkové spotřeby paliva by v závislosti na tvaru a velikosti pozeku neměla
překročit 5 % z celkové spotřeby paliva. Jízdní spotřeba paliva (l.100km-1) by potom byla se
systematickou chybou menší než 2 %.
88
Z uvedeného důvodu
pracuje traktor
na
pozemku
v systému jízd
tam a zpět.
Pracovně
je
tedy
jízda
traktoru
rozdělena na jízdu
TAM
(dále
indexovanou
Xt) a jízdu
ZPĚT
(dále
indexovanou
Obr. 4.25 – Změna spotřeby paliva v závislosti na velikosti překrytí
Xz).
Následující body rozpracovávají jednotlivé potřebné hodnoty pozeku i traktoru s cílem
kumulovat spotřebu paliva. Jak již autor zmínil, předpokládá se pozdější rozvinutí metody na
kumulování emisních složek výfukových plynů, což by současně umožnilo příjemnější
měření spotřeby paliva.
4.2.2.1 Volba pracovního nástroje
Jako pracovní nástroj autor pro simulaci zvolil tříradličný nesený pluh Servo 25-302
s plnými odhrnovačkami zobrazený na obrázku číslo 4.26. Jeho pracovní parametry jsou:
- počet těles,
pr = 3
- vzdálenost těles,
vr = 1,02 m
- výška rámu,
vrp = 0,72/0,78 m
- rozměry rámu,
rr .. 0,1 x 0,1 m
- pracovní záběr tělesa,
zr = 0,36 m
- hloubka orby,
ho = 0,25 m
- hmotnost s plnými odhrnovačkami,
Hn = 751 kg
Obr. 4.26 - Použitý pluh Servo 25
89
Z uvedeného vyplývá, že jako pracovní šířka celého pluhu je pro modelování 1 m, když
se zvolí malé překrytí radliček pluhu. Tato hodnota je označována jako ps a pro další výpočet
je velmi důležitá, protože předurčuje počet jízd tam a zpět. S užitím šířky pluhu ps a
zvoleného Kroku jsou stanoveny počty a položení měřících bodů.
Krok představuje předpokládanou délku jízdy při stále stejných vstupních i výstupních
parametrech. Jedná se o omezující parametr výpočtu z hlediska množství dat, která jsou nutná
ke zpracování a vyžadují výkonnou výpočetní techniku.
Krok
10
ps
1
rpt 0 , ps⋅ 2 .. 1000
sp 0 , Krok .. 1000
rpz
ps , 2 ⋅ 1.5ps .. 1000 − ps
(60)
rpt – řádek pole při jízdě TAM
rpz – řádek pole při jízdě ZPĚT
sp – sloupec pole
Krok roven 10 (60) znamená, že v průběhu 10 metrů je příslušný parametr konstantní a
množství bodů je tak výrazně sníženo. Uvedené tři druhy indexů (rpt, rpz, sp) jsou platné pro
celý výpočet.
4.2.2.2 Sklon svahu a úhel klesání nebo stoupání modelovaného pozemku
Při stanovení úhlu stoupání a sklonu svahu vychází autor z porovnání dvou sousedních
hodnot s předem zvoleným krokem. Krokem je zvoleno 10 m. Čím kratší je Krok, tím je
výpočet přesnější, ale současně se také neúměrně protahuje. 10 m je 1 % celkové délky pole.
Sklon svahu ve stupních nebo v procentech se vypočte podle vztahů (61) a (62), ze
kterých je nutno jednoduchou úpravou získat odpovídající hodnoty pro jízdu traktoru na poli
směrem TAM a směrem ZPĚT.
 RP ( rp , sp + Krok) − RP ( rp , sp)  ⋅ 180
β ( rp , sp) := atan 
Krok

 π
(61)
Ss( rp , sp) := 100⋅
RP ( rp , sp + Krok) − RP ( rp , sp)
Krok
(62)
β(rp,sp) – odpovídající hodnota sklonu svahu [°]
Ss(rp,sp) – odpovídající hodnota sklonu svahu [%]
RP(rp,sp+Krok) a RP(rp,sp) – převýšení příslušných bodů pole [m]
180/π - převod z radiánů na stupně
Jednoduchou úpravou se rozumí pouze použití znaménka mínus při výpočtu u sklonu
svahu pro směr ZPĚT. Znaménko plus „+“ představuje jízdu traktoru do kopce a znaménka
mínus „-“ z kopce. Rozdíl uvedených hodnot pro oba směry je zobrazen na obrázku číslo 4.27
podle vztahů (63). Obrázek vykrajuje z plošné charakteristiky pouze dvě žebra, která spolu
těsně sousedí.
(
) (
)
β z ( rpz , sp) := −β ( rpz , sp)
β t rpt , sp := β rpt , sp
(
) (
)
Ssz ( rpz , sp) := −Ss( rpz , sp)
Sst rpt , sp := Ss rpt , sp
(63)
Výsledné prostorové zpracování je zobrazeno pro cestu TAM a ZPĚT v obrázku číslo
4.28. Zobrazeny jsou úhly sklonu svahu ve stupních. Sklon svahu v procentech vypadá
obdobně.
90
Obr. 4.27 - Dvě žebra pro úhel sklonu svahu ve stupních ve směru TAM a ZPĚT
a)
b)
Obr. 4.28 - Sklon svahu ve stupních: a) pro směr TAM, b) pro směr ZPĚT
4.2.2.3 Stanovení odporu pracovního nástroje
Odpor pracovního nástroje je stanoven podle vztahu (63). V tomto případě autor pro
pluh zanedbává odpor vyhrnovačky.
ON ( rp , sp)
k0 ⋅ ho ⋅ zr ⋅ pr
(63)
ON(rp,sp) – odpor pluhu [N]
k0 – průměrný měrný odpor půdy [N.cm-2]
ho – hloubka orby [cm]
zr – záběr radlice [cm]
pr – počet radlic pluhu [-]
Stav půdy je popsán v koeficientu průměrného měrného odporu půdy. Uvedený vztah
(63) počítá s tím, že se měrný odpor půdy po celé ploše pozemku nemění a je konstantní.
91
V případě, že tomu tak není, lze vytvořit přesný popis rozložení měrného odporu ve funkci
k0(rp,sp), která by definovala měrný odpor půdy v každém místě pozemku.
S uvedeným zjednodušením konstantního koeficientu měrného odporu půdy souvisí i
konstantní velikost odporu pluhu, která je zobrazena na obrázku číslo 4.29.
Obr. 4.29 - Odpor pracovního nářadí
4.2.2.4 Stanovení odporu stoupání
Odpor stoupání úzce souvisí s dříve uvedenými úhly sklonu svahu a jejich rozdělením
na cestu TAM a ZPĚT. Z níže uvedených vztahů (64) autor zpracoval obrázek velikosti
odporu stoupání číslo 4.30. V uvedených vztazích je tíha traktoru ještě zvýšena o tíhu
pracovního nářadí.
(
)
(
 π ⋅ β rp , sp 
(
)
 180 t t
(64)
 π ⋅ β rp , sp 
( G + Gn) ⋅ sin
(
)
z
z
 180

OSt(rpt,sp) – odpor stoupání ve směru TAM [N]
OSz(rpz,sp) – odpor stoupání ve směru ZPĚT [N]
G – tíha traktoru [N]
Gn – tíha nesené části pracovního nářadí [N]
βt,z(rpt,z,sp) – úhel sklonu svahu [°]
π/180 – převod stupňů na radiány (požadavek programu MathCad)
( G + Gn) ⋅ sin
OSt rpt , sp
)
OSz rpz , sp
a)
92
b)
Obr. 4.30 - Odpor stoupání: a) ve směru TAM, b) ve směru ZPĚT
4.2.2.5 Stanovení odporu valení
K výpočtu odporu valení slouží obecný vztah (65), skládající se ze dvou částí, získaný
na základě momentových podmínek.
 π ⋅ β ( rp , sp)  + ψ ⋅ tan  α ⋅ π  ⋅ ON ( rp , sp)
OV ( rp , sp) ( G + Gn) ⋅ ψ ⋅ cos

 180

 180 
(65)
OV(rp,sp) – odpor valení [N]
G – tíha traktoru [N]
Gn – tíha pracovního nářadí [N]
Ψ – součinitel odporu valení [-]
β(rp,sp) – úhel sklonu svahu [°]
π/180 – převod stupňů na radiány (požadavek programu MathCad)
ON(rp,sp) – odpor nářadí [N]
α – sklon tahové síly [°]
Druhá polovina vztahu je ve zvoleném případě nulová, protože nastavení úhlu sklonu
tahové síly α se pro jednoduchost návrhu předpokládá, že má nulovou hodnotu. Výsledná síla
odporu valení je znázorněná v prostoru celého pozemku na obrázku číslo 4.31.
Obr. 4.31 - Odpor valení
Ostatní jízdní odpory jako je odpor vzduchu a odpor zrychlování jsou zanedbány. Odpor
vzduchu z důvodu malé rychlosti traktoru (pracovní rychlost do 10 km.h-1), která se na
výsledném jízdním odporu neprojeví více jak 1 %. Odpor zrychlení autor také zanedbává
93
z důvodu předpokládané konstantní jízdní rychlosti. Jízdní rychlost není v celém rozsahu
pozeku konstantní, ale její změny a vliv na celkový odpor jsou zanedbatelné.
4.2.2.6 Stanovení celkového jízdního odporu při jízdě na modelovaném pozemku
Celkový jízdní odpor se získá součtem všech předchozích jízdních odporů. V případě
traktoru odporu pracovního nářadí, odporu stoupání a odporu valení.
(
(
)
(
)
(
)
(
)
COt rpt , sp ON rpt , sp + OSt rpt , sp + OV rpt , sp
COz rpz , sp ON rpz , sp + OSz rpz , sp + OV rpz , sp
)
(
)
(
)
(
)
(66)
COt(rpt,sp) – celkový odpor jízdy ve směru TAM [N]
COz(rpz,sp) – celkový odpor jízdy ve směru ZPĚT [N]
ON(rp,sp) – odpor pluhu [N]
OSt(rpt,sp) – odpor stoupání ve směru TAM [N]
OSz(rpz,sp) – odpor stoupání ve směru ZPĚT [N]
OV(rp,sp) – odpor valení [N]
Velikost celkového jízdního odporu traktoru na obrázku číslo 4.32 po přenosu na
klikový hřídel motoru udává potřebný točivý moment motoru na jeho překonání.
a)
b)
Obr. 4.32 - Velikost celkového jízdního odporu traktoru: a) ve směru TAM, b) Ve směru
ZPĚT
Na následujícím obrázku číslo 4.33 je prostorová závislost převedena do dvojrozměrné
závislosti pro vybraná žebra pozeku. První čtyři pětiny žebra jsou pro směr TAM a stejně tak
pro směr ZPĚT shodná a liší se teprve poslední pětinou. K překrytí dochází v důsledku tvaru
94
modelovaného pozemku. V první části jsou příčné pruhy a teprve poslední část je šroubovitě
zakřivená.
Obr. 4.33 - Celkový jízdní odpor pro zvolená žebra
4.2.2.7 Stanovení potřebného točivého momentu motoru
V závislosti na velikosti celkového jízdního odporu a zvoleném převodovém stupni je
vypočítaný potřebný točivý moment podle vztahů (67) pro směr TAM a ZPĚT.
(
)
Mm t rpt , sp
(
)
COt rpt , sp ⋅ r2
(
)
ict rpt , sp ⋅ η m
(
)
Mm z rpz , sp
(
)
COz rpz , sp ⋅ r2
(
)
icz rpz , sp ⋅ η m
(67)
Mmt(rpt,sp) – potřebný točivý moment motoru ve směru TAM [Nm]
Mmz(rpz,sp) – potřebný točivý moment motoru ve směru ZPĚT [Nm]
COt(rpt,sp) – celkový odpor jízdy ve směru TAM [N]
COz(rpz,sp) – celkový odpor jízdy ve směru ZPĚT [N]
r2- poloměr zadního kola [m]
ηm - mechanická účinnost převodů [-]
ict(rpt,sp) – vybraný převodový stupeň ve směru TAM [-]
icz(rpz,sp) – vybraný převodový stupeň ve směru ZPĚT [-]
V závislosti na získaném celkovém jízdním odporu a zvoleném pátém rychlostním
stupni je velikost potřebného točivého momentu znázorněna na obrázku číslo 4.34.
a)
95
b)
Obr. 4.34 - Potřebný točivý moment motoru: a) ve směru TAM, b) Ve směru ZPĚT
Aby nedošlo k překročení maximálního točivého momentu motoru je jeho skutečná
velikost s touto hodnotou neustále kontrolována. Z praktického hlediska, které vychází
z předchozích obrázků číslo 4.9 a 4.10, je vhodnější a programově možné nespecifikovat
napevno zvolený převodový stupeň, ale provádět jeho neustálou kontrolu tak, aby se točivý
moment motoru pohyboval v úzkém pásmu kolem minimální měrné spotřeby paliva.
Řidiči traktoru by mohly být v tomto směru poskytovány informace ve formě
doporučení přeřadit na výhodnější převodový stupeň z hlediska optimalizace spotřeby paliva.
Podobným způsobem bude pravděpodobně možné optimalizovat i emise výfukových složek.
Následující postup je modelem pro optimalizaci spotřeby paliva.
Nejmenší měrné spotřeby paliva dosahuje motor traktoru Zetor 8045 při otáčkách
minN = 1714 ot.min-1 a točivém momentu minM = 180 Nm. Předběžně je stanoveno
povolené pásmo rozsahu točivého momentu 20 % od hodnoty minM (144 až 216 Nm).
V případě, že točivý moment na klikovém hřídeli motoru vystoupí z této oblasti, tak je řidiči
doporučena změna na výhodnější nižší nebo vyšší převodový stupeň.
První převodový stupeň autor vybírá na základě střední hodnoty celkového jízdního
odporu ve vybrané části pozemku. Matice is v prvním sloupci shrnuje celkové převodové
poměry a ve druhém sloupci odpovídající převodový stupeň. Na základě vztahů (68) Zc je
vypočten přibližný převodový poměr Zc = 103.467. Podle tohoto převodového poměru je
vybrán skutečný vyšší převodový stupeň z matice is, isp = 89,26, což je 4. převodový stupeň.
Tento stupeň se pak v dalším algoritmu (69) výpočtu kontroluje a navrhuje se jeho změna
řidiči.
 260.4

 165.21
 103.98

 89.26
is
 73.03

 56.63
 35.65

 25.04
∑ COt(500 , sp)
1
2
sp
COs⋅ r2
3
COs
4
Zcp° , 0
if isp° , 0 > Zc , 0 , isp° , 0
Zcp° , 0
if Zc
Z
isp
isZ− 1 , 0 isp
89.26
is°
isZ−1 , 1 is°
4

5

6
7
8
Zc
100
Zc
(
(
minM ⋅ η m
Zc
103.467
)
Zc
max ( Zc)
Zc
89.26
)
Zc
max ( Zc)
Zc
4
isp° , 0 , isp° , 1 , 0
(68)
is – matice převodových stupňů [-, °]
COs– střední hodnota jízdního odporu [N]
COt(500,sp) – jízdní odpor v řádku 500 ve směru TAM [N]
minM – točivý moment při minimální měrné spotřebě paliva [Nm]
96
r2- poloměr zadního kola [m]
ηm - mechanická účinnost převodů [-]
isp – vybraný převodový poměr [-]
is°– vybraný převodový stupeň [°]
Takto vybraný převodový stupeň je pro začátek algoritmu doporučen jako výchozí
v celém rozsahu pole a znázorněn na obrázku 4.35.
Obr. 4.35 - Převodový stupeň před úpravou na celém poli pro oba směry jízdy
Následující algoritmus (69) kontroluje velikost točivého momentu motoru. V případě,
že jsou překročeny spodní hranice PMmin = 144 Nm nebo horní hranice PMmax = 216 Nm je
změněn převodový stupeň nahoru nebo dolů. Po ukončení první kontroly je znovu vypočítán
točivý moment. Celý cyklus se třikrát opakuje, takže je umožněn rozsah převodových stupňů
při prvním zvoleném 4. od 1. do 7.
(
) if (Mmt(rpt , sp) > PMmax , is°t(rpt , sp) − 1 , is°t(rpt , sp))
is°t ( rpt , sp) if ( Mm t ( rpt , sp) < PM min , is°t ( rpt , sp) + 1 , is°t ( rpt , sp) )
is°z ( rpz , sp) if ( Mm z ( rpz , sp) > PM max , is°z ( rpz , sp) − 1 , is°z ( rpz , sp) )
is°z ( rpz , sp) if ( Mm z ( rpz , sp) < PM min , is°z ( rpz , sp) + 1 , is°z ( rpz , sp) )
ispt ( rpt , sp) is
ispz ( rpz , sp) is
is°t ( rpt , sp) − 1 , 0
is°z ( rpz , sp) − 1 , 0
COt ( rpt , sp) ⋅ r2
COz ( rpz , sp) ⋅ r2
Mm t ( rpt , sp)
Mm z ( rpz , sp)
ispt ( rpt , sp) ⋅ η m
ispz ( rpz , sp) ⋅ η m
is°t rpt , sp
(69)
Mmt(rpt,sp) – potřebný točivý moment motoru ve směru TAM [Nm]
Mmz(rpz,sp) – potřebný točivý moment motoru ve směru ZPĚT [Nm]
is°t(rpt,sp) – převodový stupeň ve směru TAM [°]
is°z(rpz,sp) – převodový stupeň ve směru ZPĚT [°]
r2- poloměr zadního kola [m]
ηm - mechanická účinnost převodů [-]
ispt(rpt,sp) – celkový převodový poměr ve směru TAM [-]
ispz(rpz,sp) – celkový převodový poměr ve směru ZPĚT [-]
V případě, že se nechá tento algoritmus třikrát zopakovat, dosáhne se následující
postupné změny točivého momentu na obrázku číslo 4.36.
97
a)
b)
c)
98
d)
Obr. 4.36 - Změna točivého momentu ve vybraných částech související se změnou
převodového stupně: a) před úpravou, b) první, c) druhý a d) třetí stupeň algoritmu
V případě, že je pásmo příliš úzké nastane situace, že se algoritmus nemůže rozhodnout
který převodový stupeň vybrat. Takový příklad je v předchozím obrázku u hodnoty sp = 615,
kde na jeden převodový stupeň je dosahován točivý moment 139 Nm a na druhý 222 Nm.
Obě tyto hodnoty nespadají do předem určené oblasti. Závisí to nejen na šířce zvolené oblasti
minimální měrné spotřeby paliva, ale také na množství převodových stupňů.
a)
b)
Obr. 4.37 - Převodové: a) stupně, b) poměry
99
Poslední obrázek číslo 4.36d) je konečnou úpravou točivého momentu na klikovém
hřídeli. Tento moment je po motoru požadován na vykonání práce. Se změnou točivého
momentu se změnily také vstupní hodnoty zvolených zařazených převodových stupňů a s tím
souvisejících převodových poměrů na obrázku číslo 4.37.
Původní navrhovaný 4. převodový stupeň byl v některých případech nahrazen
převodovým stupněm 3.
4.2.2.8 Stanovení otáček motoru
Otáčky motoru jsou stanovovány na základě potřebného točivého momentu a
odpovídajícího převodového stupně. Autor vychází z nalezených otáček při minimální měrné
spotřebě paliva minN = 1714 ot.min-1 a ze sklonu regulátorové charakteristiky.
Sklon regulátorové charakteristiky je charakterizován rovnicí (70), která je získána na
základě těchto údajů:
- podle vnější otáčkové charakteristiky jsou vybrány hodnoty otáček vyskytující se
v regulátorové větvi nr,
- k těmto bodům jsou přiřazeny odpovídající hodnoty točivého momentu motoru
Mme(nr),
- je vybráno 5 bodů a těmito body je proložená regresní polynomická rovnice np na
základě funkcí MathCadu Given a Find, které naleznou odpovídající konstanty
rovnice Kk (k1 až k5).
 2240 
 2280 

 Mme ( nr) =
nr := 2320


 2360 
 2400


M := Mme ( nr)
Kk =
(70)
4
3
2
np := k1 ⋅ M + k2 ⋅ M + k3 ⋅ M + k4 ⋅ M + k5
nr – zvolené body otáček pro regresi [ot.min-1]
Mme(nr) – odpovídající točivý moment pro zvolené body [Nm]
Kk – vypočtené koeficienty rovnice [-]
np – regresní rovnice regulátorové větve [ot.min-1]
Na základě takto získané rovnice se opačným postupem, tedy s otázkou, jak velký má
být koeficient k5, aby tato regresní rovnice procházela bodem minimální spotřeby paliva
stanoví otáčky motoru, které se nastaví na ručním plynu. Výpočtem je stanovena hodnota
otáček nz = 1799 ot.min-1, které musí řidič nastavit na palivovém pedálu. Spolu s první
omezující podmínkou momentu se pak traktor pohybuje v úzkém pásmu minimální měrné
spotřeby paliva.
Hodnoty otáček motoru jsou podle vztahu (71) znázorněny na obrázku číslo 4.38 a 4.39.
(
)
(
)4 + k2⋅ Mmt(rpt , sp)3 + k3⋅ Mmt(rpt , sp)2 + k4⋅ Mmt(rpt , sp) + nz
nvt rpt , sp := k1 ⋅ Mm t rpt , sp
(
)
(
)4 + k2⋅ Mmz (rpz , sp)3 + k3⋅ Mmz (rpz , sp)2 + k4⋅ Mmz (rpz , sp) + nz
nvz rpz , sp := k1 ⋅ Mm z rpz , sp
nvx(rpx,sp) – otáčky motoru ve směru TAM a ZPĚT [ot.min-1]
Mmx(rpx,sp) – točivý moment motoru v obou směrech [Nm]
nz – hodnota otáček nastavená na ručním plynu [ot.min-1]
(71)
100
a)
b)
Obr. 4.38 - Otáčky motoru: a) ve směru TAM, b) ve směru ZPĚT
Pro lepší názornost jsou na dalším obrázku číslo 4.39 znázorněna vybraná žebra otáček
pro směr TAM a ZPĚT.
Obr. 4.39 - Vybraná žebra otáček
Může nastat případ, který vylučuje použití výše uvedené rovnice. To je případ, kdy
zatížení motoru dostoupí vnější charakteristiky. Dále už nepracuje regulátorová
charakteristika, ale traktor se pohybuje na své vnější charakteristice. Pro tuto regresní rovnici
a vnější charakteristiku je to bod n = 1596 ot.min-1 a M = 255 Nm.
101
Tento uvedený případ může nastat pokud nejsou konstrukcí správně voleny převodové
poměry jednotlivých stupňů nebo u prvního převodového stupně v případě vzrůstajícího
zatížení. Teoreticky je tento bod vzhledem k prokluzu kol na podložce nedosažitelný.
V případě, že by tento případ nastal to autor řeší pomocí přepočítávající charakteristiky otáček
nb(n), která je zobrazena na obrázku číslo 4.40.
Obr. 4.40 - Přepočítávající charakteristika otáček nb(n)
Zvýrazněný bod v obrázku udává hodnotu otáček, kdy se právě shodují otáčky podle
regulátorové a vnější charakteristiky n = 1596 ot.min-1. Zajímavé je sledovat bod
maximálního točivého momentu, který je dosažen při 850 ot.min-1 motoru. Při nerespektování
tohoto pravidla by vznikla značná chyba výsledku, protože rovnice regulátorové
charakteristiky pro tento bod předepisuje přibližně 1550 ot.min-1.
4.2.3 Stanovení spotřeby paliva na modelovaném pozemku
V případě, že jsou pro každý bod pozemku známy otáčky i točivý moment motoru, lze
na základě získané celkové veličinové charakteristiky motoru na obrázku číslo 4.10 snadno
pomocí funkce (72) získat odpovídající měrné spotřeby paliva zobrazené na obrázku
číslo 4.41.
(
)
MSP z ( rpz , sp)
MSP t rpt , sp
( (
)
(
))
MSP ( nvz ( rpz , sp) , Mm z ( rpz , sp) )
MSP nvt rpt , sp , Mm t rpt , sp
(72)
MSPx(rpx,sp) – měrná spotřeba paliva [g.kWh-1]
nvx(rpx,sp) – otáčky motoru [ot.min-1]
Mmx(rpx,sp) – točivý moment motoru [Nm]
a)
102
b)
Obr. 4.41 - Měrná spotřeba paliva: a) ve směru TAM, b) ve směru ZPĚT
Stanovení spotřeby paliva v litrech za hodinu, v cm3 nebo v litrech na 100 km se
vypočte podle vztahů (73). K výpočtu hodinové spotřeby je použita měrná spotřeba paliva
stanovená výše pro odpovídající segment pozemku. Zobrazena je na obrázku číslo 4.42.
(
)
HSPz rpz , sp
(
)
HSPt rpt , sp
π
30 ⋅ 1000⋅ ρ
π
30 ⋅ 1000⋅ ρ
(
)
(
)
(
)
⋅ MSP z rpz , sp ⋅ Mm z rpz , sp ⋅ nvz rpz , sp
(
)
(
)
(
)
(73)
⋅ MSP t rpt , sp ⋅ Mm t rpt , sp ⋅ nvt rpt , sp
HSPx(rpx,sp) – hodinová spotřeba paliva [Litr.h-1]
MSPx(rpx,sp) – měrná spotřeba paliva [g.kWh-1]
Mmx(rpx,sp) – točivý moment motoru [Nm]
nvx(rpx,sp) – otáčky motoru [ot.min-1]
ρ – měrná hmotnost paliva [kg.m-3]
Obr. 4.42 – Hodinová spotřeba paliva: a) ve směru TAM, b) ve směru ZPĚT
103
Pro stanovení spotřeby paliva v cm3 nejprve autor vypočítává skutečnou rychlost
traktoru (74), která vychází ze zjištěných otáček motoru nv. Do vztahu je také zaveden
prokluz, který je stanoven v kapitole při stanovování virtuální tahové charakteristiky.
(
)
vvpt rpt , sp
nvt ( rpt , sp) 

r2 ⋅


60
(1 − δt(rpt , sp)) ⋅  2 ⋅ 3.6 ⋅ π ⋅
ic

(74)
nvz ( rpz , sp) 

r2 ⋅


60
vvpz ( rpz , sp) ( 1 − δ z ( rpz , sp) ) ⋅  2 ⋅ 3.6 ⋅ π ⋅
ic


vvpx(rpx,sp) – skutečná rychlost traktoru [km.h-1]
δx(rpx,sp) – prokluz traktoru [-]
nvx(rpx,sp) – otáčky motoru [ot.min-1]
r2 – poloměr hnacích kol [m]
ic – celkový převodový poměr [-]
Spotřeba paliva v cm3 se potom vypočte podle vztahů (75) a je zobrazená na obrázku
číslo 4.43.
(
(
)
) vvp (rp , sp) ⋅ Krok
t t
Sgt rpt , sp
HSPt rpt , sp
(
)
Sgz rpz , sp
(
) ⋅ Krok
vvpz ( rpz , sp)
HSPz rpz , sp
(75)
Sgx(rpx,sp) – spotřeba paliva [cm3]
HSPx(rpx,sp) – hodinová spotřeba paliva [Litr.h-1]
vvpx(rpx,sp) – rychlost traktoru [km.h-1]
Krok – velikost kroku [m]
Obr. 4.43 – Spotřeba paliva v cm3: a) ve směru TAM, b) ve směru ZPĚT
104
4.2.4 Stanovení celkové spotřeby paliva na celém pozemku
Pomocí následujících vztahů (76 až 79) stanovuje autor spotřebu paliva v celém rozsahu
pozemku pouze s dříve uvedeným omezením. Tím je nezahrnutí dráhy potřebné na otočení
traktoru, která se projeví prodloužením časů, zvýšením celkové spotřeby paliva a
prodloužením doby na provedení orby celého pozemku.
Traktor během orby s použitým pluhem Servo 25-302 ujede celkovou vzdálenost L
rovnu 1000 km.
1000
L
ps
(76)
L – dráha ujetá traktorem [m]
ps – šířka záběru pluhu [m]
Na provedení orby ne celém pozemku potřebuje čas T kolem 239 hodin. Výpočet času
na projetí jednoho segmentu a celkového času na pole je uveden ve vztazích (77).
(
3.6 ⋅ Krok
)
Tt rpt , sp
T
∑∑
(
(
)
vvpt rpt , sp
(
)+
Tz rpz , sp
rpz sp
3600
3.6 ⋅ Krok
)
Tz rpz , sp
∑∑
(
(
)
vvpz rpz , sp
)
(77)
Tt rpt , sp
3600
rpt sp
T – celkový čas na provedení práce [h]
Tx(rpx,sp) – potřebný čas na projetí určitého segmentu [s]
vvpx(rpx,sp) – rychlost traktoru [km.h-1]
Sumarizovanou spotřebu paliva v litrech SP a v gramech SG stanovuje autor na základě
(78). V litrech se sumarizovaná spotřeba pohybuje kolem 2270 a v gramech kolem 1900000.
SP
∑∑
rpz sp
SG
(
)+
Sg z rpz , sp
1000
∑∑
(
)
Sgt rpt , sp
rpt sp
1000
(78)
SP ⋅ ρ
SP – celková spotřeba paliva [Litr]
SG – spotřeba paliva [g]
ρ – měrná hmotnost paliva [kg.m-3]
Sgx(rpx,sp) – spotřeba paliva [cm3]
Spotřeba paliva v litrech za hodinu SMH, v gramech za hodinu SGH a v litrech na 100
km SSK se potom vypočte podle vztahů (79).
SMH
SP
T
SGH
SG
T
SSK
100⋅ SP
L
(79)
SMH – spotřeba paliva [Litr.h-1]
SGH – spotřeba paliva [g.h-1]
SSK – spotřeba paliva [Litr.100km-1]
SP – celková spotřeba paliva [Litr]
SG – spotřeba paliva [g]
T – celkový čas na provedení práce [h]
L – dráha ujetá traktorem [m]
U uvedeného traktoru se spotřeba paliva SMH pohybuje kolem 10 litrů za hodinu, SGH
kolem 8000 gramů za hodinu a SSK kolem 228 litrů na 100 ujetých kilometrů. Konkrétní
105
hodnoty spotřeby
kapitole 4.2.5.
paliva
za
různých
vstupních
podmínek
autor
uvádí
v
4.2.5 Výsledky simulace v různých systémech jízdy
V této části shrnuje autor výsledky modelované práce traktoru za podmínek orby se
zaměřením na spotřebu paliva. Jak bylo dříve uvedeno jsou pro jednoduchost navrženy dva
systémy jízdy a to napříč a podél terénních vln zobrazených na obrázku číslo 4.44.
Obr. 4.44 – Vyznačení pohybu napříč a podél vln
V obou systémech je spotřeba paliva porovnávána při různých volbách převodového
stupně řidičem. V některých případech je řazení převodových stupňů zcela vyloučeno a
traktor absolvuje celý cyklus orby na jediný převodový stupeň.
Dále autor porovnává možnosti nastavení šířky pásma, které omezuje vhodné pracovní
podmínky a pokud z tohoto pásma vozidlo vystoupí, tak doporučuje řidiči přeřadit na
nabízený vhodnější převodový stupeň.
4.2.5.1 Systém jízdy traktoru po pozemku napříč vln
Pro uvedené pracovní nasazení přicházejí v úvahu převážně převodové stupně od
druhého po pátý. Tabulka číslo 4.8 uvádí spotřebu paliva pro zmíněné stupně ve všech dříve
uvedených modifikacích (celková spotřeba v litrech, gramech, spotřeba paliva v litrech za
hodinu, v gramech za hodinu a v litrech na 100 km).
Tab. 4.8 – Spotřeba paliva pro stálé převodové stupně
Dráha [km]
Čas [h]
Spotřeba [L]
Spotřeba [g]
Spotřeba [L.h-1]
Spotřeba [kg.h-1]
Spotřeba [L.100km-1]
Odchylka L.100km-1 [%]
Krok = 10
Krok = 1
5°
4°
3°
2°
1000
1000
1000
1000
1000
1000
238,971
239,923
188,639
215,85
244,918
376,697
2267,434
2268,012
3450,335
2376,062
2275,951
2597,411
1893307
1893712,2
2881029,6
1984011,4
1900419,5
2168838,5
9,488
9,453
18,291
11,008
9,293
6,895
7,923
7,893
15,273
9,192
7,759
5,758
226,743
226,801
345,003
237,606
227,595
259,751
0,025
52,155
4,790
0,375
14,557
106
Sloupec s nápisem Krok = 10 a Krok = 1 porovnává mezi sebou výsledky modelování
v závislosti na zvolené velikosti kroku. Menší krok vyžaduje větší nároky na výpočetní
techniku a nepřináší žádné zpřesnění, které je v tabulce v řádku odchylka a rozumí se jí
odchylka od spotřeby paliva v litrech na 100 km v procentech.
Navíc sloupce s označením Krok ve svém výpočtu zahrnují optimalizaci řazení
jednotlivých převodových stupňů. U dalších sloupců je zařazen pouze jeden převodový
stupeň. Pokud bude řidič respektovat doporučený systém řazení bude mít nejpříhodnější
spotřebu paliva. Pokud však za stávající situace zvolí 3. převodový stupeň a bude ho používat
na celém pozemku, tak jeho spotřeba bude vyšší o méně než 0,5 %. Naproti tomu při
5. převodovém stupni vzroste spotřeba paliva o více jak 52 %.
Jak autor uvedl již dříve, je doporučování převodových stupňů pro řidiče založeno na
udržování točivého momentu motoru a otáček v co nejužší oblasti kolem minimální měrné
spotřeby paliva. Pokud je zvolené pásmo příliš široké nebo naopak příliš úzké, tak k žádnému
efektivnímu snížení nedochází, nebo pouze v malé míře. V tabulce číslo 4.9 jsou vypočtené
hodnoty spotřeby paliva pro různě široká pásma, která jsou vyjádřena procentním zvýšením
(horní mez) a snížením (dolní mez) optimální hodnoty točivého momentu motoru při
minimální měrné spotřebě paliva.
Tab. 4.9 – Spotřeba paliva při různé šířce předvoleného pásma
Horní
Dolní
Dráha
[km]
Čas
[h]
Spotřeba
[L]
Spotřeba
[g]
Spotřeba
[L.h-1]
Spotřeba
[kg.h-1]
Spotřeba
[L.100km-1]
1,025
0,975
1,05
0,95
1,075
0,925
1,1
0,9
1,125
0,875
1,15
0,85
1,2
0,8
1,25
0,75
1,3
0,7
1000
1000
1000
1000
1000
1000
1000
1000
1000
239,207
239,411
238,971
239,054
238,832
237,069
221,198
220,755
217,883
2269,844 2267,866 2267,434 2267,44 2267,767 2269,877 2288,858 2290,846
2303,8
1895320 1893668 1893307 1893315 1893585
1895347
1911196 1912856
1923673
9,489
9,473
9,488
9,485
9,495
9,755
10,348
10,377
10,574
7,923
7,91
7,923
7,92
7,929
7,995
8,64
8,665
8,829
226,984
226,787
226,743
226,744
226,777
226,988
228,886
229,085
230,38
Z uvedené tabulky 4.9 je patrné, že nejnižší spotřeby paliva je dosaženo pokud je pásmo
v rozsahu od 0,925.minM do 1,075.minM. Pokud toto pásmo bude širší nebo užší, tak
dochází ke zvýšení spotřeby paliva. Autor předpokládá, že šířka tohoto pásma je optimální
pouze pro uvedený motor v příslušném technickém stavu. Se změnou technického stavu nebo
simulací pracovních podmínek na jiném traktoru by bylo nutno stanovit nové hranice pro
ekonomický a ekologický způsob jízdy. Nejnižší spotřeba paliva na 100 km v případě
systému jízdy napříč vln je 226,743 Litr.100km-1.
4.2.5.2 Systém jízdy traktoru po pozemku podél vln
Výsledky pracovní jízdy podél vln jsou jako v předchozím případě napříč vln
zpracovány do dvou tabulek číslo 4.10 a 4.11. V tabulce číslo 4.10 jsou voleny pevné
107
převodové stupně a v tabulce číslo 4.11 je vypočtená spotřeba paliva pro různě široká pásma
řazení převodových stupňů.
Tab. 4.10 – Spotřeba paliva pro stálé převodové stupně
Dráha [km]
Čas [h]
Spotřeba [L]
Spotřeba [g]
Spotřeba [L.h-1]
Spotřeba [kg.h-1]
Spotřeba [L.100km-1]
Odchylka L.100km-1 [%]
Krok = 10
1000
Krok = 1
1000
5°
4°
3°
2°
1000
1000
1000
1000
244,17
244,17
187,015
214,91
244,17
376,012
2252,836
2252,836
3299,096
2286,416
2252,836
2588,596
1881118
1881118,3
2754745,6
1909157,7
1881118,3
2161477,5
9,227
9,227
17,641
10,639
9,227
6,884
7,704
7,704
14,73
8,884
7,704
5,748
225,284
225,284
329,91
228,642
225,284
258,86
0,000
46,442
1,491
0,000
14,904
Tab. 4.11 – Spotřeba paliva při různé šířce předvoleného pásma
Horní 1,025
1,05
1,075
1,1
1,125
1,15
1,2
1,25
1,3
Dolní 0,975
0,95
0,925
0,9
0,875
0,85
0,8
0,75
0,7
Dráha
1000
1000
1000
1000
1000
1000
1000
1000
1000
[km]
Čas
214,91
214,91
214,91
244,17
244,17
244,17
244,17
244,17 242,879
[h]
Spotřeba
2252,836 2252,836 2252,836 2252,84 2252,836 2253,911 2286,416 2286,416 2286,416
[L]
Spotřeba
1881118 1881118 1881118 1881118 1881118 1882016 1909158 1909158 1909158
[g]
Spotřeba
9,280
10,639
10,639
10,639
9,227
9,227
9,227
9,227
9,227
[L.h-1]
Spotřeba
7,749
8,884
8,884
8,884
7,704
7,704
7,704
7,704
7,704
[kg.h-1]
Spotřeba
225,284 225,284 225,284 225,284 225,284 225,391 228,642 228,642 228,642
[L.100km-1]
Původní navrhovaný 4. převodový stupeň byl regulací upraven na 3. stupeň. Tento nový
převodový stupeň je použit na celém pozemku. Minimální spotřeba paliva je 225,284
Litr.100km-1. Potvrdil se tak původní předpoklad, že spotřeba paliva bude v tomto systému
jízdy příhodnější a to přibližně o 1,5 litru na 100 km. Na celém pozemku tak lze ušetřit
15 litrů motorové nafty (400 Kč).
Nízký ekonomický efekt v rozdílu systému jízdy je zapříčiněn především malou
členitostí modelovaného pozemku, který si pro jednoduchost autor navrhl. S rostoucí
členitostí se dá předpokládat, že výrazně poroste také ekonomický efekt dosažený vhodnou
volbou systému jízdy.
4.3 Hodnocení vlivu přesnosti měření na výslednou spotřebu paliva
Výsledná spotřeba paliva je závislá především na přesnosti měření jednotlivých bodů
celkové veličinové charakteristiky a přesném popsání stavu a rozměrů pole se zaměřením se
na jeho profil a především na odpor půdy.
108
K popsání rozměrů a profilu skutečného pole lze využít přístrojů GPS, které mají
přesnost 5 až 10 m horizontálně, u přístrojů DGPS 1 až 3 m a pokud jsou navíc vybaveny
barometrickým výškoměrem mohou měřit i výšku s přesností 2 až 3 m. Cena těchto přístrojů
neustále klesá a jejich přesnost se zvyšuje. Vzhledem k celkovým rozměrům a k profilu
pozemku nebudou mít zřejmě uvedené nepřesnosti vliv nebo jejich vliv bude zanedbatelný
(například vliv rozměrů na jízdní spotřebu paliva [Litr.100km-1] bude menší než 0,5 %).
Vliv přesnosti měřených bodů celkové veličinové charakteristiky je popsán v tabulce
číslo 4.12, kde jsou pro jednotlivé body, jejichž rozložení je na obrázku číslo 4.45, příslušné
odchylky při simulovaných nepřesnostech.
Obr. 4.45 – Rozložení bodů při tvorbě opravné veličinové charakteristiky
V prvním sloupci tabulky jsou číselně označené body, jejichž umístění je zobrazeno
na obrázku číslo 4.45. Ve druhém sloupci tabulky jsou názvy odečítaných hodnot
z výpočetního programu. V dalších třech sloupcích označených jako otáčky motoru, točivý
moment a spotřeba paliva autor uvádí konkrétní hodnoty, které se vždy týkají pouze změny o
uvedenou hodnotu u příslušného bodu. Autor v ostatních bodech předpokládá, že k chybnému
měření nedošlo.
Ve sloupci otáčky motoru jsou uváděny výsledky, kterých bylo dosaženo, pokud měřící
bod ležel o 100 ot.min-1 vedle potřebného bodu, který je třeba zadat do matice 3x3 pro
vytvoření celkové veličinové plochy. Výsledná chyba ve všech případech nepřesáhla 1 %.
Chyba je posuzována jako extrémní, pokud měří pracovník, který nemá zkušenosti
s kvazistatickým měřením. U pracovníka se zkušenostmi autor předpokládá odchylku menší
než 20 ot.min-1.
Ve sloupci točivý moment jsou obdobným způsobem uváděné hodnoty při nepřesném
nastavení zatížení. Autor v tabulce uvádí jak se odchylka ±25 Nm promítne do konečných
hodnot. Odchylka jízdní spotřeby paliva se v tomto případě pohybuje pod 2 %.
Sloupec označený spotřeba paliva udává výsledky a odchylky, které by nastaly, pokud
během měření a výpočtu měrné spotřeby paliva došlo k chybě ±5 %. Výsledná jízdní spotřeba
paliva nemá odchylku také větší než 2 %.
109
Poslední sloupec tabulky označený jako suma nepřesností představuje součet
absolutních hodnot nepřesností s cílem posoudit významnost jednotlivých bodů. Výsledek
potvrdil autorův původní předpoklad, že největší vliv budou mít body v oblasti běžné
pracovní činnosti (nejnižší spotřeby paliva). Jsou to především body 4, 5 a 8.
Tab. 4.12 – Výsledky rozboru přesnosti měření jednotlivých bodů
Odchylky
Body
jednotky
hodnota
Čas [h]
1
Celkem [Litr]
Spotřeba [Litr.100km-1]
Odchylka spotřeby [%]
Čas [h]
2
Celkem [Litr]
Spotřeba [Litr.100km-1]
Odchylka spotřeby [%]
Čas [h]
3
Celkem [Litr]
Spotřeba [Litr.100km-1]
Odchylka spotřeby [%]
Čas [h]
4
Celkem [Litr]
Spotřeba [Litr.100km-1]
Odchylka spotřeby [%]
Čas [h]
5
Celkem [Litr]
Spotřeba [Litr.100km-1]
Odchylka spotřeby [%]
Čas [h]
6
Celkem [Litr]
Spotřeba [Litr.100km-1]
Odchylka spotřeby [%]
Čas [h]
7
Celkem [Litr]
Spotřeba [Litr.100km-1]
Odchylka spotřeby [%]
Čas [h]
8
Celkem [Litr]
Spotřeba [Litr.100km-1]
Odchylka spotřeby [%]
Čas [h]
9
Celkem [Litr]
Spotřeba [Lir.100km-1]
Odchylka spotřeby [%]
Otáčky
motoru
Točivý
moment
Spotřeba
paliva
Suma
nepřesností
[ot.min-1]
-100
100
238,8 240,3
2305,9 2310,9
230,6 231,1
-0,12
0,10
263,1 240,3
2326,2 2312,1
232,6 231,2
0,76
0,15
240,3 240,3
2308,9 2308,4
230,9 230,8
0,02 -0,01
237,4 241,7
2315,6 2304,8
231,6 230,5
0,30 -0,16
233,3 266,2
2318,0 2325,4
231,8 232,5
0,41
0,73
240,3 240,3
2308,4 2308,4
230,8 230,8
-0,01 -0,01
238,8 264,7
2307,3 2332,0
230,7 233,2
-0,06
1,01
256,5 243,1
2328,5 2310,9
232,9 231,1
0,86
0,10
240,3 238,8
2309,1 2308,1
230,9 230,8
0,02 -0,02
[Nm]
-25
25
263,1 238,8
2332,9 2305,9
233,3 230,6
1,05 -0,12
261,6 240,3
2323,7 2309,7
232,4 231,0
0,65
0,05
263,1 261,6
2332,8 2330,3
233,3 233,0
1,05
0,94
239,0 237,9
2294,0 2349,2
229,4 234,9
-0,63
1,76
223,0 277,8
2351,0 2293,8
235,1 229,4
1,84 -0,64
263,1 232,9
2310,5 2350,2
231,1 235,0
0,08
1,80
205,4 272,7
2311,2 2335,5
231,1 233,5
0,11
1,17
300,3 222,5
2344,6 2303,3
234,5 230,3
1,56 -0,23
202,9 277,9
2281,1 2335,7
228,1 233,6
-1,19 1,18
[%]
-5
5
261,6 263,1
2333,1 2329,8
233,3 233,0
1,06
0,92
241,7 261,6
2314,7 2324,4
231,5 232,4
0,27
0,69
241,7 238,8
2308,0 2309,9
230,8 230,9
-0,02
0,03
232,4 256,5
2281,6 2352,1
228,2 235,2
-1,17
1,88
291,2 205,2
2246,7 2324,6
224,7 232,5
-2,68
0,69
229,4 244,6
2316,5 2300,3
231,7 230,0
0,34 -0,36
211,2 286,8
2308,3 2338,9
230,8 233,9
-0,01
1,31
205,2 300,9
2227,4 2350,9
222,7 235,1
-3,51
1,83
267,8 234,7
2332,7 2304,5
233,3 230,5
1,05 -0,18
[%]
3,37
2,57
2,07
5,91
6,99
2,61
3,68
8,10
3,63
V případě skutečného měření nastávají různé kombinace nepřesností, které se vzájemně
sčítají nebo odčítají. Autor však předpokládá, že při přesnosti použitých servisních měřících
110
přístrojů a pečlivosti pracovníků by se chyba měla pohybovat výrazně pod 5 %. Mohou však
nastat také případy, kdy je měřený bod stanoven s extrémní nepřesností. V takovém případě
dochází k výrazné deformaci celkové veličinové charakteristiky. Její typická vanovitá podoba
je zdeformována tak, že nemá své typické minimum. Vytvoření celkové charakteristiky na
základě těchto bodů vede ihned k domněnce o nesprávnosti měření, které je nutné opakovat
(měření lze s připojením měřících přístrojů zvládnout za 1,5 hodiny, ale autor předpokládá, že
až bude k dispozici dostatečně přesné dynamické měření emisí bude měření možné zvládnout
v kratším čase.
Uvedené hodnoty odpovídají simulované rozloze a profilu pozemku. V případě jiné
rozlohy a tvaru pozemku se mohou výsledné hodnoty uvedených přesností v tabulce
číslo 4.12 lišit právě s ohledem na členitost terénu.
4.4 Dílčí závěr
V této části autor simuloval tvorbu virtuální tahové charakteristiky traktoru a jeho práci
na vytvořeném imaginárním pozemku. Virtuální tahová charakteristika na obrázku číslo 4.19
je vytvořena jako kombinace výpočtové charakteristiky s dynamickým měřením motoru. Na
traktoru Z 8045 je naměřena a vytvořena celková charakteristika spotřeby paliva. Pokud by
byly měřeny i emise výfukových plynů předpokládá autor, že zpracování by bylo zcela
obdobné.
Na obrázku číslo 4.46 je výpočtová charakteristika traktoru Zetor 8045 při použití
pohonu 4x4 a za plnění pneumatik vodou o hmotnosti 500 kg. Autor celou simulaci provádí
na stejném traktoru, ale bez plnění pneumatik vodou.
Obr. 4.46 – Výpočtová tahová charakteristika Zetoru 8045 4x4 [11]
Aby bylo možné výslednou simulovanou charakteristiku porovnat s obrázkem
číslo 4.46, tak autor na obrázku číslo 4.47 uvádí charakteristiku, která zahrnuje pneumatiky
naplněné vodou o hmotnosti 500 kg.
Pro lepší možnost porovnání výpočtové tahové charakteristiky a navrhované virtuální
tahové charakteristiky autor přeložil obrázky číslo 4.46 a číslo 4.47 přes sebe, což je
zobrazeno na obrázku číslo 4.48.
111
Uvedená výpočtová charakteristika na obrázku číslo 4.46 a simulovaná charakteristika
na obrázku 4.47 se shodují s výjimkou maximální tahové síly, která je asi o 2 kN menší než
uvádí charakteristika výpočtová. To je pravděpodobně zapříčiněno nemožností přesně
simulovat výpočtové podmínky, jelikož je literatura neuvádí (například změna střední
hodnoty součinitele valení na její okraj (z hodnoty 0,08 na hodnotu 0,05) způsobí, že je
dosaženo téměř shodné maximální tahové síly a rozdíl 2 kN je smazán).
Na druhou stranu je poměrně dobré shody dosaženo za podmínek, které se neslučují
s ekologií provozu. Měřený traktor měl zvýšenou dodávku paliva tak, aby dosáhl
předepsaných výkonových parametrů, ale za cenu vysoké produkce pevných částic, které byly
pouze orientačně měřeny.
Obr. 4.47 – Simulovaná tahová charakteristika s pneumatikami plněnými vodou
Pokud by byl motor traktoru správně seřízen z hlediska zatěžování prostředí, nedosáhl
by předepsané charakteristiky a rozdíl by byl mnohem výraznější.
Výhodou virtuální charakteristiky je, že přináší aktuální informace o technickém stavu
spalovacího motoru a s nimi dále ve výpočtu pracuje. Měření autor navrhuje provádět
kvazistatickou metodou, která nemá nároky na prostor, čas ani drahé měřící zařízení. Na
základě virtuální tahové charakteristiky lze porovnat tahové vlastnosti stejného traktoru
v průběhu času nebo před a po seřízení některé části motoru a zároveň slouží jako vstup pro
navrhovanou simulaci pracovních podmínek na pozemku.
Simulace pracovních podmínek traktoru na pozemku pomocí výpočetní techniky by
podle autora mohla přinést firmám i soukromým osobám informace o přibližné spotřebě
paliva a vyprodukovaných emisích jejich traktoru, nebo pomoci při výběru pracovní techniky
aniž by vozidlo muselo absolvovat nějaké pracovní nasazení. Simulaci autor ukazuje na
orební práci, ale předpokládá, že použití bude možné i na ostatní činnosti, které jsou popsány
matematickými vztahy.
112
Na základě spotřeby paliva by mohl uživatel traktoru spočítat své finanční náklady a
rozhodnout se pro traktor, který pro něho bude z hlediska provozních i investičních nákladů
nejvýhodnější na základě jeho pozemku převedeného do počítačového modelu. Současně by
mohl zohlednit zatížení svého okolí zplodinami, které spalovací motor produkuje. Podle
množství vyprodukovaných emisních složek by bylo možné velké znečišťovatele znevýhodnit
a naopak pomoci těm, kteří dbají o stav životního prostředí („čím méně škodlivých složek
vyprodukuje, tím méně bude platit“).
Obr. 4.48 – Porovnání výpočtové a experimentálně výpočtové charakteristiky
Autor si je vědom, že by mohl výsledek zkreslovat samotný majitel vozidla, který by
vhodným zásahem do palivové a výfukové soustavy mohl dosáhnout snížené produkce
emisních složek a zajistit si tak menší platby (např. těsně před zkouškou by mohl změnit
doraz regulační tyče tak, aby snížil kouřivost a naopak hned po ní ho zase změnit tak, aby
dosáhl vyšších výkonových parametrů). Naměřené výsledky by v tomto případě nebyly pro
majitele kontrolovaného vozidla žádným přínosem. Současný rozvoj a konstrukce nové
pracovní techniky znemožňuje nebo přinejmenším omezuje zásah do řízení palivového
systému.
Problémem je také správné a přesné naměření aktuální celkové charakteristiky motoru,
kterou autor provádí na základě kvazistatického měření, jehož přesnost již byla v praxi
ověřena. Značnou nevýhodou je měření spotřeby paliva pomocí palivoměru. Stejně jako je
zabráněno uživatelům zasahovat do palivové soustavy, tak i při měření působí problémy jeho
připojení na vhodné místo v palivové soustavě. Vhodnější by bylo měření spotřeby paliva na
základě měření emisních složek výfukových plynů. Na tomto systému měření právě pracují ve
spolupráci Katedra jakosti a spolehlivosti strojů a Katedra vozidel a pozemní dopravy v rámci
grantového projektu.
113
Současně se v tomto projektu řeší problém postupného ohřívání a ochlazování motoru
v závislosti na jeho zatížení. Nepřesnosti do měření totiž vnáší i podmínky měření, které se
například odehrávají za provozní teploty, kdežto ve skutečném provozu dochází během
prvních minut k postupnému ohřívání motoru a v tomto okamžiku je například katalyzátor
vozidla nečinný nebo pracuje pouze s omezenou funkčností. Motor potom ve studeném stavu
produkuje zvýšený obsah škodlivých složek emisí.
Simulace využívá programového vyjádření skutečného pozemku na jehož základě je
stanoveno zatížení traktoru. Měření rozměrových a výškových parametrů pozemku je
poměrně jednoduchou záležitostí s pomocí zařízení GPS, která již pracují s vysokou přesností.
Problematičtější je stanovení koeficientu odporu půdy, který je v různých místech pozemku
odlišný a současně závislý na podmínkách jako je vlhkost prostředí.
Během celé simulace pracovních podmínek autor předpokládá zkušeného řidiče, který
řadí převodové stupně s ohledem na minimální měrnou spotřebu paliva. Některé moderní
traktory již obdobný systém obsahují, ale i v nich by se dal autorem navržený systém využít,
protože by umožnil jednoduchou a servisně vhodnou aktualizaci celkové veličinové
charakteristiky motoru. Kromě ekonomiky provozu by mohl systém pracovat i s ekologií a
radit řidiči v kombinaci ploch naměřených měrných spotřeb paliva a měrných emisí.
Samozřejmostí by byla možnost využít podobného systému v poloautomatických,
automatických a převodovkách variabilních s plynule měnitelným převodovým poměrem.
Navrhovaný systém by mohl pomoci uživatelům traktorů při volbě vhodného tažného,
přípojného a kombinací vozidel, aby byly zajištěny dobré ekonomické a ekologické
podmínky. Současně by mohl sloužit jako učitel ekologického a ekonomického způsobu
jízdy.
114
5. Diskuze
Základem pro uvedené počítačové simulace je naměření celkové charakteristiky motoru
v podobě tzv. „veličinové plochy“. Autor simuluje zatěžovací cykly se zaměřením na
spotřebu paliva, ale předpokládá, že simulace produkovaných emisních složek bude rovněž
bezproblémová poté, až bude k dispozici vhodný způsob jejich měření, a to zejména
s ohledem na dynamický způsob zatěžování při měření. Vhodným způsobem se jeví systém
měření s ředěním spalin.
Až bude k dispozici měření spalin při akceleraci motoru, odpadne také problém
s využíváním palivoměru, který se již dnes mnohdy do palivové soustavy obtížně montuje.
Měření spotřeby paliva z emisí by přineslo také zjednodušení přípravy měření. Nebyl by
nutný zásah do palivové soustavy v podobě umístění palivoměru a řešení problémů
s návratem přebytečného paliva do nádrže.
Navrhované systémy nemají v sobě zahrnuto oteplování motoru v závislosti na jeho
zatížení a na vnějším a vnitřním ochlazování. Stejně tak řešení přechodových jevů (například
během řazení) je zjednodušeno. Autor vychází z předpokladu, že problémy přechodových
jevů zahrnují pouze 1 až 2 % z celku. Pokud tedy bude v přechodových bodech stanovena
spotřeba paliva s chybou 20 až 30 %, tak celková chyba měření nepřekročí 1 %.
V současné době se uvedená problematika rozpracovává v rámci grantového projektu.
Grafický příklad uvedené rozpracovávané problematiky s teplotní závislostí je na obrázku
číslo 5.1.
Obr. 5.1 – Závislost teploty motoru na čase
Závislost vstupů a výstupů motoru na jeho teplotě může v budoucnu zpřesnit simulaci.
Na základě autorova rozboru lze zejména očekávat zpřesnění počátečních částí všech
simulací, kdy je motor ještě studený a teprve se pracovním zatížením a jízdou zahřívá na svou
provozní teplotu. Dosud uvedené simulace předpokládaly předepsanou provozní teplotu
motoru. Ve skutečnosti se při městském cyklu začíná se studeným motorem a výsledek
simulace je proto zatížen touto chybou.
Veličinové charakteristiky motoru jsou zpravidla definovány trojrozměrnými
závislostmi v podobě závislé vstupní nebo výstupní veličiny na veličinách nezávislých, tj. na
ose otáček a ose točivého momentu motoru. Snímání otáček motoru je poměrně
bezproblémové, ale snímání točivého momentu činí jisté obtíže. Navíc se v současné době
115
ukazuje, že běžně uváděná trojrozměrná závislost nebude postačovat a bude třeba využít čtyř
popřípadě vícerozměrných charakteristik. Při čtyřrozměrné charakteristice jsou to:
- závislá vstupní nebo výstupní veličina do motoru (například některá z emisních
složek, spotřeba paliva apod.),
- nezávislá veličina: měřené otáčky klikového hřídele motoru,
- nezávislá veličina: měřený ukazatel dodávky paliva, který vyjadřuje okamžitou
spotřebu paliva v miligramech za sekundu,
- nezávislá veličina: měřený ukazatel spotřeby vzduchu, který vyjadřuje okamžitou
spotřebu vzduchu v miligramech za sekundu.
Jako ukazatel dodávky paliva může být volena poloha regulační tyče vstřikovacího
čerpadla. Může však být též volena například pouze prostá poloha sešlápnutí palivového
pedálu, avšak nikoliv tehdy, je-li bez porušení plomby narušitelná vazba pedálu s přímým
ovladačem dodávky paliva. Pokud to však bude možné, tak bude ukazatelem nejčastěji
například poloha regulační tyče čerpadla, nebo úhel natočení pístků čerpadla, nebo úhel
natočení škrtící klapky karburátoru apod.
Ukazatelem spotřeby vzduchu může být například u moderních motorů přímo signál
měřiče průtoku vzduchu a nebo plnící tlak spolu s otáčkami. Pokud je jako ukazatel použit
plnící tlak, což je výhodné u přeplňovaných motorů, je nezávislá veličina otáček klikového
hřídele již k dispozici.
Na rozdíl od stávajících běžných trojrozměrných charakteristik bude tato forma
čtyřrozměrná a nelze ji tudíž graficky znázornit jednou veličinovou plochou pro jednu emisní
složku, ale soustavou veličinových ploch, odpovídajících čtvrtému rozměru dané emisní
složky. Výpočetní systém pro praktické využívání takovýchto charakteristik nebude nijak
podstatně složitější a zřejmě může být plně funkční v reálném čase činnosti motorů.
Ukazatele spotřeby paliva a spotřeby vzduchu by v charakteristikách spalovacích
motorů sloužily jako náhrada za užitečný točivý moment s tím, že spolu s otáčkami motoru by
mohly být schopny charakterizovat i jeho nestacionární pracovní režimy (např. přechodové
jevy při akceleraci a deceleraci), a že by mohly tudíž být univerzálně použitelné pro libovolné
typy motorů vznětových i zážehových. V zásadě se totiž všechny stavy motoru vyjadřují zcela
jednoznačnými podmínkami a další, méně významné podmínky, jako je např. vlhkost, teplota
a atmosférický tlak vzduchu, teplota motorového oleje a chladící kapaliny, lze kompenzovat
běžnými korekčními činiteli.
Problém by mohl
nastat tím, že se u moderních motorů objevuje elektronické řízení nejen
množství, ale i časového
rozložení vstřiku paliva,
dále pak elektronické
řízení časování ventilů a
lze
očekávat
další
obdobný trend vývoje. Zatím však je možno s určitou
pravděpodobností
předpokládat, že i vliv
uvedených nových řídících prvků bude možno
zahrnout do čtyřrozměrné
Obr. 5.2 – Čtyřrozměrná charakteristika
závislosti.
116
Výše uvedené dvě veličinové plochy M1 a M2 na obrázku číslo 5.2 představují pouze
dvě diskrétní možnosti vyjádření čtvrtého rozměru závislosti, a sice ukazatele spotřeby
vzduchu, v příslušných hodnotách 120 a 170 kPa. Následná lineární interpolace uvedených
dvou ploch M1 a M2 představuje nejjednodušší formu vyjádření požadované plochy M
výstupní veličiny v závislosti na plochách M1 a M2 veličin vstupních. Plocha M1 je
znázorněna v souladu se stupnicí svislé osy, plocha M je s ohledem na názornost svisle
posunuta o +500 Nm a plocha M2 je svisle posunuta o +1000 Nm.
Uživatel silničního vozidla by se kromě jednotlivých naměřených parametrů
technického stavu dozvěděl s vysokou přesností a s použitím některých zjednodušujících
podmínek jak se aktuální technický stav motorového vozidla promítne do ekonomické,
ekologické i bezpečnostní stránky provozu. Zároveň by tento systém umožnil posoudit zásah
provedený servisním stanovištěm a zejména, zda se provedená údržba a seřízení promítne na
parametrech vozidla pozitivně nebo negativně.
S ohledem na finanční možnosti běžných servisních pracovišť je navrhováno měřící
zařízení, které by přineslo požadované výsledky s minimálními provozními a investičními
náklady. K pohonu měřícího zařízení by sloužil motor samotného vozidla a do setrvačníků
akumulovaná energie. Autor spolu s dalšími pracovníky předložili návrh zkušebny spolu
s diagnostickým stanovištěm zobrazené na obrázku 5.3.
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
nová vrata
pracovní stůl
sloupový zvedák
přezouvání pneumatik
odsávací hadici
vyvažování pneumatik
kontrola tlumičů
vyhodnocení kontroly tlumičů
diagnostika el. zařízení
zařízení pro vibrodiagnostiku
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
pojízdná bedna s nářadím
kontrola rovnosti rámů vozidel
ovládání kontroly rámů
čtečka řídících jednotek
osciloskop
odkládací prostor
nové dveře
odkládací prostor
stávající dveře
ovládání zatěžovací stolice
21)
22)
23)
24)
25)
26)
27)
28)
29)
30)
ovládací místnost
systém VMAS
analyzátory (CO, CO2, NOx …)
pojízdné dvojice válců
odsávací vedení
protihluková izolace
zatěžovací stolice – projekt MDCR
stávající vrata
centrální odsávací jednotky
odsávací vedení
Obr. 5.3 – Návrh měřícího a diagnostického pracoviště
Cena vlastní zatěžovací stanice by se měla pohybovat pod 1 mil. Kč, aby se mohla
uplatnit v široké míře v běžných servisních stanovištích. Proto je její konstrukce navrhována i
s ohledem na investiční náklady.
117
6. Závěr
Autor v předloženém přehledu současného stavu hodnocení vozidel provedl rozbor
problematiky stávajících možností využití dynamických měření a přispívá svým návrhem,
obsahujícím:
- Dynamické měření spalovacích motorů s výkonnostním regulátorem, použitelné pro
tvorbu celkové veličinové charakteristiky motoru (kapitola 4.1.1),
- Virtuální tahovou charakteristiku traktoru (kapitola 4.1.2),
- Model práce traktoru na simulovaném pozemku (kapitola 4.2).
Autorem navržený způsob dynamického měření spalovacích motorů
s výkonnostním regulátorem umožňuje na základě 9 měřených bodů vytvořit celkovou
veličinovou charakteristiku motoru, která je použitelná na všechny typy atmosféricky
plněných motorů bez elektronického řízení. Je řešena formou závislosti spotřeby paliva na
otáčkách a točivém momentu motoru. Aby byla celková charakteristika použitelná pro
všechny typy motorů, je prováděna její transformace na čtyřrozměrnou charakteristiku, kde se
točivý moment motoru stává závislou veličinou na ukazateli dodávky paliva a na ukazateli
dodávky vzduchu.
Zmíněný systém čtyřrozměrných charakteristik se zaměřením na elektronické mýtné je
zpracován v rámci grantového projektu, na kterém se autor podílí jako člen Katedry jakosti a
spolehlivosti strojů, v úzké spolupráci s Katedrou vozidel a pozemní dopravy Technické
fakulty České zemědělské univerzity v Praze, dále pak s Dopravní fakultou Českého
vysokého učení technického v Praze a společností Telematics.
Na základě vytvořené celkové veličinové charakteristiky motoru autor zpracoval
virtuální tahovou charakteristiku traktoru (příloha číslo 4), která umožňuje simulovat
v počítači obdobné podmínky jako při skutečném měření v polních podmínkách, a k tomu
navíc, na rozdíl od stávající výpočtové metody, umožňuje rychle a jednoduše aktualizovat do
výpočtu vložený technický stav motoru, který se na přesnosti výsledku výraznou měrou
podílí.
Vytvořená virtuální tahová charakteristika umožňuje vhodnější, aktualizovanou formu
posouzení technického stavu traktoru, v porovnání s jeho posouzením pomocí tahové
charakteristiky, která byla měřena u traktoru nového. Současně umožňuje kontrolovat stav a
kvalitu údržbářského zásahu, zda přispěje k ekonomicky a ekologicky příznivé práci stroje.
V další části autor modeluje práci traktoru na simulovaném pozemku, a to za
účelem možnosti vyčíslit ekonomický a ekologický přínos pro konkrétního uživatele (příloha
číslo 4). Jedná se o virtuální jízdu traktoru, která na základě celkové veličinové
charakteristiky, tahové charakteristiky a modelu pozemku vyčísluje spotřebu paliva a
případně i emisí.
Navržený model práce traktoru umožňuje simulovat různé libovolně zvolené systémy
jízdy a výsledky mezi sebou porovnat s cílem dosažení minimální měrné spotřeby paliva,
respektive minimální produkce škodlivých emisí (budou-li v budoucnu škodlivé emise
kvantifikovaně postihovány ekologickou daní). Nejvhodnější systém jízdy pak slouží řidiči
jako rádce pro zvolení konkrétních podmínek, převodového stupně a otáček motoru.
Měrná produkce emisí byla zatím vkládána do výpočtu pouze orientačně, avšak autor
očekává, že po dalším rozvoji metody měření ředěním spalin, na níž se v současnosti jako
spolupracovník podílí s cílem její široké využitelnosti, bude možno měření emisí aplikovat
obdobným způsobem jako měření paliva a ve výsledku bude možné zohlednit nejen
ekonomiku, ale také ekologii jízdy.
118
Na základě rozboru problematiky doporučuje autor rozvoj dynamických metod měření
v běžné široké servisní praxi motorových vozidel a traktorů. Dynamicky a kvazistaticky
měřené charakteristiky motoru významně přispívají k posouzení technického stavu vozidla
před a po údržbářském zásahu nebo opravě a mohou tak servisním zařízením poskytnout
kvantifikovaný doklad o přínosu servisního opatření pro zákazníka.
119
Literatura
1)
ANDRÉ, M., HAMMARSTRÖM, U.: Driving statistics for the assessment of
pollutant emissions from road transport. Deliverable 15 of the MEET project. Report
LEN 9730. INRETS, Bron, France.
2)
BOUČEK, J.: Trendy vývoje motorových vozidel. Nový venkov, 4 (5), 2000.
ISSN 1211-7919.
3)
ČERNOVOL, M.I., POŠTA, J.: Application of compositional coatings to raise
reliability of agricultural machine parts. In: Trends in Agricultural Engineering,
sborník referátů z mezinárodní vědecké konference, ČZU, Praha, 1999.
ISBN 80-213-0517-7
4)
DVOŘÁK, F.: Traktorové motory. In: Traktory, Praha, Agrospoj-Ing.F.Savov, 2001.
5)
DVOŘÁK, F.: Trendy vývoje traktorových motorů, KOKA 2000-XXXI.medzinárodná
konferencia katedier a pracovísk spalovacích motorov českých a slovenských
vysokých škol, Žilina, 2000. ISSN/ISBN 80-7100-736-6
6)
DVOŘÁK, F.: Vývojové trendy traktorů. Farmář, 8, (10), 2002. ISSN 1210-9789
7)
GRAJA, M., MOJŽÍŠ, V.: Energetická náročnost v dopravě a ochrana životního
prostředí v kombinované dopravě silnice/železnice. Doprava, 4, Praha, 1996.
8)
HAAN, P., KELLER, M.: Real - world driving cycles for emission measurements
Artemis and Swiss cycles. March 2001.
9)
HAVLÍČEK, J., JURČA, V., LACINA, J.: Jakost a spolehlivost strojů. Vysoká škola
zemědělská v Praze, Praha, 1993. ISBN 80-213-0160-0
10) HAVLÍČEK, J., LEGÁT, V., POŠTA, J., ŠTĚTKA, J., ZELENKA, R.: Optimalizace
režimu setrvačníkové zkoušky AHSP. Praha, MF VŠZ, 1989.
11) HAVLÍČEK, J.: Provozní spolehlivost strojů.
nakladatelství, Praha, 1989. ISBN 80-209-0029-2
Vydalo
Státní
zemědělské
12) HENSON, P.: Evaluating Vehicle Emissions Inspection and Maintenance Programs
National Research Counci. National Academy Press, Washington, DC, 2001. ISBN:
0-309-07446
13) HLADÍK, T., PEXA, M., PEJŠA, L.: Application of GPS for Continuous Diagnostics
of Motor Vehicles Emissions in Traffic. Reliability and Diagnostics of Transport
Structures and Means, 2002. ISSN ISBN 80-7194-464-5
14) JOUMARD, R., PHILIPPE, F.: Reliability of the current models of instantaneous
pollutant emissions. Proceedings Sixth Int. Symp. Highway and Urban Pollution, JRC,
Ispra, Italy, , 1998.
15) JOUMARD, R., SÉRIÉ, E.: Modeling of cold start emissions for passenger cars.
INRETS report n° LTE 9931, December 1999.
16) KADLEČEK, B. PEJŠA, L. DVOŘÁK, F.: The computer modeling of test travel
cycles. Zastosowanie technologii informacyjnych w rolnictwie, Polihymnia sp. z o o.,
2004. ISBN 83-7270-231-4
17) KADLEČEK, B., PEJŠA, L., HLADÍK, T.: The application of quasi static
measuremnet on tractors and heavy duty vehicles. Science and Research - Tools of
120
Global Development Strategy, Czech University of Agriculture in Prague, Technical
Faculty, 2004. ISBN 80-213-1187-8
18) KADLEČEK, B., PEJŠA, L., OTTO, K.: Měření výkonu a spotřeby paliva při
diagnostice vozidlových motorů. Sborník přednášek mezinárodní konference
TD2000-DIAGON 2000, VUT Brno Academia centrum Fakulty technologické ve
Zlíně, Zlín, 2000. ISBN 80-214-1578-9
19) KADLEČEK, B., PEJŠA, L., PEXA, M., HLADÍK, T.: Metoda měření na volných
válcích pro testování emisí, spotřeby paliva a technického stavu motorů nákladních
automobilů traktorů a speciálních vozidel. Zpráva z dílčího úkolu projektu EU COST
346, Česká zemědělská univerzita v Praze, Praha, 2003, s. 30.
20) KADLEČEK, B.: Akcelerační diagnostické měření výkonových parametrů vozidlových
motorů. Diagnostika a aktivní řízení 98, VUT Brno, 1998. ISBN 80-85918-46-3
21) KADLEČEK, B.: Habilitační práce - Systém péče o spalovací motory z hlediska vlivu
na životní prostředí a ekonomiku provozu. Česká zemědělská univerzita v Praze, 2003.
22) KADLEČEK, B.: Quasi-static measurement of fuel consumption from engine exhaust
emissions. Reliability and Diagnostics of Transport Structures and Means, 2002.
ISBN 80-7194-464-5
23) KAMEŠ, J.: Spalovací motory. Praha, Česká zemědělská univerzita, 2002.
ISBN 80-213-0895-8
24) KAMEŠ, J.: Spalovací motory. Praha, Česká zemědělská univerzita, 2002.
ISBN 80-213-0895-8
25) KIEM, H.: The influence of dynamic factors on the directional stability and control of
the pusher articulated bus. Czech University of Agriculture Prague - Technical
Faculty, Praha, 1999. ISBN 80-213-0517-7
26) Kol. redakce: Výkon pod kontrolou-válcové zkušebny výkonu II. Auto Expert, ročník 5,
1999, č. 7/8, s. 38 – 40.
27) KRATOCHVÍL, T., POŠTA, J., PEXA, M.: Reliability of automobile clutches. In:
Sborník referátů Mezinárodního symposia "Quality and Reliability of Machines", SPU
Nitra, 2004. ISBN 80-8069-369-2
28) KUMHÁLA, F. aj.: Příručka pro opravy a údržbu zemědělské techniky. Profi Press,
2004. ISBN 80-86726-07-X
29) LACHNIT, F.: Pojezdová ústrojí traktoru.
Ing.F.Savov, 2001.
In: Traktory, Praha, Agrospoj -
30) LÁNSKÝ, M. a kol.: Meranie a diagnostika. Nakladatelství dopravy a spojů, Praha,
1990, 2. vydání. ISBN 80-7030-066-3
31) MATĚJKA, J., POŠTA, J.: Údržba a diagnostika motorových vozidel I. - mechanické
části motoru. /Literární předloha výukového filmu/, Praha, Krátký film, 1989.
32) MCCORMICK, R.: Emissions for Three Heavy-Duty Diesel Vehicles. Colorado
Institute for Fuels and High Altitude Engine Research, International Fall Fuels and
Lubricants Meeting and Exposition San Francisco, California, 1998.
33) MITSCHKE, M.: Dynamik der Kraftfahrzeuge – Antrieb und Bremsung. Springer,
Berlin, 1995.
121
34) ONDRÁČEK, J.: Traktory a automobily I. Vysoká škola zemědělská v Brně, Brno,
1988.
35) PEJŠA, L., KADLEČEK, B., HORKA, M.: Diagnostika a optimalizace provozu
vozidlových motorů. Quality and Reliability of Machines, SPU Nitra, 1999.
ISBN 80-7137-599-3
36) PEJŠA, L., KADLEČEK, B., OTTO, K.: Kvazistatický způsob zatěžování motorů a
jeho využití při měření spotřeby paliva a emisí. COST 319, 1998.
37) PEJŠA, L., KADLEČEK, B., PEXA, M., HLADÍK, T.: Metoda měření na volných
válcích pro testování emisí, spotřeby paliva a technického stavu motorů nákladních
automobilů, traktorů a speciálních vozidel. Zpráva z projektu COST 346.10, Česká
zemědělská univerzita, Praha, 2002.
38) PEJŠA, L., KADLEČEK, B., PEXA, M.: Charakteristiky adhezních vlastností
pneumatik. Sborník příspěvků, 6. mezinárodní vědecké symposium "Quality and
Reliability of Machines", 2001. ISSN 80-7137-873-9
39) PEJŠA, L., KADLEČEK, B., PEXA, M.: Posouzení technického stavu motoru z
hlediska provozních vlastností užitkového vozidla. Sborník příspěvků, 6. mezinárodní
vědecké symposium "Quality and Reliability of Machines", 2001.
ISSN 80-7137-873-9
40) PEJŠA, L., KADLEČEK, B.: Metoda měření na volných válcích pro testování emisí a
spotřeby paliva motorů nákladních automobilů, traktorů a speciálních vozidel.
Výroční zpráva COST 346.10, Česká zemědělská univerzita, Praha, leden 2001.
41) PEJŠA, L., KADLEČEK, B.: Metoda měření na volných válcích pro testování emisí,
spotřeby paliva a technického stavu motorů nákladních automobilů, traktorů a
speciálních vozidel. Zpráva z projektu COST 346.10, Česká zemědělská univerzita,
Praha, prosinec 2001.
42) PEJŠA, L., LACINA, J., JURČA, V., KADLEČEK, B.: Technická diagnostika. Česká
zemědělská univerzita v Praze, Technická fakulta. Praha, 1995. ISBN 80-213-0249-6
43) PEJŠA, L., LEGÁT, V., FLEISCHMAN, Z., POŠTA, J.: Cvičení z provozní
spolehlivosti strojů III. – Technická diagnostika. Vysoká škola zemědělská v Praze,
Praha, 1981.
44) PEJŠA, L., POŠTA, J.: Diagnostika účinku vozidlových brzd na rychloběžných
válcích. In: Sborník z mezinárodní konference SPOLELIVOST 2001, VA, Brno,
2001. ISBN 80-85960-30-3
45) PEXA, M.: Aplikace městského jízdního cyklu na autobus Karosa. Zborník zo IV.
medzinárodnej vedeckej konferencie mladých, 2002. ISSN 80-8069-085-5
46) PIDGEON, W. M. aj.: The IM240 Transient I/M Dynamometer Driving Schedule and
The Composite I/M Test Procedure. EPA-AA-TSS-91-1 NTIS No., January 1991.
47) POŠTA, J., PAVLÁSEK, V.: Poškození brzdových válců kapalinových brzd
automobilů ŠKODA. In: Sborník příspěvků mezinárodního symposia "Quality and
reliability of Machines", DT ZSVTS Bratislava, 1996. ISBN 80-233-0361-9
48) POŠTA, J., JURČA, V., KADLEČEK, B.: Technologie informacyjne w dziedzine
jakości i nezawodności maszyn. In: Sborník anotací referátů vědecké konference
"Zastosowanie technologii informacyjnych w rolnictwie", Polsko, Kazimierz nad
Wisłą, 1998.
122
49) POŠTA, J., KADLEČEK, B., HLADÍK, T.: Smoke emission of Diesel engine with
mechanical engine speed governor. In: Acta technologica agriculturae, SPU Nitra,
Volume 7, Number 1, March 2004. ISSN 1335-2555
50) POŠTA, J., NÁLEVKA, S.: Dynamická diagnostika vozidlových brzd. In: Sborník
referátů Mezinárodního symposia "Quality and Reliability of Machines", SPU Nitra,
2000. ISBN 80-7137-720-1
51) POŠTA, J., NEVYHOŠTĚNÝ, L., KADLEČEK, B.: Multipurpose Optoelectronic
Sensor for Combustion Engines Diagnostics. In: Sborník referátů z mezinárodní
vědecké konference "AGROTECH NITRA '99", Nitra, 1999, 2.díl.
ISBN 80-7137-613-2
52) POŠTA, J., PAVLÍČEK, R., KADLEČEK, B.: Computer-based diagnostics of vehicle
alternators.
In: Sborník anotací referátů vědecké konference "Zastosowanie
technologii informacyjnych w rolnictwie", Polsko, Kazimierz Dolny, 2000.
ISBN 93-7259-025-7
53) POŠTA, J., PAVLÍČEK, R.: Diagnostics of technical condition alternators and
analysis of temporary process. In: Trends in Agricultural Engineering, sborník
referátů z mezinárodní vědecké konference, ČZU, Praha, 1999. ISBN 80-213-0517-7
54) POŠTA, J., VESELÝ, P., DVOŘÁK, M.: Degradace strojních součástí. Praha, ČZU,
2002. ISBN 80-213-0967-9
55) POŠTA, J.: Die Feststellung des Restwertes eines Maschinenteiles. In: Sborník
příspěvků mezinárodní vědecké konference "Agricultural Engineering" k 50. výročí
založení Faculty of Agricultural Engineering, Lithuanian University of Agriculture,
Kaunas, Litva, 1996. ISBN 9986-545-41-2
56) POŠTA, J.: Dynamická diagnostika mobilních strojů. In: Sborník "OPERATIONAL
DEPENDABILITY OF MACHINES ´2000", ČZU, Praha, 2000. ISBN 80-213-0631-9
57) POŠTA, J.: Údržba traktorů a zemědělských strojů. In: Technické novinky v
zemědělství - příloha týdeníku ZEMĚDĚLEC, č. 47, roč. 5, 1997.
58) Předpis EHK 13: Jednotná ustanovení pro homologaci vozidel kategorie M, N, O
z hlediska brzdění.
59) Předpis EHK 49: Jednotná ustanovení pro homologaci vznětových motorů, motorů
poháněných zemním plynem a zážehových motorů poháněných zkapalněnými
ropnými plyny a dále vozidel vybavených vznětovými motory, motory poháněnými
zemním plynem a motory poháněnými zkapalněnými ropnými plyny z hlediska emisí
motoru.
60) Předpis EHK 83: Jednotná ustanovení pro homologaci vozidel z hlediska emisí
škodlivin dle požadavků na motorové palivo.
61) PRIKNER, P.: Limity zatížení pojezdového ústrojí zemědělských vozidel a strojů z
hlediska stlačování půdy v laboratorních podmínkách. Zborník z II. Medzinárodnej
konferencie mladých 2000, Ráčkova dolina - Západné Tatry, 2000.
ISSN/ISBN 80-7137-762-7
62) PRIKNER, P.: Možnosti snižování škodlivých účinků pneumatik zemědělských strojů
na půdu. Praha, Farmář, č. 12, 1999. ISSN 1210 - 9789
63) PRIKNER, P.: Radiální pneumatiky mohou snížit napětí v půdě a její zhutnění. Praha,
Farmář, č. 6, 1999. ISSN 1210 – 9789
123
64) SANGER, R.P. aj.: Motor vehicle emission regulations and fuel specifications part 2
detailed information and historic review(1970-1996). (Next planned revision: Year
2000), Ó CONCAWE Brussels, March 1997.
65) Sbírka zákonů: č. 302/2001 Sb. Vyhláška Ministerstva dopravy a spojů technických
prohlídkách a měření emisí vozidel.
66) Sbírka zákonů: č. 341/2002 Sb., Vyhláška Ministerstva dopravy o schvalování
technické způsobilosti a technických podmínkách provozu vozidel na pozemních
komunikacích.
67) Sbírka zákonů: č. 56/2001 Sb., Zákon o podmínkách provozu vozidel na pozemních
komunikacích a o změně zákona č. 168/1999 Sb., o pojištění odpovědnosti za škodu
způsobenou provozem vozidla a změně některých souvisejících zákonů (zákon o
pojištění odpovědnosti z provozu vozidla), ve znění zákona č. 307/1999 Sb.
68) SHAYLER, P. J., DOW, P. I. aj.: A Model and Methodology Used to Assess the
Robustness of Vehicle Emissions and Fuel Economy Characteristics'. IMechE Paper
C606/013/2002, in IMechE Transactions of Int Conf on Statistics and Analytical
Methods in Automotive Engineering, London 2002. ISBN No 1-8605-8387-3
69) ŠKAPA, P.: Doprava a životní prostředí I. VŠB – technická univerzita Ostrava,
Ostrava 2003. ISBN 80-248-0433-6
70) ŠKAPA, P.: Doprava a životní prostředí II. VŠB – technická univerzita Ostrava,
Ostrava 2003. ISBN 80-248-0434-4
71) ŠLEGER,V., VRECION,P.: Mathcad 7 - Příručka k programu. Haar International
s.r.o, Praha, 1998. ISBN 80-238-187-1
72) ŠMICR, V., MATĚJKA, J., ZELENKA, R.: Traktory a automobily III. Vysoká škola
zemědělská v Praze, Praha, 1984.
73) STEJSKAL, V., VALÁŠEK, M.: Kinematics and dynamics of machinery. České
vysoké učení technické v Praze.
74) STODOLA, J.: Modeling and Evaluation of Degradation Processes of Combustion
Engines. Reliability and Diagnostics of Transport Structures and Means, 2002. ISSN
ISBN 80-7194-464-5
75) TAKÁTS, M.: Měření emisí spalovacích motorů. Vydavatelství ČVUT, Praha, 1997.
ISBN 80-01-01632-3
76) VLK, F.: Dynamika motorových vozidel. Nakladatelství a zasilatelství vlk, Brno, 2001.
ISBN 80-238-5273-6
77) ATAL – měřící technika. <http://www.atal.cz>. [cit. 2003-08-28].
78) Emission Test Cycles – ECE 15 + EUDC.
<http://www.dieselnet.com/standards/cycles/ece_eudc.html>. [cit. 2005-05-05].
79) Emission Test Cycles – ECE R49.
<http://www.dieselnet.com/standards/cycles/ece_r49.html>. [cit. 2005-05-05].
80) Emission Test Cycles – ESC. <http://www.dieselnet.com/standards/cycles/esc.html>.
[cit. 2005-05-05].
81) Emission Test Cycles – ETC. <http://www.dieselnet.com/standards/cycles/etc.html>.
[cit. 2005-05-05].
124
82) PEJŠA, L., KADLEČEK, B., LEGÁT, V., PEXA, M.,: Motorová vozidla.
<http://motorvehicles.tf.czu.cz>. [cit. 2003-08-28].
83) PŘIBYL, P., SVÍTEK, M., JUŘÍK, T., FENCL, I., RILEY, P., GRUBL, Z., PLIŠKA,
Z.: Elektronické platby mýtného na pozemních komunikacích. Projekt MDČR č.
804/110/101. <http://www.sdt.cz/efc/efc_popis_cz.html>. [cit. 2005-08-04]
84) Registr motorových vozidel. <http://www.mvcr.cz>. [cit. 2005-04-28].
85) Řídící a měřící systém pro dvounápravové univerzální válcové dynamometry.
<http://www.dt.fme.vutbr.cz>. [cit. 2003-08-28].
86) BOSCH: firemní literatura
125
Přílohy - obsah
Příloha 1.1a) - Závislost rychlosti na dráze a na čase – Sekce A1 a A2
Příloha 1.1b) - Závislost rychlosti na dráze a na čase – Sekce A3 a A4
Příloha 1.1c) - Závislost rychlosti na dráze a na čase – Sekce A5 a A6
Příloha 1.2 - Protokol o stavu brzdové soustavy
Příloha 1.3a) - Brzdná dráha vozidla na náledí při hloubce dezénu 0 mm
Příloha 1.3b) - Brzdná dráha vozidla na vozovce o 0,4 mm vody při hloubce dezénu
1,6 mm
Příloha 1.3c) - Brzdná dráha vozidla na vozovce o 1,6 mm vody při hloubce dezénu
3 mm
Příloha 1.3d) Brzdná dráha vozidla na náledí při hloubce dezénu 5 mm
Příloha 1.4a) - Brzdná dráha vozidla a odpor vzduchu při protivětru – 40 km.h-1
Příloha 1.4b) - Brzdná dráha vozidla a odpor vzduchu při protivětru + 40 km.h-1
Příloha 1.5a) - Brzdná dráha vozidla při sklonu vozovky 10 %
Příloha 1.5b) - Brzdná dráha vozidla při sklonu vozovky -5 % (jízda ze svahu)
Příloha 1.6a) - Brzdná dráha vozidla při zařazeném 2. rychlostním stupni
Příloha 1.6b) - Brzdná dráha vozidla při zařazeném 5. rychlostním stupni
Příloha 1.7a) - Dráha do zastavení vozidla při reakční době řidiče 0,2 s
Příloha 1.7b) - Dráha do zastavení vozidla při reakční době řidiče 1,7 s
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
1
Sekce A1 Jízda po rovině, plné zatížení, rychlost 15, 32 a 50 km/h, Dráha 40, 240 a 320 m
Sekce A2 Jízda do kopce, plné zatížení, rychlost 15, 32 a 50 km/h, Dráha 40, 240 a 320 m
Příloha 1.1a) - Závislost rychlosti na dráze a na čase – Sekce A1 a A2 [37]
2
Sekce A3 Jízda z kopce, plné zatížení, rychlost 15, 32 a 50 km/h, Dráha 40, 240 a 320 m
Sekce A4 Jízda po rovině, bez zatížení, rychlost 15, 32 a 50 km/h, Dráha 40, 240 a 320 m
Příloha 1.1b) - Závislost rychlosti na dráze a na čase – Sekce A3 a A4 [37]
3
Sekce A5 Jízda do kopce, bez zatížení, rychlost 15, 32 a 50 km/h, Dráha 40, 240 a 320 m
Sekce A6 Jízda z kopce, bez zatížení, rychlost 15, 32 a 50 km/h, Dráha 40, 240 a 320 m
Příloha 1.1c) - Závislost rychlosti na dráze a na čase – Sekce A5 a A6 [37]
4
Přední náprava:
1-Levé přední kolo
3000
F1ia1
Fm1
2250
Fm2
2-Pravé přední kolo
3000
F2ia2
1500
2250
1500
750
750
0
0.8
1.6
2.4
3.2
4
0
0.8
t1ia1 − t1L − 12
cas v s
1.6
2.4
3.2
4
t2ia2 − t2H− 12
cas v s
Fm1 = 1712
Brzdná síla na obv.kola(N)
(N) 1-Plná brzdná síla
Fm2 = 2600
z1 = 0.453
1-Poměrný účinek brzdy
z2 = 0.628
Brzdná síla na obv.kola(N)
(N) 2-Plná brzdná síla
2-Poměrný účinek brzdy
(%) Souměrnost účinku brzd přední nápravy (+ stáčí doprava, - stáčí doleva)
zV = 32.4
Zadní náprava:
3- Levé zadní kolo
2000
F3ia3
1500
F4ia4
1000
5
500
0
1.2
2.4
3.6
4- Pravé zadní kolo
2000
Fm3
Fm4
1500
1000
500
4.8
6
0
1.2
t3ia3 − t3X − 12
cas v s
2.4
3.6
4.8
6
t4ia4 − t4I− 12
cas v s
Fm3 = 1250
Brzdná síla na obv.kola(N)
(N) 3-Plná brzdná síla
Fm4 = 900
Brzdná síla na obv.kola(N)
(N) 4-Plná brzdná síla
z3 = 0.364
3-Poměrný účinek brzdy
z4 = 0.156
4-Poměrný účinek brzdy
(%) Souměrnost účinku brzd zadní nápravy (+ stáčí doprava, - stáčí doleva)
zH = −33
Zadní náprava - ruční brzda:
5- Levé zadní kolo
2000
F5ia5
1500
Fm5
1000
F6ia6
5
500
0
1.2
2.4
3.6
6- Pravé zadní kolo
2000
4.8
1500
Fm6
1000
500
6
0
t5ia5 − t5J− 12
cas v s
1.2
2.4
3.6
4.8
6
t6ia6 − t6K− 12
cas v s
Fm5 = 606
Brzdná síla na obv.kola(N)
(N) 3-Plná brzdná síla
Fm6 = 606
Brzdná síla na obv.kola(N)
(N) 4-Plná brzdná síla
z5 = 0.186
3-Poměrný účinek brzdy
z6 = 0.186
4-Poměrný účinek brzdy
(%) Souměrnost účinku brzd vozidla ( + stáčí doprava, - stáčí doleva)
C (km/h) rychlost vozidla
Celé vozidlo: zF = 19
BRZDNÁ DRÁHA VOZIDLA
100
C
50
0
10
20
30
40
50
60
SC
S (m) modelovaná brzdná dráha pri standardní adhezi kol
Příloha 1.2 - Protokol o stavu brzdové soustavy
5
Obrázek představuje brzdnou dráhu dosaženou plně naloženým měřeným vozidlem
z počáteční rychlosti 80 km/h až do zastavení za uvedených podmínek. Zajímavé je
sledovat průběh brzdné síly na pedál. Vzhledem k tomu, že se vozidlo pohybuje po náledí
je nutné brzdnou sílu snížit, aby nedošlo ke smyku. Toto snížení brzdné síly na pedál se
projevuje po celou dobu brzdění. Jedná se vlastně o softwarový ABS systém, který
zaručuje brzdění na hranici maximální adheze. Je to jedna z podmínek celé simulace.
Předpokládá se zkušený řidič, který brzdí vozidlo na hranici maximální možné přilnavosti
pneumatiky k vozovce.
Příloha 1.3a) - Brzdná dráha vozidla na náledí při hloubce dezénu 0 mm
6
Obrázek představuje brzdnou dráhu dosaženou plně naloženým měřeným vozidlem
z počáteční rychlosti 80 km/h až do zastavení za uvedených podmínek. V tomto případě
na rozdíl od předchozího příkladu uvedeného v příloze XIII.2a je síla na pedál ihned od
počátku brzdění na své maximální hodnotě. V obrázku je to znázorněno černou přímkou,
která vyjadřuje 100 % sešlápnutí brzdového pedálu
Příloha 1.3b) - Brzdná dráha vozidla na vozovce o 0,4 mm vody při hloubce dezénu 1,6 mm
7
Obrázek představuje brzdnou dráhu dosaženou plně naloženým měřeným vozidlem
z počáteční rychlosti 80 km/h až do zastavení za uvedených podmínek. V tomto případě
je ovládací síla na pedál téměř po celou dobu omezována, ale ke konci brzdění dochází
k úplnému sešlápnutí (100 %) brzdového pedálu. Během brzdění dochází ke snižování
rychlosti, na které je závislé vytlačování vody z dezénu pneumatiky. Větší rychlost
představuje větší množství vody, které je nutné vytlačit dezénem, jenž však má omezenou
kapacitu. S klesající rychlostí se zmenšuje poměr mezi množstvím vody a kapacitou
pneumatiky, až téměř na konci brzdění pneumatika pojme a bezpečně vytlačí všechnu
vodu, která je do ní přiváděna odvalováním po mokré vozovce. Poté je možno sešlápnout
pedál brzdy naplno.
Příloha 1.3c) - Brzdná dráha vozidla na vozovce o 1,6 mm vody při hloubce dezénu 3 mm
8
Na náledí nejsou kola schopna přenést brzdnou sílu na vozovku v průběhu celé
brzdné dráhy až do zastavení vozidla, protože je nízký součinitel záběru. Aby se řidič
dokázal pohybovat na hranici součinitele záběru musí být velmi zkušený nebo mít
vozidlo vybavené brzdovým systémem ABS
Příloha 1.3d) Brzdná dráha vozidla na náledí při hloubce dezénu 5 mm
9
Příloha 1.4a) - Brzdná dráha vozidla a odpor vzduchu při protivětru – 40 km.h-1
10
Příloha 1.4b) - Brzdná dráha vozidla a odpor vzduchu při protivětru + 40 km.h-1
11
Brzdná dráha vozidla při sklonu 10 % je přibližně o 20 % kratší než brzdná dráha na
rovině. Stejné je to v případě opačného sklonu – 10 %, ale dochází k prodloužení brzdné
dráhy. Asi těžko by se v praxi hledal svah o sklonu 10 a více % a pokud by se někde
nacházel, lze předpokládat, že se na něm řidič bude pohybovat s náležitou dávkou
opatrnosti. Častěji se v praxi řidič setká se svahem o sklonu 5 % a zde dochází
k prodloužení či zkrácení brzdné dráhy, které se pohybuje kolem 10 % její původní
hodnoty (brzdná dráha za standardních podmínek).
Příloha 1.5a) - Brzdná dráha vozidla při sklonu vozovky 10 %
12
Brzdná dráha vozidla při sklonu - 5 % je přibližně o 10 % delší než brzdná dráha na
rovině. Stejné je to v případě opačného sklonu 5 % (jízda do kopce), ale dochází
ke zkrácení brzdné dráhy. V běžném provozu je řidič na svah větší 6 % upozorňován
značkou o nebezpečném klesání a ve většině případů automaticky dbá zvýšené opatrnosti.
Co ale svahy menší? Příkladně na svahu 2 % se brzdná dráha zkrátí přibližně o 4 %.
V opačném případě se o 4 % prodlouží. Nelze tedy situaci brzdění na svahu pominout
jako nevýznamnou.
Příloha 1.5b) - Brzdná dráha vozidla při sklonu vozovky -5 % (jízda ze svahu)
13
Příloha 1.6a) - Brzdná dráha vozidla při zařazeném 2. rychlostním stupni
14
Příloha 1.6b) - Brzdná dráha vozidla při zařazeném 5. rychlostním stupni
15
Reakce řidiče v oblasti pohybující se blízko 0,2 sekundy není běžná pro typického
řidiče v silničním provozu. Touto reakcí se mohou pochlubit pouze špičkoví řidiči
soutěžních automobilů. Běžná reakce řidiče se pohybuje v oblasti 0,5 – 0,9 sekundy a má
na ni vliv celá řada činitelů např. pozornosti, věk řidiče, zkušenosti řidiče, alkohol,
dopravní situace atd.
Příloha 1.7a) - Dráha do zastavení vozidla při reakční době řidiče 0,2 s
16
Běžná reakce řidiče se pohybuje v oblasti 0,5 – 0,9 sekundy a má na ni vliv celá řada
činitelů např. pozornost, věk řidiče, zkušenosti řidiče, alkohol, dopravní situace atd. Doba
reakce řidiče pod vlivem alkoholu je nevyzpytatelná, protože představuje souhrn
nedostatku pozornosti, motorických schopností a schopnosti uvědomění. Statisticky
běžná reakce opilého řidiče je 1,7 s.
Příloha 1.7b) - Dráha do zastavení vozidla při reakční době řidiče 1,7 s
17
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
18
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
19
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
20
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
21
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
22
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
23
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
24
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
25
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
26
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
27
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
28
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
29
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
30
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
31
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
32
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
33
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
34
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
35
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
36
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
37
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
38
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
39
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
40
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
41
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
42
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
43
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
44
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
45
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
46
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
47
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
48
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
49
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
50
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
51
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
52
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
53
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
54
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
55
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
56
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
57
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
58
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
59
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
60
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
61
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
62
Příloha 4 – MathCad 2001: Tahová charakteristika a práce traktoru na poli
63

Podobné dokumenty

1 - Technická fakulta ČZU v Praze - Česká zemědělská univerzita v

1 - Technická fakulta ČZU v Praze - Česká zemědělská univerzita v bezpečnosti silničního provozu, na níž se brzdová soustava a její systémy velkou měrou podílejí. Velkým přínosem pro ekologii, ekonomiku i bezpečnost provozu by tudíž bylo, kdyby se uvedená měření ...

Více

základy analytické chemie

základy analytické chemie Kvalitativní analytická chemie (= kvalitativní analýza) zkoumá složení studované látky. Kvalitativní analýzou se dokazuje přítomnost prvků (v podobě atomů nebo jednoduchých i složených iontů, popř....

Více

Jak řešit problémy při psaní odborných textů X

Jak řešit problémy při psaní odborných textů X čas a navíc bylo již zcela vyloučeno odpovídajícím způsobem modifikovat i Vaše powerpointové prezentace – jenom bychom účastníky kursu mátli, kdyby se vytištěný text lišil od

Více

FYKOS, XXVIII. ročník, 6. číslo

FYKOS, XXVIII. ročník, 6. číslo Na závěr poznamenejme, že Planckova soustava má využití především v kvantové teorii gravitace a v teorii strun, kde pomocí Planckových jednotek převedeme rovnice do bezrozměrného tvaru, který často...

Více