ˇCást GA Návrh projektu na podporu excelence v základn´ım výzkumu

Transkript

ˇCást GA Návrh projektu na podporu excelence v základn´ım výzkumu
Část GA
Návrh projektu na podporu excelence v základnı́m výzkumu (dále návrh
projektu)
Datum podánı́ návrhu projektu:
Čı́slo panelu(ů):
Registračnı́ čı́slo:
totožné s datem odeslánı́ návrhu
projektu prostřednictvı́m ISDS
P104, P105
P104/12/G083
UCHAZEČ a NAVRHOVATEL
Uchazeč:
České vysoké učenı́ technické v Praze
IČ:
68407700
Sı́dlo:
Zikova 1903/4, 16000 Praha 6
Navrhovatel:
prof. Dr. Ing Bořek Patzák
Pracoviště navrhovatele:
Fakulta stavebnı́, Thákurova 7, 16629 Praha 6
Rodné čı́slo:
7005150240
Telefon:
+420224354375
Fax:
+420224310775
E-mail:
[email protected]
SPOLUNAVRHOVATEL 1
Spoluuchazeč 1:
Vysoké učenı́ technické v Brně
IČ:
00216305
Sı́dlo:
Antonı́nská 548/1, 60190 Brno
Spolunavrhovatel:
prof. Ing. Drahomı́r Novák, DrSc.
Pracoviště spolunavrhovatele:
Fakulta stavebnı́, Veveřı́ 331/95, 60200 Brno
Rodné čı́slo:
6001150496
Telefon:
+420541147360
Fax:
+420541240994
E-mail:
[email protected]
1
P104/12/G083
Část GA
SPOLUNAVRHOVATEL 2
Spoluuchazeč 2:
Centrum dopravnı́ho výzkumu, v.v.i.
IČ:
44994575
Sı́dlo:
Lı́šeňská 33a, 63600 Brno-Židenice
Spolunavrhovatel:
prof. Ing. Karel Pospı́šil, Ph.D., MBA
Rodné čı́slo:
6907283812
Telefon:
+420 548 423 755
Fax:
+420 548 423 748
E-mail:
[email protected]
SPOLUNAVRHOVATEL 3
Spoluuchazeč 3:
Univerzita Karlova v Praze
IČ:
00216208
Sı́dlo:
Ovocný trh 5, 11636 Praha 1
Spolunavrhovatel:
doc. RNDr. Jiřı́ Žák, Ph.D.
Pracoviště spolunavrhovatele:
Přı́rodovědecká fakulta, Albertov 6, 12843 Praha 2
Rodné čı́slo:
7605262038
Telefon:
+420221951475
Fax:
+420221951452
E-mail:
[email protected]
Název projektu česky:
Centrum pro vı́ceúrovňové a stochastické modelovánı́ materiálů, procesů a konstrukcı́ (MULTAS)
Název projektu anglicky:
Center for Multiscale and Stochastic Modeling of Materials, Processes and Structures (MULTAS)
Klı́čová slova česky:
Spolehlivost, vı́ceúrovňové modelovánı́, multifyzikálnı́ modely
Klı́čová slova anglicky:
Reliability, multiscale modelling, multiphysic
Datum zahájenı́: 01/01/2012
Doba řešenı́ (roky): 7
Zařazenı́ do čı́selnı́ku CEP:
JN: Stavebnictvı́
JM: Inženýrské stavitelstvı́
2
P104/12/G083
Část GA
JJ: Ostatnı́ materiály
Kopie oprávněnı́ k činnosti tvořı́cı́ součást řešenı́ grantového projektu ve smyslu Zadávacı́ dokumentace čl.
4.2.1 NENÍ SOUČÁSTÍ NÁVRHU PROJEKTU.
Podánı́m návrhu prostřednictvı́m ISDS statutárnı́ zástupce uchazeče (statutárnı́m orgánem je statutárnı́
orgán, popř. člen nebo členové statutárnı́ho orgánu, osoba jimi pověřená či fyzická osoba-uchazeč) stvrzuje:
ˆ že navrhovatel je v pracovněprávnı́m vztahu k uchazeči nebo tento vztah vznikne na základě udělenı́
grantu,
ˆ že zajistı́, aby navrhovatel po přidělenı́ grantu plnil všechny povinnosti řešitele vyplývajı́cı́ ze zákona
č. 130/2002 Sb., zadávacı́ dokumentace a smlouvy mezi poskytovatelem (GA ČR) a přı́jemcem,
ˆ že se s navrhovatelem před podpisem návrhu projektu seznámili se zadávacı́ dokumentacı́ a zavazujı́
se dodržovat jejı́ ustanovenı́;
ˆ že všechny údaje uvedené v návrhu projektu jsou pravdivé, úplné a nezkreslené a jsou totožné s údaji
v elektronické verzi návrhu projektu podané pomocı́ aplikace, a že návrh projektu byl vypracován v
souladu se zadávacı́ dokumentacı́;
ˆ že všichni spolunavrhovatelé a spolupracovnı́ci uvedenı́ v návrhu projektu byli seznámeni s věcným
obsahem návrhu projektu i s finančnı́mi požadavky v něm uvedenými a se zadávacı́ dokumentacı́;
ˆ že před podánı́m návrhu projektu zajistili souhlas výše uvedených osob s účastı́ na řešenı́ grantového
projektu uvedeného v návrhu projektu;
ˆ že projekt s totožnou nebo obdobnou problematikou nepřijal, nepřijı́má a nepřijme podporu z jiného
zdroje,
ˆ že souhlası́, aby údaje uvedené v návrhu projektu byly použity pro vnitřnı́ informačnı́ systém GA ČR
a uveřejněny v rozsahu stanoveném zákonem č. 130/2002 Sb. a zadávacı́ dokumentacı́ (viz čl. 8.4).
prof. Ing. Václav Havlı́ček, CSc - rektor v. r.
3
Část G – Abstrakt
Navrhovatel:
Registračnı́ čı́slo:
Název projektu:
prof. Dr. Ing Bořek Patzák
P104/12/G083
Centrum pro vı́ceúrovňové a stochastické modelovánı́ materiálů, procesů a konstrukcı́ (MULTAS)
Abstrakt - česky
Cı́lem navrhovaného projektu je propojenı́ kvalitativnı́ch základnı́ch poznatků s aplikovaným výzkumem
vedoucı́ k inovacı́m v oblasti numerických simulacı́ heterogenı́ch materiálů. Koncepce projektu je založena
na propojenı́ experimentů a matematického modelovánı́. Výstupem projektu budou výpočetnı́ modely, které
umožnı́ predikci chovánı́ komlexnı́ch heterogennı́ch materiálů se zarhnutı́m nejistot vstupů a kvatifikaci nejistot na výstupu. Modely budou validovány s využitı́m existujı́cı́ch a nově obdržených experimentálnı́ch dat.
Projekt také umožnı́ vývoj viruálnı́ch testů, které umožnı́ částečně nahradit standartnı́ experimentálnı́ testy
pro zı́skánı́ vstupnı́ch dat pro existujı́cı́ fenomenoligické modely na makroúrovni. Tyto výsledky významně
přispějı́ k dalšı́mu rozvoji materiálového inženýrstvı́ a pokročilé analýzy konstrukcı́.
Cı́le projektu - česky
(Tento text bude v přı́padě udělené grantu uveden ve smlouvě o řešenı́ projektu.)
Cı́lem projektu je vývoj a verifikace vı́ceúrovňových konstitutivnı́ch modelů heterogenı́ch materiálů, které propojı́ základnı́ mechanismy na mikroúrovni s návrhovými postupy, vycházejı́cı́
z pochopenı́ základnı́ch jevů a uváženı́m jejich statistické povahy.
Abstrakt - anglicky
The aim of the project is to bridge qualitative basic knowledge with applied research for the innovations
through the basic oriented research in the area of computational simulations. The concept of this project
is based on the principles of Integrated Computational Materials Engineering (ICME), which combines experimental data with theoretical modeling. Outputs of this project yield computational models, enabling
predictions of structural systems from advanced materials including uncertainties on inputs and outputs.
The models will be validated against existing experimental data and against new data obtained from complementary tests. The project will result also in the development of multiscale virtual tests which can partially
replace standard tests for obtaining input data for existing computer codes working on the macro scale.
This can significantly help to speed up the new developments in material science and advanced structural
assessment.
4
Část GB – sumy
Uchazeč:
Navrhovatel:
Registračnı́ čı́slo:
České vysoké učenı́ technické v Praze – Fakulta stavebnı́
prof. Dr. Ing Bořek Patzák
P104/12/G083
1. Celkové předpokládané uznané náklady na řešenı́ projektu ze všech
zdrojů financovánı́ na jednotlivé roky jeho řešenı́
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
Náklady ze všech zdrojů financovánı́
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
Celkem
16915
16908
16908
16908
16908
16908
16908
118363
2. Celkové předpokládané uznané náklady na řešenı́ projektu z jednotlivých
zdrojů za celou dobu jeho řešenı́
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
Jednotlivé zdroje finančnı́ch prostředků na řešenı́ projektu
tis. Kč
Celkové grantové prostředky požadované od GA ČR
118363
Podpora z jiných tuzemských veřejných zdrojů (z jiné kapitoly státnı́ho rozpočtu nebo rozpočtů územnı́ch státnı́ch celků), pokud existuje
0
Podpora z ostatnı́ch veřejných zdrojů (nepatřı́cı́ch do státnı́ho rozpočt nebo rozpočtů územnı́ch státnı́ch celků), pokud existuje. (veřejné zdroje v ČR i v zahraničı́)
0
Podpora z neveřejných zdrojů (zahraničnı́ zdroje, neveřejné tuzemské zdroje, vlastnı́ neveřejné zdroje), pokud existuje
0
Celkem
118363
3. Celkové náklady na řešenı́ projektu požadované od GA ČR
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
Věcné náklady celkem
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
5096
5089
5089
5089
5089
5089
5089
0
0
0
0
0
0
0
11819
11819
11819
11819
11819
11819
11819
16915
16908
16908
16908
16908
16908
16908
Investičnı́ náklady celkem
Osobnı́ náklady celkem
Náklady na řešenı́ projektu celkem
5
Část GB – rozpis
Uchazeč:
Navrhovatel:
Registračnı́ čı́slo:
České vysoké učenı́ technické v Praze – Fakulta stavebnı́
prof. Dr. Ing Bořek Patzák
P104/12/G083
Finančnı́ prostředky požadované od GA ČR pro uchazeče
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
Věcné náklady1
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
Materiálnı́ náklady
120
120
120
120
120
120
120
Cestovnı́ náklady
400
400
400
400
400
400
400
Náklady na ostatnı́ služby a nemateriálnı́ náklady
320
320
320
320
320
320
320
Doplňkové (režijnı́) náklady
1107
1107
1107
1107
1107
1107
1107
Věcné náklady celkem
1947
1947
1947
1947
1947
1947
1947
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
Investičnı́ náklady (na pořı́zenı́ dlouhodobého hmotného a
nehmotného majetku)2
Celková
pořı́zovacı́
cena
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Investičnı́ náklady celkem
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
Osobnı́ náklady (Podrobný rozpis v části
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
3117
3117
3117
3117
3117
3117
3117
GB – osobnı́ náklady)3
Mzdy navrhovatele a spolupracovnı́ků
1 Zadávacı́
dokumentace 3.2.1
dokumentace 3.2.3
3 Zadávacı́ dokumentace 3.2.2
2 Zadávacı́
6
P104/12/G083
Část GB – rozpis
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
300
300
300
300
300
300
300
60
60
60
60
60
60
60
Sociálnı́ a zdravotnı́ pojištěnı́ a SF (FKSP)
1217
1217
1217
1217
1217
1217
1217
Osobnı́ náklady celkem
4694
4694
4694
4694
4694
4694
4694
Osobnı́ náklady
Mzdy technických a administrativnı́ch pracovnı́ků
Ostatnı́ osobnı́ náklady (celkem)
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
Náklady celkem
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
6641
6641
6641
6641
6641
6641
6641
Náklady z dalšı́ch zdrojů předpokládané za celou dobu řešenı́ projektu
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
Účelová podpora – dotace
0
0
0
0
0
0
0
Podpora z ostatnı́ch tuzemských veřejných
zdrojů
0
0
0
0
0
0
0
Podpora z neveřejných zdrojů
0
0
0
0
0
0
0
7
Část GB – rozpis
Spoluuchazeč:
Spolunavrhovatel:
Registračnı́ čı́slo:
Vysoké učenı́ technické v Brně – Fakulta stavebnı́
prof. Ing. Drahomı́r Novák, DrSc.
P104/12/G083
Finančnı́ prostředky požadované od GA ČR pro spoluuchazeče
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
Věcné náklady1
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
81
81
81
81
81
81
81
Cestovnı́ náklady
400
400
400
400
400
400
400
Náklady na ostatnı́ služby a nemateriálnı́ náklady
320
320
320
320
320
320
320
Doplňkové (režijnı́) náklady
1099
1099
1099
1099
1099
1099
1099
Věcné náklady celkem
1900
1900
1900
1900
1900
1900
1900
Materiálnı́ náklady
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
Investičnı́ náklady (na pořı́zenı́ dlouhodobého hmotného a
nehmotného majetku)2
Celková
pořı́zovacı́
cena
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Investičnı́ náklady celkem
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
Osobnı́ náklady (Podrobný rozpis v části
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
3282
3282
3282
3282
3282
3282
3282
GB – osobnı́ náklady)3
Mzdy navrhovatele a spolupracovnı́ků
1 Zadávacı́
dokumentace 3.2.1
dokumentace 3.2.3
3 Zadávacı́ dokumentace 3.2.2
2 Zadávacı́
8
P104/12/G083
Část GB – rozpis
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
Mzdy technických a administrativnı́ch pracovnı́ků
110
110
110
110
110
110
110
Ostatnı́ osobnı́ náklady (celkem)
133
133
133
133
133
133
133
Sociálnı́ a zdravotnı́ pojištěnı́ a SF (FKSP)
1168
1168
1168
1168
1168
1168
1168
Osobnı́ náklady celkem
4693
4693
4693
4693
4693
4693
4693
Osobnı́ náklady
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
Náklady celkem
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
6593
6593
6593
6593
6593
6593
6593
Náklady z dalšı́ch zdrojů předpokládané za celou dobu řešenı́ projektu
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
Účelová podpora – dotace
0
0
0
0
0
0
0
Podpora z ostatnı́ch tuzemských veřejných
zdrojů
0
0
0
0
0
0
0
Podpora z neveřejných zdrojů
0
0
0
0
0
0
0
9
Část GB – rozpis
Spoluuchazeč:
Spolunavrhovatel:
Registračnı́ čı́slo:
Centrum dopravnı́ho výzkumu, v.v.i.
prof. Ing. Karel Pospı́šil, Ph.D., MBA
P104/12/G083
Finančnı́ prostředky požadované od GA ČR pro spoluuchazeče
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
Věcné náklady1
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
50
50
50
50
50
50
50
100
100
100
100
100
100
100
90
90
90
90
90
90
90
Doplňkové (režijnı́) náklady
330
330
330
330
330
330
330
Věcné náklady celkem
570
570
570
570
570
570
570
Materiálnı́ náklady
Cestovnı́ náklady
Náklady na ostatnı́ služby a nemateriálnı́ náklady
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
Investičnı́ náklady (na pořı́zenı́ dlouhodobého hmotného a
nehmotného majetku)2
Celková
pořı́zovacı́
cena
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Investičnı́ náklady celkem
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
Osobnı́ náklady (Podrobný rozpis v části
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
984
984
984
984
984
984
984
GB – osobnı́ náklady)3
Mzdy navrhovatele a spolupracovnı́ků
1 Zadávacı́
dokumentace 3.2.1
dokumentace 3.2.3
3 Zadávacı́ dokumentace 3.2.2
2 Zadávacı́
10
P104/12/G083
Část GB – rozpis
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
Osobnı́ náklady
Mzdy technických a administrativnı́ch pracovnı́ků
Ostatnı́ osobnı́ náklady (celkem)
Sociálnı́ a zdravotnı́ pojištěnı́ a SF (FKSP)
Osobnı́ náklady celkem
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
54
54
54
54
54
54
54
0
0
0
0
0
0
0
373
373
373
373
373
373
373
1411
1411
1411
1411
1411
1411
1411
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
Náklady celkem
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
1981
1981
1981
1981
1981
1981
1981
Náklady z dalšı́ch zdrojů předpokládané za celou dobu řešenı́ projektu
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
Účelová podpora – dotace
0
0
0
0
0
0
0
Podpora z ostatnı́ch tuzemských veřejných
zdrojů
0
0
0
0
0
0
0
Podpora z neveřejných zdrojů
0
0
0
0
0
0
0
11
Část GB – rozpis
Spoluuchazeč:
Spolunavrhovatel:
Registračnı́ čı́slo:
Univerzita Karlova v Praze – Přı́rodovědecká fakulta
doc. RNDr. Jiřı́ Žák, Ph.D.
P104/12/G083
Finančnı́ prostředky požadované od GA ČR pro spoluuchazeče
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
Věcné náklady1
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
115
80
80
80
80
80
80
80
110
110
110
110
110
110
Náklady na ostatnı́ služby a nemateriálnı́ náklady
144
144
144
144
144
144
144
Doplňkové (režijnı́) náklady
340
338
338
338
338
338
338
Věcné náklady celkem
679
672
672
672
672
672
672
Materiálnı́ náklady
Cestovnı́ náklady
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
Investičnı́ náklady (na pořı́zenı́ dlouhodobého hmotného a
nehmotného majetku)2
Celková
pořı́zovacı́
cena
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Investičnı́ náklady celkem
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
Osobnı́ náklady (Podrobný rozpis v části
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
756
756
756
756
756
756
756
GB – osobnı́ náklady)3
Mzdy navrhovatele a spolupracovnı́ků
1 Zadávacı́
dokumentace 3.2.1
dokumentace 3.2.3
3 Zadávacı́ dokumentace 3.2.2
2 Zadávacı́
12
P104/12/G083
Část GB – rozpis
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
Mzdy technických a administrativnı́ch pracovnı́ků
0
0
0
0
0
0
0
Ostatnı́ osobnı́ náklady (celkem)
0
0
0
0
0
0
0
265
265
265
265
265
265
265
1021
1021
1021
1021
1021
1021
1021
Osobnı́ náklady
Sociálnı́ a zdravotnı́ pojištěnı́ a SF (FKSP)
Osobnı́ náklady celkem
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
Náklady celkem
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
1700
1693
1693
1693
1693
1693
1693
Náklady z dalšı́ch zdrojů předpokládané za celou dobu řešenı́ projektu
(finančnı́ údaje se uvádějı́ jako celočı́selné hodnoty v tisı́cı́ch Kč)
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
Účelová podpora – dotace
0
0
0
0
0
0
0
Podpora z ostatnı́ch tuzemských veřejných
zdrojů
0
0
0
0
0
0
0
Podpora z neveřejných zdrojů
0
0
0
0
0
0
0
13
Přı́loha k GB – rozpis
Uchazeč:
Navrhovatel:
Registračnı́ čı́slo:
České vysoké učenı́ technické v Praze – Fakulta stavebnı́
prof. Dr. Ing Bořek Patzák
P104/12/G083
Specifikace a zdůvodněnı́ požadavků pro 1. rok řešenı́
Přı́loha k GB – rozpis je nedı́lnou součástı́ návrhu projeku a obsahuje v souladu s ustanovenı́m Zadávacı́
dokumentace 4.2.7 specifikaci a zdůvodněnı́ každého požadavku uvedeného v GB – rozpis a GB – osobnı́
náklady.
Materiálnı́ náklady
Položka v částce 120 tis. Kč bude využita na pořı́zenı́ chemikáliı́ pro experimentálnı́ program (plastifikátory,
provzdušnovadla, aditiva, přı́měsy), alkalických aktivátorů, slı́nku; pořı́zenı́ studijnı́ a odborné literatury,
nákup kancelářského a spotřebnı́ho materiálu, drobných doplňků výpočetnı́ techniky, náplnı́ do tiskáren,
zálohovacı́ch médiı́.
Cestovnı́ náklady
Částka 400 tis. Kč bude použita na částečnou úhradu cestovnı́ch nákladů na následujı́cı́ domácı́ a zahraničnı́
konference:
ˆ 8th European Solid Mechanics Conference in Graz, Austria, July 9-13, 2012
ˆ 10th World Congress on Computatinal Mechanics (WCCM 2012), Sao Paulo, Brasil
ˆ 3rd International Congress of Theoretical and Applied Mechanics 2012, Vouliagmeni Beach, Athens,
Greece, March 7-9, 2012,
ˆ 23rd International Congress of Theoretical and Applied Mechanics (ICTAM2012), Beijing, China, 19
to 24 August, 2012.
ˆ European Activities on Crystal Growth, ECCG-4, 17-22 June 2012, Glasgow
ˆ 4th International Conference ”Smart Materials, Structures and Systems”, CIMTEC 2012, Italy
ˆ 1st International Congress on Durability of Concrete, Trondheim, Norway, 18 - 21 June 2012
Náklady na ostatnı́ služby a nemateriálnı́ náklady
Částka 320 tis. Kč bude využita na údržbu a opravy přı́strojového vybavenı́ a výpočetnı́ techniky. Dále
budou částečně hrazeny z této položky konferenčnı́ poplatky na konference (v souladu s pravidly zadávacı́
dokumentace).
Investičnı́ náklady
Investice z prostředků grantu nejsou požadovány.
Mzdové náklady
Mzdové náklady v celkové výši 3477 tis. Kč jsou plánovány pro členy řešitelského týmu 3117 tis. Kč a
pro technický personál 300 tis. Kč. V mzdových nákladech členů řešitelského týmu jsou zahrnuty i mzdy
14
P104/12/G083
Přı́loha k GB – rozpis
pro zapojené studenty, převážně doktorského studia celkem se předpokládá 6 studentů. Předpokládá se
zapojenı́ i dalšı́ch studentů magisterského a doktorského studia, jejichž participace bude pokryta i z jiných
zdrojů, předevšı́m specifického výzkumu. Ostatnı́ osobnı́ náklady 60 tis. Kč jsou plánovány specializované
programátorské práce a konzultačnı́ činnost.
Poznámka: v souladu s pravidly GAČR a vnitřnı́ch předpisů ČVUT v Praze se režijnı́ náklady stanovujı́ 20
% z celkových nákladů (1107 tis. Kč) a sociálnı́ a zdravotnı́ pojištěnı́ + FKSP představuje 35 % ze mzdových
nákladů (1217 tis. Kč).
15
Přı́loha k GB – rozpis
Spoluuchazeč:
Spolunavrhovatel:
Registračnı́ čı́slo:
Vysoké učenı́ technické v Brně – Fakulta stavebnı́
prof. Ing. Drahomı́r Novák, DrSc.
P104/12/G083
Specifikace a zdůvodněnı́ požadavků pro 1. rok řešenı́
Přı́loha k GB – rozpis je nedı́lnou součástı́ návrhu projeku a obsahuje v souladu s ustanovenı́m Zadávacı́
dokumentace 4.2.7 specifikaci a zdůvodněnı́ každého požadavku uvedeného v GB – rozpis a GB – osobnı́
náklady.
Materiálnı́ náklady
Položka v částce 81 tis. Kč bude využita na nákup výpočetnı́ techniky, kancelářského a spotřebnı́ho materiálu
a drobných doplňků výpočetnı́ techniky, náplně do tiskáren, media a knihy.
Cestovnı́ náklady
Částka 400 tis. Kč bude použita na částečnou úhradu cestovnı́ch nákladů na následujı́cı́ domácı́ a zahraničnı́
konference (realizována část, podle okolnostı́ možných dalšı́ch zdrojů financovánı́):
ˆ IALCCE: the International Symposium on Life-Cycle Civil Engineering 2012 (www.ialcce2012.org)
will be held at Vienna Hofburg Palace from October 3 to 6, 2012.
ˆ 8th European Solid Mechanics Conference in Graz, Austria, July 9-13, 2012
ˆ 10th World Congress on Computatinal Mechanics (WCCM 2012), Sao Paulo, Brasil
ˆ 3rd International Congress of Theoretical and Applied Mechanics 2012, Vouliagmeni Beach, Athens,
Greece, March 7-9, 2012,
ˆ 23rd International Congress of Theoretical and Applied Mechanics (ICTAM2012), Beijing, China, 19
to 24 August, 2012.
ˆ IABMAS 2012, Cernobbio, Como, Italy
ˆ The 7th International Conference on Advances in Steel Structures ”ICASS 2012”,6.-8.4.2012, Nanjing
(China)
ˆ The 6th Conference on FRP Composites in Civil Engineering CICE 2012, 13.-15.6.2012, Roma (Italy)
ˆ International Conference on Mechanics of Composite Materials, 28.5.-1.6.2012, Riga (Latvia)
ˆ The 21st Specialty Conference on Cold-Formed Steel Structures, 24.-25.10.2012, St. Louis, Missouri
(U.S.A.)
ˆ fib Sympozium Concrete Structures for a Sustainable Community, 11 - 14. 6. 2012, Stockholm, Švédsko
ˆ International Congress on Durability of Concrete - ICDC 2012, Trondheim, Norway
ˆ QUIRT 2012 June 11-14 Naples Italy
ˆ Concrete in the Low Carbon Era: 9-11 July Dundee 2012.
16
P104/12/G083
Přı́loha k GB – rozpis
ˆ 18thWCNDT ( 18th World Conference of Non-destructive Testing) in Durban, South Africa from 16-20
April 2012.
Náklady na ostatnı́ služby a nemateriálnı́ náklady
Částka 320 tis. Kč bude využita na údržbu a opravy vzniklé v souvislosti s řešenı́m projektu. Dále budou částečně hrazeny z této položky konferenčnı́ poplatky na konference (v souladu s pravidly zadávacı́
dokumentace), podrobněji rozepsány v cestovnı́ch nákladech.
Investičnı́ náklady
Investice z prostředků grantu nejsou požadovány.
Mzdové náklady
Mzdové náklady 3392 tis. Kč jsou plánovány pro členy řešitelského týmu 3276 tis. Kč a pro technický
personál 116 tis. Kč. Zde jsou zahrnuty i mzdy pro zapojené studenty, převážně doktorského studia celkem
se předpokládá 12 studentů.
Ostatnı́ osobnı́ náklady 133 tis. Kč jsou plánovány na zapojenı́ dalšı́ch studentů a specializované programátorské práce.
Poznámka: v souladu s pravidly GAČR a vnitřnı́ch předpisů FAST VUT v Brně se režijnı́ náklady stanovujı́
20 % z celkových nákladů (1099 tis. Kč) a sociálnı́ a zdravotnı́ pojištěnı́ představuje 34,42 % ze mzdových
nákladů (1168 tis. Kč).
17
Přı́loha k GB – rozpis
Spoluuchazeč:
Spolunavrhovatel:
Registračnı́ čı́slo:
Centrum dopravnı́ho výzkumu, v.v.i.
prof. Ing. Karel Pospı́šil, Ph.D., MBA
P104/12/G083
Specifikace a zdůvodněnı́ požadavků pro 1. rok řešenı́
Přı́loha k GB – rozpis je nedı́lnou součástı́ návrhu projeku a obsahuje v souladu s ustanovenı́m Zadávacı́
dokumentace 4.2.7 specifikaci a zdůvodněnı́ každého požadavku uvedeného v GB – rozpis a GB – osobnı́
náklady.
Materiálnı́ náklady
Částka 50 tis. Kč bude využita na nákup spotřebnı́ho materiálu v souvislosti s využitı́m rastrovacı́ho mikroskopu, kancelářského materiálu, výpočetnı́ techniky a odborných publikacı́ souvisejı́cı́ch s řešenı́m projektu.
Cestovnı́ náklady
Částka 100 tis. Kč bude použita na dı́lčı́ úhradu cestovnı́ch nákladů v souvislosti s účastı́ na domácı́ch a
zahraničnı́ch konferencı́ch (realizována část, podle okolnostı́ možných dalšı́ch zdrojů financovánı́):
ˆ The 2nd International Conference Microstructure Related Durability of Cementitious Composites,
Amsterdam, Netherlands, April 11-13, 2012
ˆ XXII International Congress of Crystallography, Madrid, Spain, August 22-30, 2011
ˆ XIII International Congress on the Chemistry of Cement, Madrid, Spain, July 3-8, 2011
ˆ Euromat 2011, European Congress and Exhibition on Advanced Materials and Processes, Montpellier,
France, September 12-15, 2011
ˆ International Congress on Durability of Concrete, Trondheim, Norway, June 17-21, 2012
ˆ INNOVATIVE MATERIALS AND TECHNOLOGIES FOR CONCRETE STRUCTURES, Balatonfüred, Mad’arsko, September 22-23, 2011
ˆ International Symposium on Asphalt Emulsion Technology, Crystal City, Virginia, October 09-12,
2012
ˆ 10th International Conference on Superplasticizers and Other Chemical Admixtures in Concrete, Prague, Czech Republic, October 28-31, 2012
ˆ 12th International Conference on Recent Advances in Concrete Technology and Sustainability Issues,
Prague, Czech Republic, October 31-November 2, 2012
Náklady na ostatnı́ služby a nemateriálnı́ náklady
Částka 90 tis. Kč bude využita na údržbu a opravy přı́strojové techniky vzniklé v souvislosti s řešenı́m
projektu. Dále budou částečně hrazeny z této položky konferenčnı́ poplatky na konference (v souladu s
pravidly zadávacı́ dokumentace), podrobněji rozepsány v cestovnı́ch nákladech.
Investičnı́ náklady
18
P104/12/G083
Přı́loha k GB – rozpis
Investice z prostředků grantu nejsou požadovány.
Mzdové náklady
Mzdové náklady 1038 tis. Kč jsou plánovány pro členy řešitelského týmu 984 tis. Kč a pro technický personál
54 tis. Kč.
Ostatnı́ osobnı́ náklady nejsou plánovány.
Poznámka: v souladu s pravidly GAČR a vnitřnı́mi předpisy Centra dopravnı́ho výzkumu, v.v.i. se režijnı́
náklady stanovujı́ ve výši 20 % z celkových nákladů (330 tis. Kč) a sociálnı́ a zdravotnı́ pojištěnı́
představuje 36 % ze mzdových nákladů (373 tis. Kč).
19
Přı́loha k GB – rozpis
Spoluuchazeč:
Spolunavrhovatel:
Registračnı́ čı́slo:
Univerzita Karlova v Praze – Přı́rodovědecká fakulta
doc. RNDr. Jiřı́ Žák, Ph.D.
P104/12/G083
Specifikace a zdůvodněnı́ požadavků pro 1. rok řešenı́
Přı́loha k GB – rozpis je nedı́lnou součástı́ návrhu projeku a obsahuje v souladu s ustanovenı́m Zadávacı́
dokumentace 4.2.7 specifikaci a zdůvodněnı́ každého požadavku uvedeného v GB – rozpis a GB – osobnı́
náklady.
Materiálnı́ náklady
Položka v částce 115 tis. Kč bude využita na nákup diamantových vrtáků na odběr vzorků (5 x 4 tis.),
dvou geologických kompasů typu Freiberg (2 x 20 tis.), dvou GPS přijı́mačů typu Garmin s mapovým
podkladem (2 x 10 tis.), digitálnı́ho fotoaparátu pro terénnı́ dokumentaci (cca 15 tis.), dále geologických
map a zahraničnı́ literatury.
Cestovnı́ náklady
Částka 80 tis. Kč bude použita na terénnı́ práce řešitelského týmu (cestovné, ubytovánı́, diety), celkem se
počı́tá s cca 100 člověkodny v terénu.
Náklady na ostatnı́ služby a nemateriálnı́ náklady
Částka 144 tis. Kč bude využita na řezánı́ vzorků na texturnı́ mikroanalýzy a válečků pro měřenı́ magnetické
anizotropie (25 tis.), zhotovenı́ zakrytých výbrusů (50 x 300 Kč), geochemické analýzy složenı́ hornin u firmy
Activation Laboratories, Ltd, Ontario (10 x 2400 Kč), separace zirkonů a monazitů (10 tis.) a radiometrické
datovánı́ metodou U-Pb na zirkonech nebo monazitech v geochronologické laboratoři Boise State University
(2 x 35 tis.).
Investičnı́ náklady
Investice z prostředků grantu nejsou požadovány.
Mzdové náklady
Mzdové náklady 756 tis. Kč jsou plánovány pro členy řešitelského týmu (180 tis. Kč) a byly vypočteny v
souladu s vnitřnı́m mzdovým předpisem Univerzity Karlovy takto: spolunavrhovatel Žák (třı́da AP3, 20%)
77 tis., člen týmu Kachlı́k (třı́da AP3, 10%) 38 tis., člen týmu Verner (třı́da AP2, 20%) 65 tis., Ph.D. student
1 (S1, třı́da VP1, 100%) 288 tis., Ph.D. student 2 (S2, třı́da VP1, 100%) 288 tis.
Poznámka: v souladu s pravidly GAČR a vnitřnı́ch předpisů PřF UK v Praze se režijnı́ náklady stanovujı́
jako 20 % z celkových nákladů (340 tis. Kč) a sociálnı́ a zdravotnı́ pojištěnı́ představuje 35 % ze mzdových
nákladů (265 tis. Kč).
20
Část GB – osobnı́ náklady
Uchazeč:
Navrhovatel:
Registračnı́ čı́slo:
České vysoké učenı́ technické v Praze – Fakulta stavebnı́
prof. Dr. Ing Bořek Patzák
P104/12/G083
Osobnı́ náklady pro uchazeče pro prvnı́ rok řešenı́
Mzdy odborných pracovnı́ků
Pracovnı́ úvazek na
řešenı́ (v % úvazku)1
Požadavky na mzdy od
GA ČR2
Jméno
Přı́jmenı́
Bořek
Patzák
30
288
Zdeněk
Bittnar
20
192
Milan
Jirásek
20
192
Petr
Kabele
20
192
Michal
Šejnoha
20
192
Vı́t
Šmilauer
20
144
Jan
Zeman
20
144
Martin
Kružı́k
10
48
Jan
Chleboun
20
144
Jandera
Michal
20
96
Petr
Štemberk
20
144
Pavel
Demo
20
192
Jan
Kratochvı́l
10
81
Pavel
Padevet
20
96
Jan
Vı́deňský
20
96
Jan
Pruška
20
96
Daniel
Rypl
10
72
Filip
Hejnic
20
96
Martin
Tipka
20
96
Jiřı́
Máca
20
192
1V
procentech odpovı́dajı́cı́ch rozsahu úvazku zaměstnanců na řešenı́ grantového projektu.
se celková výše hrubé mzdy nebo odměny, resp. jejich poměrná část požadovaná z prostředků GA ČR na prvnı́ rok
řešenı́ grantového projektu.
2 Uvádı́
21
P104/12/G083
Část GB – osobnı́ náklady
Mzdy odborných pracovnı́ků
Jméno
Přı́jmenı́
Ondřej
Zindulka
Pracovnı́ úvazek na řešenı́ (v %
úvazku)
Požadavky na mzdy od GA ČR
20
144
s(5)
20
30
s(1)
20
30
s(2)
20
30
s(3)
20
30
s(4)
20
30
s(6)
20
30
Mzdy technických a administrativnı́ch pracovnı́ků
Souhrnný pracovnı́ úvazek technických a administrativnı́ch pracovnı́ků (v % úvazku)
Požadavky na mzdy od GA ČR2
80
300
Ostatnı́ osobnı́ náklady (na základě dohod o provedenı́ práce nebo dohod o pracovnı́ činnosti)
Typ činnosti (pracovnı́ náplň), popřı́padě jméno studenta
Konzultace a specielnı́ programátorské práce
Požadavky
60
Zdůvodněnı́: V průběhu projektu bude třeba pokrýt vyjı́mečně činnosti, které instituce nezajišt’uje.
Pokud se budou práce na projektu účastnit studenti, uvádı́ se jméno a přı́jmenı́ s označenı́m (s)“. V přı́padě, že studenti budou
”
odměňovánı́ z položky OON uvádı́ se tyto údaje do pole “typ pracovnı́ činnosti”.
22
Část GB – osobnı́ náklady
Spoluuchazeč:
Spolunavrhovatel:
Registračnı́ čı́slo:
Vysoké učenı́ technické v Brně – Fakulta stavebnı́
prof. Ing. Drahomı́r Novák, DrSc.
P104/12/G083
Osobnı́ náklady pro spoluuchazeče pro prvnı́ rok řešenı́
Mzdy odborných pracovnı́ků
Pracovnı́ úvazek na
řešenı́ (v % úvazku)1
Požadavky na mzdy od
GA ČR2
Jméno
Přı́jmenı́
Drahomı́r
Novák
21
202
Amos
Dufka
5
24
Miroslav
Bajer
10
72
Patrik
Bayer
7
34
Lenka
Bodnárová
10
48
Jiřı́
Brožovský
5
36
Jiřı́
Bydžovský
15
108
Petr
Daněk
5
24
Rostislav
Drochytka
10
96
Jan
Eliáš
10
48
Petr
Frantı́k
10
48
František
Girgle
10
48
Rudolf
Hela
5
36
Petr
Holcner
7
34
Miroslava
Hruzı́ková
7
26
Zdeněk
Chobola
10
96
Jiřı́
Kala
5
36
Zdeněk
Kala
10
96
Marcela
Karmazı́nová
8
58
Zbyněk
Keršner
20
144
1V
procentech odpovı́dajı́cı́ch rozsahu úvazku zaměstnanců na řešenı́ grantového projektu.
se celková výše hrubé mzdy nebo odměny, resp. jejich poměrná část požadovaná z prostředků GA ČR na prvnı́ rok
řešenı́ grantového projektu.
2 Uvádı́
23
P104/12/G083
Část GB – osobnı́ náklady
Mzdy odborných pracovnı́ků
Jméno
Přı́jmenı́
Michaela
Krmı́čková
Barbara
Kucharczyková
Ivana
Lanı́ková
Jiřı́
Pracovnı́ úvazek na řešenı́ (v %
úvazku)
Požadavky na mzdy od GA ČR
15
72
5
24
10
48
Macur
8
58
David
Lehký
20
96
Jindřich
Melcher
6
58
Lumı́r
Miča
5
24
Aleš
Nevařil
5
24
Lenka
Nevřivová
10
48
Abayomi
Omishore
5
24
Luboš
Pazdera
10
96
Vı́t
Petránek
10
48
Milan
Pilgr
5
24
Otto
Plášek
8
58
Pavel
Rovnanı́k
8
39
Pavla
Rovnanı́ková
5
48
Vlastislav
Salajka
5
36
Pavel
Schmid
10
48
Jaroslav
Smutný
9
87
Radomı́r
Sokolář
10
72
Alfred
Strauss
8
58
Richard
Svoboda
6
29
Milan
Šmak
5
24
Petr
Štěpánek
5
48
Břetislav
Teplý
5
48
Jiřı́
Vala
5
48
Jan
Vaněrek
10
48
Václav
Veselý
17
82
Miroslav
Vořechovský
14
100
Nikol
Žižková
10
48
Václav
Sadı́lek (s1)
10
36
Augustin
Leiter (s2)
12
44
24
P104/12/G083
Část GB – osobnı́ náklady
Mzdy odborných pracovnı́ků
Jméno
Přı́jmenı́
Juraj
Chalmovský (s3)
Pracovnı́ úvazek na řešenı́ (v %
úvazku)
Požadavky na mzdy od GA ČR
12
44
s4
8
28
s5
8
28
s6
10
36
s7
10
36
s8
10
36
s9
4
13
s10
4
13
s11
5
17
s12
20
72
Mzdy technických a administrativnı́ch pracovnı́ků
Souhrnný pracovnı́ úvazek technických a administrativnı́ch pracovnı́ků (v % úvazku)
Požadavky na mzdy od GA ČR2
29
110
Ostatnı́ osobnı́ náklady (na základě dohod o provedenı́ práce nebo dohod o pracovnı́ činnosti)
Typ činnosti (pracovnı́ náplň), popřı́padě jméno studenta
(s)
Požadavky
133
Zdůvodněnı́: Jedná se o zapojenı́ studentů magisterského a doktorského studia (cca 3-5 studentů), kteřı́ budou
provádět dı́lčı́ práce výpočtové a experimentálnı́.
Pokud se budou práce na projektu účastnit studenti, uvádı́ se jméno a přı́jmenı́ s označenı́m (s)“. V přı́padě, že studenti budou
”
odměňovánı́ z položky OON uvádı́ se tyto údaje do pole “typ pracovnı́ činnosti”.
25
Část GB – osobnı́ náklady
Spoluuchazeč:
Spolunavrhovatel:
Registračnı́ čı́slo:
Centrum dopravnı́ho výzkumu, v.v.i.
prof. Ing. Karel Pospı́šil, Ph.D., MBA
P104/12/G083
Osobnı́ náklady pro spoluuchazeče pro prvnı́ rok řešenı́
Mzdy odborných pracovnı́ků
Pracovnı́ úvazek na
řešenı́ (v % úvazku)1
Požadavky na mzdy od
GA ČR2
Jméno
Přı́jmenı́
Karel
Pospı́šil
10
96
Petr
Šenk
15
108
Josef
Stryk
15
108
Jiřı́
Jedlička
10
72
Radek
Matula
10
48
Ivo
Dostál
10
48
Aleš
Frýbort
25
120
Dagmar
Pospı́šilová
10
48
Aleš
Kratochvı́l
10
48
Vı́tězslav
Křivánek
10
48
Jiřı́
Huzlı́k
15
72
Roman
Ličbinský
25
120
Vilma
Jandová
10
48
Mzdy technických a administrativnı́ch pracovnı́ků
Souhrnný pracovnı́ úvazek technických a administrativnı́ch pracovnı́ků (v % úvazku)
Požadavky na mzdy od GA ČR2
15
54
1V
procentech odpovı́dajı́cı́ch rozsahu úvazku zaměstnanců na řešenı́ grantového projektu.
se celková výše hrubé mzdy nebo odměny, resp. jejich poměrná část požadovaná z prostředků GA ČR na prvnı́ rok
řešenı́ grantového projektu.
2 Uvádı́
26
P104/12/G083
Část GB – osobnı́ náklady
Ostatnı́ osobnı́ náklady (na základě dohod o provedenı́ práce nebo dohod o pracovnı́ činnosti)
Typ činnosti (pracovnı́ náplň), popřı́padě jméno studenta
Požadavky
Zdůvodněnı́:
Pokud se budou práce na projektu účastnit studenti, uvádı́ se jméno a přı́jmenı́ s označenı́m (s)“. V přı́padě, že studenti budou
”
odměňovánı́ z položky OON uvádı́ se tyto údaje do pole “typ pracovnı́ činnosti”.
27
Část GB – osobnı́ náklady
Spoluuchazeč:
Spolunavrhovatel:
Registračnı́ čı́slo:
Univerzita Karlova v Praze – Přı́rodovědecká fakulta
doc. RNDr. Jiřı́ Žák, Ph.D.
P104/12/G083
Osobnı́ náklady pro spoluuchazeče pro prvnı́ rok řešenı́
Mzdy odborných pracovnı́ků
Pracovnı́ úvazek na
řešenı́ (v % úvazku)1
Požadavky na mzdy od
GA ČR2
Jméno
Přı́jmenı́
Jiřı́
Žák
20
77
Kryštof
Verner
20
65
Václav
Kachlı́k
10
38
S
1
100
288
S
2
100
288
Mzdy technických a administrativnı́ch pracovnı́ků
Souhrnný pracovnı́ úvazek technických a administrativnı́ch pracovnı́ků (v % úvazku)
Požadavky na mzdy od GA ČR2
0
0
Ostatnı́ osobnı́ náklady (na základě dohod o provedenı́ práce nebo dohod o pracovnı́ činnosti)
Typ činnosti (pracovnı́ náplň), popřı́padě jméno studenta
Požadavky
Zdůvodněnı́:
Pokud se budou práce na projektu účastnit studenti, uvádı́ se jméno a přı́jmenı́ s označenı́m (s)“. V přı́padě, že studenti budou
”
odměňovánı́ z položky OON uvádı́ se tyto údaje do pole “typ pracovnı́ činnosti”.
1V
procentech odpovı́dajı́cı́ch rozsahu úvazku zaměstnanců na řešenı́ grantového projektu.
se celková výše hrubé mzdy nebo odměny, resp. jejich poměrná část požadovaná z prostředků GA ČR na prvnı́ rok
řešenı́ grantového projektu.
2 Uvádı́
28
Část GD2 - bibliografie
Uchazeč:
Navrhovatel:
Registračnı́ čı́slo:
České vysoké učenı́ technické v Praze – Fakulta stavebnı́
prof. Dr. Ing Bořek Patzák
P104/12/G083
Úplné bibliografické údaje o osmi nejvýznamnějšı́ch výsledcı́ch vědecké a výzkumné činnosti
definovaných v aktuálně platné Metodice hodnocenı́ výsledků výzkumu a vývoje
Výsledek
Kód
druhu
výsledku
Počet
citacı́ (bez
autocitacı́)
podle
WOS
Impaktnı́
faktor
časopisu
nebo
kategorie
ERIH
1.
B. Patzák and M. Jirásek. Adaptive resolution of localized damage in quasibrittle materials. Journal of Engineering
Mechanics Division ASCE, 130:720–
732, 2004.
Jimp
22
0.980
2.
B. Patzák and M. Jirásek. Process zone
resolution by extended finite elements.
Engineering Fracture Mechanics, 70(78):837–1097, May 2003.
Jimp
20
1.447
3.
M. Jirásek and B. Patzák. Consistent tangent stiffness for nonlocal damage models. Computers and Structures, 80(14-15):1279–1293, June 2002.
Jimp
33
1.440
4.
B. Patzák and Z. Bittnar. Design of
object oriented finite element code.
Advances in Engineering Software,
32(10-11):759–767, 2001.
Jimp
22
1.045
5.
B. Patzák and Z. Bittnar. Modeling
of fresh concrete flow. Computers and
Structures, 87(15-16):962–969, 2009.
Jimp
0
1.440
6.
R. Chamrová and B. Patzák. Objectoriented programming and the extended finite-element method. Engineering and Computational Mechanics,
163(EM4):271–278, 2010.
Jneimp
0
7.
B. Patzák, OOFEM - multiphysic parallel finite element sotware,
www.oofem.org, 2011
R
0
1 Vyplnit
pouze pro časopisy nezařazené na WOS
29
Počet
citacı́ v
oborech
NRRE
Časopis je
zařazen v
databázi
SCOPUS1
P104/12/G083
Část GD2 - bibliografie
Úplné bibliografické údaje o osmi nejvýznamnějšı́ch výsledcı́ch vědecké a výzkumné činnosti definovaných v aktuálně platné Metodice hodnocenı́ výsledků výzkumu a vývoje
8.
Výsledek
Kód
druhu
výsledku
Počet
citacı́ (bez
autocitacı́)
podle
WOS
B. Patzák and Z. Bittnar. Rheology
and simulation of fresh concrete flow.
In M. Papadrakakis and B.H.V. Topping, editors, Trends in Engineering
Computational Technology, chapter 4,
pages 61–80. Civil-Comp Press Ltd,
Stirling, 2008.
C
0
Impaktnı́
faktor
časopisu
nebo
kategorie
ERIH
Počet
citacı́ v
oborech
NRRE
Časopis je
zařazen v
databázi
SCOPUS
Celkové počty výsledků definovaných v aktuálně platné Metodice hodnocenı́ výsledků výzkumu a vývoje od roku 2006 včetně (podle RIV):
1a. článek v odborném periodiku impaktovaném (druh výsledku Jimp )
2
1b. článek v odborném periodiku neimpaktovaném (druh výsledku Jneimp )
2
1c. článek v českém odborném recenzovaném časopise (druh výsledku Jrec )
0
2a. odborná kniha (druh výsledku B)
0
2b. kapitola v odborné knize (druh výsledku C)
2
3. článek ve sbornı́ku (druh výsledku D)
24
4. patent (druh výsledku P)
0
5. užitný nebo průmyslový vzor (druh výsledku F)
0
6. poloprovoz, ověřená technologie, odrůda, plemeno (druh výsledku Z)
0
7. prototyp, funkčnı́ vzorek (druh výsledku G)
0
8. poskytovatelem realizovaný výsledek (druh výsledku H)
0
9. specializovaná mapa (druh výsledku L)
0
10. certifikovaná metodika a postup (druh výsledku N)
0
11. software (druh výsledku R)
8
12. výzkumná zpráva obsahujı́cı́ utajované informace podle zvláštnı́ho právnı́ho předpisu (druh
výsledku V)
0
Celkový počet citacı́ včetně autocitacı́ na všechny práce podle Web of Science
H-index podle Web of Science
150
5
30
Část GD2 - bibliografie
Spoluuchazeč:
Spolunavrhovatel:
Registračnı́ čı́slo:
Vysoké učenı́ technické v Brně – Fakulta stavebnı́
prof. Ing. Drahomı́r Novák, DrSc.
P104/12/G083
Úplné bibliografické údaje o osmi nejvýznamnějšı́ch výsledcı́ch vědecké a výzkumné činnosti
definovaných v aktuálně platné Metodice hodnocenı́ výsledků výzkumu a vývoje
Výsledek
Kód
druhu
výsledku
Počet
citacı́ (bez
autocitacı́)
podle
WOS
Impaktnı́
faktor
časopisu
nebo
kategorie
ERIH
1.
NOVÁK, D., STOYANOFF, S.,
HERDA, H. 1995. Error assessment
for wind histories generated by autoregressive method. Structural Safety,
17(2), 79- 90. ISSN 0167-4730.
Jimp
2
2.276
2.
VOŘECHOVSKÝ, M., NOVÁK. D.
2009. Correlation control in smallsample Monte Carlo type simulations I: A simulated annealing approach. Probabilistic Engineering Mechanics 24(3)452-462. ISSN 0266-8920.
Jimp
0
1.221
3.
NOVÁK, D., LEHKÝ, D. 2006. ANN
Inverse Analysis Based on Stochastic Small-Sample Training Set Simulation. Engineering Application of Artificial Intelligence, 19 (7), 731-740,
ISSN 0952-1976.
Jimp
7
1.444
4.
BAŽANT, Z.P., PANG, S.D., VOŘECHOVSKÝ, M., NOVÁK, D. 2007.
Energetic-Statistical Size Effect Simulated by SFEM with Stratified Sampling and Crack Band Model. International Journal of Numerical Methods
in Engineering (John Wiley & Sons),
71 (11), 1297-1320, ISSN 0029-5981.
Jimp
4
2.025
5.
BAŽANT, Z.P., VOŘECHOVSKÝ,
M., NOVÁK, D. 2007. Asymptotic prediction of energetic-statistical size effect from deterministic finite element
solutions. Journal of Engineering Mechanics (ASCE), 133 (2), 153-162,
ISSN 0733-9399.
Jimp
2
0.980
1 Vyplnit
pouze pro časopisy nezařazené na WOS
31
Počet
citacı́ v
oborech
NRRE
Časopis je
zařazen v
databázi
SCOPUS1
P104/12/G083
Část GD2 - bibliografie
Úplné bibliografické údaje o osmi nejvýznamnějšı́ch výsledcı́ch vědecké a výzkumné činnosti definovaných v aktuálně platné Metodice hodnocenı́ výsledků výzkumu a vývoje
Výsledek
Kód
druhu
výsledku
Počet
citacı́ (bez
autocitacı́)
podle
WOS
Impaktnı́
faktor
časopisu
nebo
kategorie
ERIH
6.
BAŽANT, Z.P., ZHOU, Y., NOVÁK,
D., DANIEL, I.M. 2004. Size effect on
flexural strength of fiber-composite laminates. Journal of Engineering Materials and Technology - Transactions of
the ASME. 126 (1), 29-37. ISSN 00944289.
Jimp
3
0.815
7.
BAŽANT, Z.P., NOVÁK, D. 2000.
Energetic-statistical size effect in
quasibrittle failure at crack initiation.
ACI Materials Journal, 97(3), 381-392,
ISSN 0889-325X.
Jimp
10
0.896
8.
BAŽANT, Z.P., NOVÁK, D. 2000.
Probabilistic nonlocal theory for
quasibrittle fracture initiation and
size effect. I: Theory. Journal of
Engineering Mechanics (ASCE), 126
(2),166-174, ISSN 0733-9399.
Jimp
9
0.980
Počet
citacı́ v
oborech
NRRE
Časopis je
zařazen v
databázi
SCOPUS
Celkové počty výsledků definovaných v aktuálně platné Metodice hodnocenı́ výsledků výzkumu a vývoje od roku 2006 včetně (podle RIV):
1a. článek v odborném periodiku impaktovaném (druh výsledku Jimp )
4
1b. článek v odborném periodiku neimpaktovaném (druh výsledku Jneimp )
3
1c. článek v českém odborném recenzovaném časopise (druh výsledku Jrec )
2
2a. odborná kniha (druh výsledku B)
0
2b. kapitola v odborné knize (druh výsledku C)
8
3. článek ve sbornı́ku (druh výsledku D)
53
4. patent (druh výsledku P)
0
5. užitný nebo průmyslový vzor (druh výsledku F)
0
6. poloprovoz, ověřená technologie, odrůda, plemeno (druh výsledku Z)
0
7. prototyp, funkčnı́ vzorek (druh výsledku G)
0
8. poskytovatelem realizovaný výsledek (druh výsledku H)
0
9. specializovaná mapa (druh výsledku L)
0
10. certifikovaná metodika a postup (druh výsledku N)
0
11. software (druh výsledku R)
0
32
P104/12/G083
Část GD2 - bibliografie
Celkové počty výsledků definovaných v aktuálně platné Metodice hodnocenı́ výsledků výzkumu a vývoje od roku
2006 včetně (podle RIV):
12. výzkumná zpráva obsahujı́cı́ utajované informace podle zvláštnı́ho právnı́ho předpisu (druh
výsledku V)
Celkový počet citacı́ včetně autocitacı́ na všechny práce podle Web of Science
H-index podle Web of Science
0
139
7
33
Část GD2 - bibliografie
Spoluuchazeč:
Spolunavrhovatel:
Registračnı́ čı́slo:
Centrum dopravnı́ho výzkumu, v.v.i.
prof. Ing. Karel Pospı́šil, Ph.D., MBA
P104/12/G083
Úplné bibliografické údaje o osmi nejvýznamnějšı́ch výsledcı́ch vědecké a výzkumné činnosti
definovaných v aktuálně platné Metodice hodnocenı́ výsledků výzkumu a vývoje
Výsledek
Kód
druhu
výsledku
Počet
citacı́ (bez
autocitacı́)
podle
WOS
Impaktnı́
faktor
časopisu
nebo
kategorie
ERIH
1.
Stulirova, J., Pospisil, K. - Observation of Bitumen Microstructure
Changesusing
Scanning
Electron
Microscopy, ROAD MATERIALS
AND PAVEMENT DESIGN, Vol. 9
Issue: 4 Pages: 745-754, 2008
Jimp
0
0.383
2.
Korenska M, Pazdera L, Pospisil K, et
al. - Detection of the reinforcementcorrosion in prestressed concrete girders, In Proc. 8th International Conference of the Slovenian Society for NonDestructive Testing on the Application
of Contemporary Non-Destructive Testing in Engineering, Pages: 317-322,
Published: 2005
D
0
3.
POSPÍŠIL, Karel, ZEDNÍK, Petr. Limitation of geosynthetics usage on
road subgrade. Transactions on Transport Sciences, 2008, no. 2., p. 69 78,
ISSN 1802-971X (print version), ISSN
1802-9876 (on-line version)
Jrec
4.
Stryk, J., Pospisil, K., Kotes, P. - Systematic Decision Making Processes Associated with Maintenance and Reconstruction of Bridges, Pages: 174, CDV,
2009
B
1 Vyplnit
pouze pro časopisy nezařazené na WOS
34
Počet
citacı́ v
oborech
NRRE
Časopis je
zařazen v
databázi
SCOPUS1
P104/12/G083
Část GD2 - bibliografie
Úplné bibliografické údaje o osmi nejvýznamnějšı́ch výsledcı́ch vědecké a výzkumné činnosti definovaných v aktuálně platné Metodice hodnocenı́ výsledků výzkumu a vývoje
Výsledek
Kód
druhu
výsledku
5.
Pospisil, K. Road Construction Testing. In MALDONADO, A., ARNAUD, J. Large-scale test facilitiesfor civil engineering, road and transport: European analysis and proposals. 1st ed. Paris : Laboratoire Central
des Ponts et Chausees, 2006, ISBN 272082447-X
C
6.
Stryk, J., Pospisil, K. - Diagnostic
Methods for Concrete and Bridgesby
Acoustic Emission. In. Turk, A. S., Hocaoglu, K. A., Vertiy, A. A., Subsurface Sensing. pp. 844-860, Wiley, 2011,
ISBN 978-0-470-13388-0
C
7.
MORAVEC, Martin, POSPÍŠIL, Karel. Effectiveness of drainage grooves in
road wearing course. Transactions on
Transport Sciences, 2008, no. 3, p. 125
134. ISSN 1802-971X (print version),
ISSN 1802-9876 (on-line version)
Jrec
8.
Pospisil K., Frybort A., Kratochvil A.et al: Scanning Electron
Microscopy Method as a Tool for
the Evaluationof Selected Material
Microstructure. Transaction on Transport Sciences,2008, No.1, p.13-20.
ISSN 1802-971X
Jrec
Počet
citacı́ (bez
autocitacı́)
podle
WOS
Impaktnı́
faktor
časopisu
nebo
kategorie
ERIH
Počet
citacı́ v
oborech
NRRE
Časopis je
zařazen v
databázi
SCOPUS
Celkové počty výsledků definovaných v aktuálně platné Metodice hodnocenı́ výsledků výzkumu a vývoje od roku 2006 včetně (podle RIV):
1a. článek v odborném periodiku impaktovaném (druh výsledku Jimp )
1
1b. článek v odborném periodiku neimpaktovaném (druh výsledku Jneimp )
1
1c. článek v českém odborném recenzovaném časopise (druh výsledku Jrec )
7
2a. odborná kniha (druh výsledku B)
1
2b. kapitola v odborné knize (druh výsledku C)
2
3. článek ve sbornı́ku (druh výsledku D)
1
4. patent (druh výsledku P)
0
5. užitný nebo průmyslový vzor (druh výsledku F)
9
6. poloprovoz, ověřená technologie, odrůda, plemeno (druh výsledku Z)
0
35
P104/12/G083
Část GD2 - bibliografie
Celkové počty výsledků definovaných v aktuálně platné Metodice hodnocenı́ výsledků výzkumu a vývoje od roku
2006 včetně (podle RIV):
7. prototyp, funkčnı́ vzorek (druh výsledku G)
0
8. poskytovatelem realizovaný výsledek (druh výsledku H)
0
9. specializovaná mapa (druh výsledku L)
0
10. certifikovaná metodika a postup (druh výsledku N)
3
11. software (druh výsledku R)
0
12. výzkumná zpráva obsahujı́cı́ utajované informace podle zvláštnı́ho právnı́ho předpisu (druh
výsledku V)
0
Celkový počet citacı́ včetně autocitacı́ na všechny práce podle Web of Science
3
H-index podle Web of Science
0
36
Část GD2 - bibliografie
Spoluuchazeč:
Spolunavrhovatel:
Registračnı́ čı́slo:
Univerzita Karlova v Praze – Přı́rodovědecká fakulta
doc. RNDr. Jiřı́ Žák, Ph.D.
P104/12/G083
Úplné bibliografické údaje o osmi nejvýznamnějšı́ch výsledcı́ch vědecké a výzkumné činnosti
definovaných v aktuálně platné Metodice hodnocenı́ výsledků výzkumu a vývoje
Výsledek
Kód
druhu
výsledku
Počet
citacı́ (bez
autocitacı́)
podle
WOS
Impaktnı́
faktor
časopisu
nebo
kategorie
ERIH
1.
Žák J, Paterson SR (2005) Characteristics of internal contacts in the Tuolumne Batholith, central Sierra Nevada, California (USA): implications
for episodic emplacement and physical processes in a continental arc
magma chamber. GEOLOGICAL SOCIETY OF AMERICA BULLETIN
117: 12421255.
Jimp
18
3,101
2.
Žák J, Holub FV, Verner K (2005):
Tectonic evolution of a continental
magmatic arc from transpression in
the upper crust to exhumation of midcrustal orogenic root recorded by episodically emplaced plutons: the Central Bohemian Plutonic Complex (Bohemian Massif). INTERNATIONAL
JOURNAL OF EARTH SCIENCES
94: 385400.
Jimp
14
2,445
3.
Žák J, Schulmann K, Hrouda F (2005):
Multiple magmatic fabrics in the Sázava pluton (Bohemian Massif, Czech
Republic): a result of superposition of
wrench-dominated regional transpression on final emplacement. JOURNAL
OF STRUCTURAL GEOLOGY 27:
805822.
Jimp
11
1,732
1 Vyplnit
pouze pro časopisy nezařazené na WOS
37
Počet
citacı́ v
oborech
NRRE
Časopis je
zařazen v
databázi
SCOPUS1
P104/12/G083
Část GD2 - bibliografie
Úplné bibliografické údaje o osmi nejvýznamnějšı́ch výsledcı́ch vědecké a výzkumné činnosti definovaných v aktuálně platné Metodice hodnocenı́ výsledků výzkumu a vývoje
Výsledek
Kód
druhu
výsledku
Počet
citacı́ (bez
autocitacı́)
podle
WOS
Impaktnı́
faktor
časopisu
nebo
kategorie
ERIH
4.
Verner K, Žák J, Nahodilová R, Holub FV (2008): Magmatic fabrics and
emplacement of the cone-sheet-bearing
Knı́žecı́ Stolec durbachite pluton (Moldanubian Unit, Bohemian Massif):
implications for mid-crustal reworking of granulitic lower crust in the
Central European Variscides. INTERNATIONAL JOURNAL OF EARTH
SCIENCES 97: 1933.
Jimp
10
2,445
5.
Žák J, Klomı́nský J (2007): Magmatic structures in the Krkonoše-Jizera
Plutonic Complex, Bohemian Massif:
evidence for localized multiphase flow
and small-scale thermal-mechanical instabilities in a granitic magma chamber. JOURNAL OF VOLCANOLOGY
AND GEOTHERMAL RESEARCH
164: 254267.
Jimp
9
1,921
6.
Žák J, Paterson SR, Memeti V (2007):
Four magmatic fabrics in the Tuolumne batholith, central Sierra Nevada, California (USA): implications
for interpreting fabric patterns in plutons and evolution of magma chambers
in the upper crust. GEOLOGICAL
SOCIETY OF AMERICA BULLETIN 119: 184201.
Jimp
8
3,101
7.
Žák J, Paterson SR (2006): Roof and
walls of the Red Mountain Creek pluton, eastern Sierra Nevada, California
(USA): implications for process zones
during pluton emplacement. JOURNAL OF STRUCTURAL GEOLOGY
28: 575587.
Jimp
6
1,732
8.
Žák J, Verner K, Týcová P (2008) Multiple magmatic fabrics in plutons: an
overlooked tool for exploring interactions between magmatic processes and
regional deformation? Geological Magazine 145, 537-551.
Jimp
4
2,059
38
Počet
citacı́ v
oborech
NRRE
Časopis je
zařazen v
databázi
SCOPUS
P104/12/G083
Část GD2 - bibliografie
Celkové počty výsledků definovaných v aktuálně platné Metodice hodnocenı́ výsledků výzkumu a vývoje od roku 2006 včetně (podle RIV):
1a. článek v odborném periodiku impaktovaném (druh výsledku Jimp )
21
1b. článek v odborném periodiku neimpaktovaném (druh výsledku Jneimp )
0
1c. článek v českém odborném recenzovaném časopise (druh výsledku Jrec )
0
2a. odborná kniha (druh výsledku B)
0
2b. kapitola v odborné knize (druh výsledku C)
0
3. článek ve sbornı́ku (druh výsledku D)
0
4. patent (druh výsledku P)
0
5. užitný nebo průmyslový vzor (druh výsledku F)
0
6. poloprovoz, ověřená technologie, odrůda, plemeno (druh výsledku Z)
0
7. prototyp, funkčnı́ vzorek (druh výsledku G)
0
8. poskytovatelem realizovaný výsledek (druh výsledku H)
0
9. specializovaná mapa (druh výsledku L)
0
10. certifikovaná metodika a postup (druh výsledku N)
0
11. software (druh výsledku R)
0
12. výzkumná zpráva obsahujı́cı́ utajované informace podle zvláštnı́ho právnı́ho předpisu (druh
výsledku V)
0
Celkový počet citacı́ včetně autocitacı́ na všechny práce podle Web of Science
H-index podle Web of Science
190
9
39
Část GE
Uchazeč:
Navrhovatel:
Registračnı́ čı́slo:
České vysoké učenı́ technické v Praze – Fakulta stavebnı́
prof. Dr. Ing Bořek Patzák
P104/12/G083
Údaje o běžı́cı́ch, navrhovaných a ukončených projektech uchazeče
Neúplné uvedenı́ údajů bude důvodem k vyřazenı́ návrhu projektu z této veřejné soutěže
Projekty v současné době podporované
Poskytovatel:
GACR
Reg. č. a zkrácený název projektu
P105/10/1402 – MuPIF-Nástroj pro komplexnı́ multifyzikálnı́ simulace
Podpora tis. Kč
1686
Doba řešenı́ od-do (roky)
2010-01-01 – 2012-12-31
Pracovnı́ úvazek:
10%
Řešitelské pracoviště - role:
ČVUT, Fakulta stavebnı́ - řešitel
Poskytovatel:
GACR
Reg. č. a zkrácený název projektu
P108/11/1243 – Large-Strain Model for Failure of Trabecular Bone
Podpora tis. Kč
4286
Doba řešenı́ od-do (roky)
2011-01-01 – 2013-12-31
Pracovnı́ úvazek:
15%
Řešitelské pracoviště - role:
CVUT, Fakulta stavebnı́ - spoluřešitel
Poskytovatel:
GACR
Reg. č. a zkrácený název projektu
103/09/2009 – Isogeometric Analysis in Structural Mechanics
Podpora tis. Kč
1153
Doba řešenı́ od-do (roky)
2009-01-01 – 2011-12-31
Pracovnı́ úvazek:
10%
Řešitelské pracoviště - role:
ČVUT, Fakulta stavebnı́ - spoluřešitel
40
P104/12/G083
Část GE
Poskytovatel:
GACR
Reg. č. a zkrácený název projektu
P105/10/1682 – Solution of large hydro-thermomechanical problems using adaptive hp-FEM
Podpora tis. Kč
3598
Doba řešenı́ od-do (roky)
2010-01-01 – 2012-12-31
Pracovnı́ úvazek:
5%
Řešitelské pracoviště - role:
ČVUT, Fakulta Stavebnı́ - spoluřešitel
Poskytovatel:
MŠMT
Reg. č. a zkrácený název projektu
MSM 6840770003 – Algorithms for Computer Simulation
and Application in Engineering
Podpora tis. Kč
0
Doba řešenı́ od-do (roky)
2005-01-01 – 2011-12-31
Pracovnı́ úvazek:
0%
Řešitelské pracoviště - role:
ČVUT, Fakulta stavebnı́ - člen řešitelského týmu
V současné době nejsou žádné navrhované projekty.
Přehled hodnocenı́ grantových projektů GA ČR ukončených v poslednı́ch třech letech, u
kterých byl navrhovatel řešitelem nebo spoluřešitelem:
Registračnı́ čı́slo
Hodnocenı́
103/06/1845
splněno
103/07/1455
splněno
106/08/1508
splněno
41
Část GE
Spoluuchazeč:
Spolunavrhovatel:
Registračnı́ čı́slo:
Vysoké učenı́ technické v Brně – Fakulta stavebnı́
prof. Ing. Drahomı́r Novák, DrSc.
P104/12/G083
Údaje o běžı́cı́ch, navrhovaných a ukončených projektech spoluuchazeče
Neúplné uvedenı́ údajů bude důvodem k vyřazenı́ návrhu projektu z této veřejné soutěže
Projekty v současné době podporované
Poskytovatel:
GAČR
Reg. č. a zkrácený název projektu
P105/11/1385 – Inverznı́ problémy spolehlivosti konstrukcı́
Podpora tis. Kč
2979
Doba řešenı́ od-do (roky)
2011-01-01 – 2013-12-31
Pracovnı́ úvazek:
10%
Řešitelské pracoviště - role:
VUT v Brně, fakulta stavebnı́ - navrhovatel
Poskytovatel:
GAČR
Reg. č. a zkrácený název projektu
P105/10/1156 – Komplexnı́ modelovánı́ betonových konstrukcı́
Podpora tis. Kč
4899
Doba řešenı́ od-do (roky)
2010-01-01 – 2012-12-31
Pracovnı́ úvazek:
10%
Řešitelské pracoviště - role:
VUT v Brně, fakulta stavebnı́ - navrhovatel
Poskytovatel:
GAČR
Reg. č. a zkrácený název projektu
P104/10/2359 – Přetvárné vlastnosti betonů vyššı́ch pevnostı́
Podpora tis. Kč
3606
Doba řešenı́ od-do (roky)
2010-01-01 – 2012-12-31
Pracovnı́ úvazek:
15%
Řešitelské pracoviště - role:
VUT v Brně, fakulta stavebnı́ - člen týmu
42
P104/12/G083
Část GE
Projekty v současnosti navrhované k podpoře
Poskytovatel:
GAČR
Reg. č. a zkrácený název projektu
P407/12/0532 – Alcohol and drug addiction modelling by
artificial neural networks (ADAM)
Podpora tis. Kč
1584
Doba řešenı́ od-do (roky)
2012-01-01 – 2014-12-31
Pracovnı́ úvazek:
15%
Řešitelské pracoviště - role:
VUT v Brně, fakulta stavebnı́ - spolunavrhovatel
Přehled hodnocenı́ grantových projektů GA ČR ukončených v poslednı́ch třech letech, u
kterých byl spolunavrhovatel řešitelem nebo spoluřešitelem:
Registračnı́ čı́slo
Hodnocenı́
103/07/0760
vynikajı́cı́
103/08/0752
dosud nehodnoceno
43
Část GE
Spoluuchazeč:
Spolunavrhovatel:
Registračnı́ čı́slo:
Centrum dopravnı́ho výzkumu, v.v.i.
prof. Ing. Karel Pospı́šil, Ph.D., MBA
P104/12/G083
Údaje o běžı́cı́ch, navrhovaných a ukončených projektech spoluuchazeče
Neúplné uvedenı́ údajů bude důvodem k vyřazenı́ návrhu projektu z této veřejné soutěže
Projekty v současné době podporované
Poskytovatel:
Grantová agentura České republiky
Reg. č. a zkrácený název projektu
GA103/09/1499 – Vı́cekanálový georadar
Podpora tis. Kč
1788
Doba řešenı́ od-do (roky)
2009-01-01 – 2011-12-31
Pracovnı́ úvazek:
5%
Řešitelské pracoviště - role:
přı́jemce
Poskytovatel:
Grantová agentura České republiky
Reg. č. a zkrácený název projektu
GA104/10/1430 – Nelineárnı́ ultrazvuková defektoskopie
Podpora tis. Kč
510
Doba řešenı́ od-do (roky)
2010-03-01 – 2012-12-31
Pracovnı́ úvazek:
5%
Řešitelské pracoviště - role:
spolupřı́jemce
Projekty v současnosti navrhované k podpoře
Poskytovatel:
Grantová agentura České republiky
Reg. č. a zkrácený název projektu
P104/12/0747 – Monitorovánı́ a analýza koroze výztužné
oceli
Podpora tis. Kč
1051
Doba řešenı́ od-do (roky)
2012-01-01 – 2014-12-31
Pracovnı́ úvazek:
5%
Řešitelské pracoviště - role:
spolunavrhovatel
44
P104/12/G083
Část GE
Přehled hodnocenı́ grantových projektů GA ČR ukončených v poslednı́ch třech letech, u
kterých byl spolunavrhovatel řešitelem nebo spoluřešitelem:
Registračnı́ čı́slo
Hodnocenı́
103/06/1711
splněno
45
Část GE
Spoluuchazeč:
Spolunavrhovatel:
Registračnı́ čı́slo:
Univerzita Karlova v Praze – Přı́rodovědecká fakulta
doc. RNDr. Jiřı́ Žák, Ph.D.
P104/12/G083
Údaje o běžı́cı́ch, navrhovaných a ukončených projektech spoluuchazeče
Neúplné uvedenı́ údajů bude důvodem k vyřazenı́ návrhu projektu z této veřejné soutěže
Projekty v současné době podporované
Poskytovatel:
GAČR
Reg. č. a zkrácený název projektu
P210/11/1168 – Vznik kompozičnı́ a texturnı́ zonality v
mělce uložených granitoidnı́ch plutonech
Podpora tis. Kč
2731
Doba řešenı́ od-do (roky)
2011-01-01 – 2013-12-31
Pracovnı́ úvazek:
20%
Řešitelské pracoviště - role:
Přı́rodovědecká fakulta, Univerzita Karlova v Praze - řešitel
Poskytovatel:
GAČR
Reg. č. a zkrácený název projektu
205/09/0630 – Geochemická variabilita mafických žilných
hornin
Podpora tis. Kč
2397
Doba řešenı́ od-do (roky)
2009-01-01 – 2012-12-31
Pracovnı́ úvazek:
10%
Řešitelské pracoviště - role:
Přı́rodovědecká fakulta, Univerzita Karlova v Praze - člen
týmu
46
P104/12/G083
Část GE
Projekty v současnosti navrhované k podpoře
Poskytovatel:
GAČR
Reg. č. a zkrácený název projektu
SP210313379 – Prevariský a variský vývoj tepelskobarrandienské jednotky
Podpora tis. Kč
3609
Doba řešenı́ od-do (roky)
2012-01-01 – 2014-12-31
Pracovnı́ úvazek:
20%
Řešitelské pracoviště - role:
Přı́rodovědecká fakulta, Univerzita Karlova v Praze - člen
týmu
Poskytovatel:
GAČR
Reg. č. a zkrácený název projektu
– Kaldery jako indikátory termálnı́ho a mechanického vývoje magmatických krbů
Podpora tis. Kč
6931
Doba řešenı́ od-do (roky)
2012-01-01 – 2014-12-31
Pracovnı́ úvazek:
30%
Řešitelské pracoviště - role:
Přı́rodovědecká fakulta, Univerzita Karlova v Praze - navrhovatel
Přehled hodnocenı́ grantových projektů GA ČR ukončených v poslednı́ch třech letech, u
kterých byl spolunavrhovatel řešitelem nebo spoluřešitelem:
Registračnı́ čı́slo
Hodnocenı́
205/07/P226
vynikajı́cı́
47
Czech Science Foundation - Part GC
Project Description
Applicant: prof. Dr. Ing Bořek Patzák
Name of the Project: Center for Multiscale and Stochastic Modeling of Materials,
Processes and Structures (MULTAS)
A. Motivation
Sustainable development largely depends on innovations in material design and associate
technologies. Innovations can no longer rely solely on experience of past decades. The existing
numerical models are mostly macroscopic and empirical, obtained by fitting parameters to
macroscopic properties. This is insufficient for the research of emerging advanced materials, modern
structures and complex processes. The principal objective of MULTAS is to develop and verify multiscale
models that connect the characteristics of underlying mechanisms with real design procedures based on
sound scientific understanding of the material behavior and an adequate description of uncertainty.
Increasing power of numerical computations enables to simulate ever more complex problems describing various
human activities and natural phenomena. Qualitative knowledge of underlying physico-chemical processes occurring
in materials on several scales can be translated into research tools predicting performance under realistic and extreme
working conditions. The tools will assist material scientists in design of advanced materials with predictable
performance, in optimization of durability and reliability with respect to embedded energy, green gas production, raw
material consumption and multifunctionality.
The main challenge for new research consists in development of (a) sophisticated models that provide a mathematical
description of the relevant phenomena and (b) advanced numerical methods that can solve the mathematical problems
in an efficient way. The majority of construction materials are of heterogeneous and porous nature, often with an
evolving microstructure affected by coupled hygro-thermo-mechanical, chemical, and in some cases even biological
processes. The modeling and simulation process must be complemented by (c) methodologies for systematic
acquisition of input information (parameters describing materials, geometry, initial conditions etc.) and (d) means to
validate the models and estimate their reliability and sensitivity to uncertainties of inputs. The flowchart of project
methodology is presented in Fig. 1.
Input
Tests on
different
scales
Mathematical
models
on several scales
with uncertanities
Calibration
Computational
models
on several scales
with uncertanities
Validation
Model
prediction
Verification
Figure 1: The flowchart of computational science integrating verification and validation steps.
The majority of current models use the deterministic approach. In reality, structures exhibit uncertainties due to the
inherent randomness in parameters specifying the material properties, loading and geometry. A better understanding of
the effects of such randomness on structural performance is central to describing more accurately the reliability of the
structure by the tools of structural reliability, computational stochastic mechanics and soft computing.
B. State of the Art
Virtually all natural and engineering materials are on a certain scale heterogeneous – porous or cracked media,
biological, polycrystalline and composite materials are typical examples. Various phenomena occurring on the
macroscopic scale are caused by different physical, chemical and mechanical processes and their interplay occurring at
lower scales [Ulm et al., 1998]. There is a strong dependence of the global behavior on properties, morphology and
geometry of the microstructure. Often, the microstructure is evolving, driven by chemo-thermo-mechanical processes,
affected by environmental and loading conditions on the macroscopic scale. The randomness of intrinsic properties
and uncertainty in boundary and initial conditions have to be taken into account to obtain reliable predictions
[Hlaváček et al., 2004].
The input data often describe coefficients of partial differential equations of mathematically expressed underlying
physical processes. Existing data are biased with uncertainties, and small-scale experiments need to be executed for
higher accuracy [Hlaváček et al., 2004, Babuška, 2007]. For multiscale modeling, intrinsic material data can be
assessed by advanced characterization techniques, e.g. by environmental scanning electron microscopy, calorimetry,
microtomography, porosimetry, nanoindentation or other mechanical tests [Ulm et al., 1998, Bentz 2007].
Complementary tests on higher scales are required for more complex calibration procedures.
The mathematical treatment of multiscale phenomena and related physical processes leads to a multitude of open
problems, both in the validation of computational models, and in the formal verification of existence and uniqueness
of solutions and convergence of corresponding numerical algorithms. As discussed in [Steinhauser, 2008], electronic,
atomistic, microscopic, mesoscopic and continuum methods are applied on various scales. Due to the uncertain (or
even partially unknown) material characteristics, as well as to the uncertain time-variable loads, the standard solution
methods are unavailable or insufficient. Numerous problems of technical significance are ill-posed and require
artificial regularization [Isakov, 2006], based e.g. on the least-squares approach, studied in [Bochev & Gunzburger,
2009]. Engineering approaches apply the conjugate gradient algorithm to the direct, sensitivity and adjoint analysis to
obtain the optimal least-squares solution [e.g. Zabaras, 2004].
The insufficiency of naive averaging in representative volume elements (especially in the anisotropic case) was the
motivation for the development of various mathematical homogenization theories, based on the extension of the
notion of strong or weak limits to their new types, especially for periodic or quasi-periodic material structures, as the
H-convergence, the G-convergence, or the two-scale convergence, discussed in [Cioranescu & Donato, 1999]; some
convergence results for the finite element approximations can be found in [Efendiev & How, 2009].
Computational homogenization framework [Geers et al., 2010] addresses both up- and down-scaling directions with
resolved geometry of each constituent at the level of the representative volume element. The most challenging
micromechanical models for post-cracking behavior of short-fiber reinforced concrete with brittle matrix were
described in [Li et al., 1991], pull-out of the fibers after crack initiation in [Naaman et al., 1991] and stochastic
modeling of bundles for representation of tensile response of multifilament yarns in [Chudoba et al., 2006] and
[Vořechovský et al., 2006]. After proper calibration, the models showed predictive capabilities for randomly oriented
and continuous aligned reinforcement [Hinzen and Brameshuber, 2007].
From the general perspective, phenomena relevant to integrity, durability and reliability of multi-scale mechanical
systems are described by non-convex models with uncertain, rapidly oscillating, input data. This represents a
challenging mathematical task, for which only a few partial results are available so far. Even for systems with
deterministic parameters, the most comprehensive treatment is due to [Mielke & Timofte, 2007], who analyzed
variational models for rate-independent systems described by convex energies, with particular application to plasticity.
Extension of this work towards general non-convex models [Mielke 2005], related to localized phenomena typical of
damage, fracture and fatigue processes, and their numerical treatment remains an open problem.
Phase transformations in natural rocks from solid to liquid (and vice versa) in response to changing pressure and
temperature play a key role in a variety of geological processes at all scales [e.g., Brown, 1994]. When the phase
transformations occur, solid rocks turn into multiphase mixtures with complex rheological behavior. The mechanics of
solid–melt mixtures has been examined either through experimental deformation of partially melted rocks [Rosenberg
& Handy, 2005] or using greatly simplified models, e.g., percolation theory [Vigneresse et al., 1996] or assuming that
solid–melt mixtures behave as granular materials [Petford & Koenders, 1998]. Advanced multiphysics approach,
which is the most appropriate for thorough understanding of processes in and rheological behavior of such mixtures,
has been applied only sporadically [e.g., Bergantz & Ni, 1999; Burgisser & Bergantz, 2002; Bea et al., 2010].
The modeling of complex geodynamic processes requires development of robust and efficient numerical methods for
analysis of problems involving the interaction of fluids and structures, accounting for free-surface evolution [Onate
et al., 2004]. Such problems have been traditionally handled in a partitioned manner by solving iteratively the discretized equations for the flow and the solid domain separately. Governing equations for the fluid have been based on the
Eulerian or Arbitrary Lagrangian-Eulerian descriptions. These approaches suffer from many disadvantages, for example, treatment of the convective terms and incompressibility constraints, need for interface and free-surface tracking,
interaction between the fluid and solid domains, efficient updating of finite element meshes. Many of these problems
naturally vanish when the governing equations are formulated using the Lagrangian description for both solid and
fluid phases. The existing particle-based methods include the Finite Point Method [Onate et al., 1996] and Particle
Finite Element Method [Idelsohn et al., 2004].
The solution to the variety of complex engineering problems involving uncertainty regarding mechanical properties
and/or the excitations they are subjected to must be found by means of simulation. The only currently available
universal method for accurate solution of such stochastic mechanics problems is the Monte Carlo technique.
Additionally, sensitivity and reliability analyses can be performed with minimal effort. Apart from the crude Monte
Carlo simulation, also other techniques for reliability analyses have been developed in the last three decades. The best
known are the Latin Hypercube Sampling (LHS), Curve Fitting, Importance Sampling, Adaptive Sampling, Line
Sampling and Subset Simulation. LHS was first proposed by [Conover 1975] and later elaborated mainly by [Iman
and Conover, 1980].
The available approaches to uncertainty quantification can be broadly classified as the worst scenario method and
probabilistic methods [Hlaváček et al., 2004]. In the former approach, a criterion of interest is introduced, which
measures the performance of the solution. The objective is then to maximize the criterion over the set of admissible
input data that represents the uncertainty in inputs. The maximum criterion value is related to the lowest (i.e., worst)
performance allowed by uncertain input data. Despite the vast potential of the worst scenario method to address both
theoretically and numerically a wide range of relevant engineering problems, as is evidenced by extensive examples
collected in [Hlaváček et al., 2004], its application to multi-scale problems is much less developed. In particular, the
most recent results of [Nechvátal, 2010] are related to a non-linear elliptic equation of monotone type. We believe that
their further generalization to problems of inelastic continuum mechanics provides an exciting research agenda. It is
worth noting that the worst scenario method also appears in the course of solving sub-problems arising in a fuzzy set
theory approach to problems burdened with uncertain data.
Inverse problems play an important role in many branches of science, mathematics and engineering. An inverse
problem is a general framework that is used to convert observations and measurements into information about a
physical object or system that we are interested in. The solution of an inverse problem provides access to physical
parameters (model parameters, design parameters) that cannot be directly observed. This procedure is known under
different names, e.g. inverse analysis, identification, or model updating. The goal is to identify parameters of a
computational model by matching its response to available data measured on a real physical system (e.g. a structure).
In the context of engineering computational mechanics based on the finite element method, typical inverse analysis
tasks include: extracting information on the loads acting on a structure from the observation of the response, e.g.
displacements, stresses [Maincon, 2004ab]; damage detection of dynamically loaded structures using structural health
monitoring data (for the application in bridge engineering, approaches called ―model updating‖ have been developed
[Huth et al., 2005, Fang et al., 2005, Deix & Geier, 2004, Lehký & Novák, 2009a]); fracture mechanical parameters
identification of quasi-brittle materials [Planas et al., 1999, Fairbairn et al., 1999, Kučerová et al., 2004, Novák &
Lehký, 2006, Lehký et al., 2010a]; statistical inverse analysis – identification of statistical material parameters using
random measured data in form of histograms or probability distributions [Strauss et al., 2004, Lehký & Novák,
2009b]; and inverse reliability analysis – determination of design parameters (deterministic or random material
properties, geometry, etc.) related to particular limit states (both ultimate and serviceability) to achieve target
reliability levels expressed by theoretical failure probabilities or reliability indexes [e.g. Der Kiureghian et al., 1994,
Li & Foschi, 1998, Lehký & Novák, 2010].
C. Substantiation of the project, its goals and multidisciplinary character
The proposed Center of Excellence will aim at basic oriented research in the field of computational simulations, which
are necessary for development and assessment of next generation technologies and materials as well as for further
enhancement of basic research. The main advancement with respect to previous similar projects consists in the fact
that the topic will be approached from a complex and multidisciplinary perspective, focusing not only on formulation
of mathematical models and numerical methods for their solution, but also addressing the issues of input data
acquisition and proper treatment of uncertainties involved in the simulation process. The Center will focus on
understanding the fundamental mechanisms (processes) of the studied problems (as opposed to just
phenomenologically reproducing them) and on developing the underlying theories and methods necessary for their
modeling. As such, the Center is expected to build up a broad knowledge base in mathematics, physics and geology,
which will have a potential further use both in applied research in engineering and in basic research in natural
sciences.
The project focuses on multiscale assessment of heterogeneous materials, which is a complex process that includes
not only the improvement of knowledge on material microstructure and its behavior across multiple scales, but also
requires the development and use of advanced numerical tools to solve the mathematical problems. Moreover, new
experimental methods and techniques need to be developed to identify and measure properties and statistical
characteristics of materials at those scales at which fundamental processes are recognized, to provide necessary inputs
for modeling and calibration at intermediate scales. Validation of the whole process is an important part, providing
necessary feedback for potential adjustments.
The project aims for the development of novel techniques and tools for multi-scale assessment, based on the analysis
of non-convex inelastic material models with uncertain input data. Specific techniques and models will be developed
to enable future practical solution of challenging problems in science and engineering. These problems include
geodynamic processes, such as continental underthrusting, development of orogenic root and high topography, magma
transport and related exchanges of mass and energy within the thickened orogenic crust, and subsequent orogenic
collapse; advanced modeling of secondary cementitious materials (slag, fly ash); assessing the influence of
technological parameters on transport and mechanical properties of composites.
In addition, advanced modeling relies on topochemical representation of microstructures, significantly influencing
evolution and degradation processes, which in turn have a strong impact on structure reliability and integrity.
Modeling of coupled physico-chemical processes in heterogeneous, partly saturated porous materials can greatly
enhance our understanding of complex multidisciplinary phenomena such as polymerization, carbonation, selfhealing, leaching, embrittlement, to mention a few.
Classification of advanced structural materials according to their resistance to progressive failure (tensile, shear,
compressive) will be performed. Depending on the specific model used for the description of failure, parameters
characterizing the material can have different meanings and are not directly comparable. Therefore, an attempt should
be made to develop a general unified approach in order to enable comparison of failure resistance of different
materials (with different characteristic lengths and failure modes).
Research activities in computational modelling and simulation of thermomechanical behavior of advanced
materials and structures will focus on open problems in mathematical analysis (certain types of scale convergence) and
in numerical analysis (algorithms for ill-posed problems, regularization techniques etc.) This is expected to lead to
progress in the mathematical theory of homogenization, validated by extensive computational and experimental work.
Another objective will be the development of a theoretical basis and tools for routine application of soft-computing
methods for different types of tasks. The primary interest will be focused on inverse problems. This part of the
project builds on previous achievements of the team. New developments in theory as well as applications include:
investigation of different alternatives of artificial neural networks (beyond classical backpropagation type, like radial
basis neural network, etc.), testing for inverse analysis purposes, analysis of sensitivity-based approaches and their
role in neural network training, verification of possibilities for preparation of virtual training sets with emphasis on
small-sample simulation, development of a methodology for deterministic and statistical parameter identification
based on random response measurements using fracture tests of various testing configurations, and development of a
methodology for damage detection of dynamically loaded structures using health monitoring data.
In the area of new testing methods, the goal is to assess quickly, non-destructively and cheaply material and structure
properties by using acoustics methods, such as the acoustic emission, the frequency inspection, and the non-linear
ultrasonic defectoscopy. Such an assessment will rationalize maintenance of structures and their elements, which will
become substantially simpler and cheaper if early defect detection is accomplished. Research into new testing methods
will be focused on the determination of the chemo-thermo-mechanical parameters of composite materials, taking into
account size effects and uncertainty.
D. Cooperation between partners, synergy effect and integration of research
potential
To reach the objectives and ambitions of the project, a combination of knowledge from several disciplines is needed.
While the expertise in individual topics is extremely high, there remain many gaps that may be filled only by a
multidisciplinary project. Such project involves a number of cross-cutting activities that are important for reaching its
objectives. Combination of expertise in data acquisition and material testing, mathematical and statistical modeling,
physics, chemistry, geology and computing is needed to reach the goals. None of the partners involved has the
potential to reach these objectives alone. Individual partners traditionally cultivate the knowledge in particular areas of
research, with specific resources and facilities. Therefore, this project and its topic represent a challenging platform for
mutual collaboration, resource sharing and exchange of knowledge among partners.
Management structure
It is recognized that the success of the project depends not only upon sound scientific and technical plans but also on
an efficient and effective project management team. The MULTAS project involves 4 independent organizations and
thus a close collaboration among the project partners is necessary. To facilitate the project implementation, a simple
reporting and management structure has been established consisting of the following structures: Project Coordinator
(PC), Project Coordination Committee (PCC) and Scientific Committee (SC).
GA CR
Controlling
Reporting
Project Coordinator
(PC)
Project Coordination
Committee (PCC)
Scientific Committee (SC)
WP1 leader
WP2 leader
WP3 leader
WP4 leader
The overall coordination of the project will be carried out by the Project Coordinator – Prof. Dr. Ing. Bořek Patzák.
Strategic decisions will be consulted within the Project Coordination Committee, consisting of the applicant and coapplicants. The WP leaders will report directly to the PCC on financial management issues and progress of the project
implementation. The Scientific Committee will be responsible of the day-to-day management and will oversee the
scientific and technical matters of the project. An important task of the SC is the risk management related to the
project implementation and, more importantly, the quality control management. The SC ensures that project results are
widely disseminated through international publications and presentations at conferences. The SC will be comprised of
all Work Package Leaders and its meetings will be chaired by the Project Coordinator. The members of the SC will
meet once every six months.
E. The center rationale and justification of its importance
MULTAS will bridge qualitative basic knowledge with applied research for the innovations through the basic oriented
research in the area of computational simulations. The concept of this project is based on the principles of Integrated
Computational Materials Engineering (ICME) [Allison, 2006], which combines experimental data with theoretical
modeling. Outputs of this project yield computational models that enable predictive analysis of structural systems
made of advanced materials including uncertainties on inputs and outputs. The models will be validated against
existing experimental data and against new data obtained from complementary tests. The benefits from these models
will be demonstrated on the tasks connected to the solution of current global problems – saving energy through the
new principles of energy efficient buildings and the theoretical support of the development of durable materials for
traffic infrastructure. The project will also result into the development of multiscale virtual tests which can partially
replace standard tests and provide input data for existing computer codes working on the macro scale. This can
significantly help to speed up the new developments in material science.
Based on the financial support from Structural Funds, new research infrastructures (ADMAS, UCEEB) will be built in
Brno and close to Prague. These infrastructures will be equipped with complementary testing machines that will
significantly enhance the potential of partners.
F. Objectives and methods
The project will be implemented in four work packages (WPs), each consisting of several tasks. The responsible
investigator (WP leader) of each WP is underlined. In addition, task leaders are indicated in each task title.
Work package number
Work package title
1
Methodologies and inputs for multiscale models
Participant
Activity
CTU
BUT
CUNI
CDV
X
X
X
X
Objectives:
Develop methodologies for data acquisition and validation of multiscale models, using scanning electron
microscopy, energy-dispersive x-ray analysis, porosimetry, computed microtomography and nanoindentation.
Characterize supplementary cementitious materials by their chemical and phase composition, particle
distribution and pozzolanic activity; study their hydration using calorimetric and DTA measurements.
Study the formation of mineral anorthite during firing and the effect of its content on the properties of fired
ceramic body; study the influence of different CaO sources on ceramic properties. Develop a methodology for
accelerated durability tests, study the influence of microstructure on durability. Clarify the relation between
morphology, composition of base materials and properties of asphalts.
In general, the objectives are to gather representative data for studied phenomena in involved materials and to
design experiments supplying the missing data.
Description of work
Task 1.1 Data acquisition from small-scale experiments (CTU)
Background Besides existing data, new data are often required for further calibration and validation stages. The
missing data will be obtained by small-scale experiments combined with modeling.
Work plan, concepts and methods Missing data for desired physical quantities are obtained from small-scale
experiments. These include SEM, EDX, porosimetry, μCT, mechanical tests, and nanoindentation. Data are used
in upscaling direction and also in downscaling identification of constituent properties.
Achievements Data collection for multiscale models of heterogeneous porous materials. Database for inorganic
porous materials. Methodologies for data acquisition based on modeling needs.
Milestones
M 1.1.1: (2012): Data acquisition from submicrometer scale: nanoindentation, SEM, EDX, porosimetry, μCT.
M 1.1.2: (2012): Database of binary images of real microstructure with a direct link to tools and models for
micromechanical simulations.
M 1.1.3: (2014): Data acquisition from small-scale mechanical tests.
Task 1.2 Durability and surface treatment (BUT)
Background Durability of materials depends on the material properties, shape of the structural element,
external loading and aggressivity of the environment. Surface treatment has a significant influence on the
durability, limiting the penetration of corrosive agents into the pore structure of materials and substantially
reducing the degradation process.
Work plan, concepts and methods Research will be based on laboratory implementation of accelerated testing
materials; monitoring the impact of type and concentration of corrosive environment on the microstructure and
mechanical parameters. The results will be complemented by theoretical interpretations in order to proceed to
possible generalizations.
Achievements New knowledge on the influence of the material microstructure on durability. New
methodologies for accelerated durability testing. New surface treatments and verification of their impact on
durability.
Milestones
M1.2.1 (2014): Development of surface treatments improving the durability of materials.
M1.2.2 (2014): Development of methods of accelerated corrosion tests.
M1.2.3 (2018): General theory for durability of new materials.
Task 1.3 Acquisition of geological data (CUNI)
Background Acquisition of input data for simulations in geology has certain specifics: (a) dimensions of
geological bodies are on the scale of kilometers, properties can be sampled only point-wise and sparsely, (b)
material volumes for testing are much smaller, (c) mechanical properties exhibited during the geological
processes (at high temperatures and pressures) cannot be directly measured, (d) time scales are orders of
magnitude larger than in the laboratory experiments, (e) data exhibit high uncertainties and scatter.
Work plan, concepts and methods The input parameters of 3D geometry of the modeled domains, i.e. soft and
hot crust in front of a rigid indenter (WP4 Task 4.1), will be taken from field observations, geologic mapping,
and available data (gravimetry). The key input data for the modeling (WP3 Tasks 3.2 and 3.3, WP4 Task 4.1),
however, will include rock compositions, fabrics, microstructural characteristics, and textures of the examined
rocks (migmatites and granites) that will be obtained from geochemical, petrographic, and three-dimensional
quantitative microstructural analyses and from measurements of anisotropy of magnetic susceptibility (AMS).
The stochastic methods developed in WP2 will be employed to account for uncertainties and scarcity of data.
Achievements: Detailed characterization of material parameters and anisotropy of the rocks, detailed geologic
maps of the key domains, and interpretation of the subsurface shape, extent, and dimensions of geologic units in
question.
Milestones
M1.3.1 (2013): All rock types sampled and analyzed, gravimetric interpretation.
M1.3.2 (2015): New data on magnetic anisotropy and textures of the migmatites and granites.
Task 1.4 Scanning Electron Microscopy Method as a Tool for the Evaluation of
Selected Material Microstructure (CDV)
Background Bitumen is the residue from the vacuum distillation of petroleum oil, consisting of two main
fractions: asphaltenes and maltenes. Its rheological and mechanical properties, controlled by the chemical and
physical interactions of individual fractions, are highly dependent on the temperature. Chemical composition
and structure of bitumen influence temperature dependence and mechanical properties. Relations among
bitumen composition, structure and production qualities are not yet sufficiently explained.
Admixtures and additions are added to concrete to obtain special properties of fresh or hardened concrete.
Usage of several types of additions (fly ash, slag, silica fume, fine grounded limestone or additives (plasticizers,
accelerators, stabilizers, air-entered agents, etc.) is common. The structure of hydration products in concrete
microstructure in short time after concrete mixing is well known. The question is how admixtures influence the
long-time evolution of properties.
Work plan, concepts and methods Techniques of oil phase elimination for preparation of samples based on
the dissolution and filtration techniques of asphalt binders from different producers will be developed. They will
enable to study the relation between morphology, composition and properties of asphalt and its degradation
processes. Using a scanning electron microscope and an energy-dispersive x-ray analyzer, the effect of
admixtures on hydration process, chemical composition and mutual ratio among formed hydration products will
be evaluated.
Achievements Identification of the sample preparation method not impacting the internal microstructure.
Clarification of the relation between morphology, composition of base materials and properties of produced
asphalts subsequently used for asphalt mixtures designed for roads.
Determination of chemical compounds contained in admixtures and additions and of their effect on hydration
development, mortar microstructure and changes of material properties.
Milestones
M1.4.1 (2012): Suitable techniques of oil phase elimination for preparation of the asphalt binder samples. EDX
quantitative analysis of minerals in concrete or mortar.
M1.4.2 (2013): Relation between morphology, composition and properties of base materials designed for roads.
New knowledge of the relationship between concrete or mortar microstructure and their properties.
M1.4.3 (2016): Methodologies for identification of asphalt and concrete microstructure.
Task 1.5 Concrete and mortars (BUT)
Background A need to reduce carbon dioxide emissions, which are produced during cement production, leads
to a design of high-performance materials utilizing supplementary cementitious materials (SCM).
Simultaneously, SCMs can considerably contribute to improved mechanical properties and higher corrosion
resistance against aggressive substances. Non-traditional SCMs, which nowadays start to play a more
significant role, are reactive micro- and nanoparticles. They can improve concrete workability and strength,
increase resistance against water penetration, and help to control the leaching of calcium.
Work plan, concepts and methods Selected reactive particles will be characterized by their chemical and
phase composition, specific surface area, particle size distribution and pozzolanic activity. Their hydration will
be studied using calorimetric and DTA measurements and the morphology of hardened paste will be
investigated (SEM analysis with EDAX probe, mercury porosimetry). Additional steps include: (i) testing of the
technological, mechanical, and fracture-mechanical properties; (ii) design and verification of technology
regarding specific characteristics of SMC; (iii) tests of the durability of concrete with selected aggressive, both
to chemical agents, as well as under negative temperatures; (iv) monitoring of changes in the chemical and
phase composition.
Achievements Development of new materials utilizing supplementary cementitious materials (SCM).
Development of concrete with special properties (high strength, waterproof, etc.). Development of lightweight
self-compacting concrete. Development of new methodologies for concrete testing.
Milestones
M1.5.1 (2013): New methods for testing of fresh concrete, suitable for lightweight self-compacting concrete.
M1.5.2 (2015): Development of new concretes with special properties.
M1.5.3 (2018): Development of materials utilizing supplementary cementitious materials.
Task 1.6 Advanced ceramics (BUT)
Background Advanced anorthite ceramics shows very advantageous mechanical properties especially in comparison with traditional porcelain ceramics based on mullite-glass phase-quartz-cristobalite according to mineralogical composition. To prepare anorthite ceramics, it is necessary to find optimal conditions (granulometry,
water content and composition of raw material mixture, firing curve etc.) for anorthite crystallization in connection with properties of anorthite ceramic body.
Work plan, concepts and methods Properties of raw materials mixture and green body depending on used
binder – mixing water, drying shrinkage, drying sensitivity, strength of green body. Possibility of reduction of
mixing water – utilization of deflocculants. Firing of test samples according to different firing curves. Thermodilatometric and thermomechanical analysis for investigation of such processes during the firing. Properties
of fired test samples according to EN ISO 10545 (strength, modulus of elasticity, frost resistance, chemical resistance) depending on microstructure of the fired body.
Achievements Procedure leading to formation of mineral anorthite during the firing of ceramic body and
quantification of the effect of anorthite content on the properties of fired ceramic body. Characterization of the
influence of different CaO source (aluminous cement, Ca(OH)2, calcite, wollastonite, marble, gypsum) and type
of kaolinic clay on the properties of anorthite ceramic body. Description of the behavior of aluminous cement in
the mixture with non-plastic ceramic raw materials during the firing.
Milestones
M1.6.1 (2013): Formation of mineral anorthite during the firing of ceramic body and effect of anorthite content
on the properties of fired ceramic body.
M1.6.2 (2013): Determination of the influence of different CaO (aluminous cement, Ca(OH)2, calcite,
wollastonite, marble, gypsum) and clay source on the properties of anorthite ceramic body.
M1.6.3 (2018): Determination of properties of anorthite ceramics depending on microstructure of the body –
difference between traditional porcelain ceramics and anorthite ceramics.
Work package number
Work package title
Participant
Activity
2
Reliability and soft computing
CTU
BUT
X
X
CUNI
CDV
Objectives: Research and application in the field of structural safety and reliability. Utilization of nonlinear
finite element tools and Monte Carlo type simulations is essential for modeling of random behavior and the
reliability assessments. Recently it has been realized that such methodology is not sufficient and that new
research in stochastic computational mechanics is needed. Development of new approaches is stimulated e.g. by
the need of parameter identification when using computationally demanding nonlinear finite element
calculations. Soft computing tools aim to exploit the tolerance for imprecision, uncertainty and partial truth to
achieve tractability, robustness and low solution cost. The objective is to progress the development of new
methodologies for reliability assessment of structures, inverse analysis, identification, modeling of integrity and
failure, stochastic modeling of materials and structures.
Description of work
Task 2.1 Stability, integrity and failure (BUT)
Background Specialized parameters characterizing the material with respect to its failure behavior depend on
the utilized approach and are not able to provide a general description. Therefore, an attempt should be made to
develop a general unified approach in order to enable comparison of different materials (with different
characteristic lengths, different types of failure behavior, etc.). An approach relating the amount of dissipated
energy to the volume of failed material (including the distribution of failure intensity over the process zone)
seems to be reasonable and has been already tested for tensile failure of quasi-brittle materials. Its extension to
other failure modes is considered. Subsequently, more general types of loading (dynamical effects, impact
loading, fatigue, etc.) will be taken into account.
Work plan, concepts and methods Dynamical simulations of various nonlinear phenomena using techniques
of physical discretization of a continuum. Utilization of various branches of the fracture mechanics theory.
Classification of advanced structural materials according to their failure resistance (tensile, shear, compressive).
Stability assessment of selected structures, determination of bifurcation points, transient dynamical behavior,
generic properties of nonlinear systems (deterministic chaos, bifurcation points, basin boundaries, fractal
analysis), analysis of post-critical states, simulation of unstable processes.
Achievements Convergence properties of computational modeling and simulation approaches, including the
homogenization techniques and the sense of convergence on periodic and non-periodic material structures.
Proper formulations of direct, sensitivity and adjoint problems and their relation to the evaluation of integrity,
durability, safety, reliability and other quantities of advanced building materials of technical significance.
Milestones
M2.1.1 (2013): Complex strategy of failure modeling.
M2.1.2 (2015): Multilevel assessment of stability problems.
M2.1.3 (2017): Strategy of integrity assessment.
M2.1.4 (2018): General connections of integrity, stability and failure modeling.
Task 2.2 Simulation techniques in stochastic mechanics (BUT)
Background These simulation techniques cover techniques for representation of random material properties,
microstructure and geometry and also efficient methods of approximation of probabilistic integrals featured in
the mentioned types of analyses.
Work plan, concepts and methods The multi-scale modeling strategy that will be pursued within this project
follows the chain of assumptions made for the initiation and development of a representative crack bridge
(microscale), development of interacting multiple crack bridges under tensile loading (mesoscale) and
directional dependency of the damage patterns on the reinforcement orientation (macroscale). Existing models
disregard the effect of scatter in the response, but a complete probabilistic characterization of the crack bridge
response is indispensable for a reliable prediction. In other words, the usually applied approach does not exploit
the full potential of the statistical representation of the crack bridge response. The potential of a thoroughly
applied probabilistic description shall be exploited within this task.
Achievements Extension of statistical and reliability techniques suitable for reliability assessment at the level
of both random variables and random fields. Formulation of a new micromechanical model that enables full
probabilistic determination of composite behavior. Digital representation of microstructure within the
framework of discrete modeling techniques.
Milestones
M2.2.1 (2013): Multi-scale modeling framework bridging micro and macro scales by applying the crackcentered homogenization technique transforming the statistical representation of the material structure into
smeared, directionally dependent damage functions that describe the inelastic behavior within a representative
volume element will be developed.
M2.2.2 (2015): Simulation methods for digital microstructure representation within the framework of discrete
modeling techniques will be developed.
M2.2.3 (2016): Two modeling platforms of physical discretization, namely for the Discrete Element Method
and for the lattice-particle model, will be developed and utilized for computer simulations.
Task 2.3 Inverse analysis (BUT)
Background The new inverse analysis technique has been developed recently by the team responsible for the
task. It is based on the combination of a statistical simulation of Monte Carlo type and an artificial neural
network. It will serve as a basis for further development of a theoretical basis and practical inverse analysis
tools.
Work plan, concepts and methods Development of methodology and tools for deterministic and statistical
parameter identification based on random response measurements using fracture tests of various testing configurations. Emphasis on development of methodology for damage detection of dynamically loaded structures
using structural health monitoring data and piezoelectric transducers. Verification using real data and experiments. Extension of proposed methodology towards inverse reliability analysis for full probabilistic design
concept.
Achievements New approaches based on new types of artificial neural networks. Development of methodology
for inverse reliability analysis. Verification of theoretical aspects like overtraining of networks, design of a
neural network. Application to identification of model parameters for modeling of quasibrittle failure of
concrete and fiber–reinforced concrete elements. Application to damage identification of bridges based on
dynamic measurements. Application to inverse reliability based design.
Milestones
M2.3.1 (2013): System for deterministic and statistical parameter identification based on random response
measurements using fracture tests of various testing configurations. Verification using real experiments.
M2.3.2 (2014): New types of artificial neural networks will be utilized and tested in the concept of inverse
analysis.
M2.3.3 (2015): Methodology for damage identification of dynamically loaded structures will be developed and
supported by numerical as well as laboratory and in-situ experiments.
M2.3.4 (2017): Inverse reliability based design concept will be developed and supported by numerical analyses.
Procedure will be verified in applications from bridge engineering field.
Task 2.4 Fuzzy approaches and reliability (BUT)
Background If the a priori information on the process studied does not enable to generate the initial structure of
a stochastic model, the inaccuracy and inconsistence of input information will be taken into consideration by
fuzzy-random quantities or by fuzzy quantities. In these cases the available information on the process studied
will be used to identify the membership functions of input fuzzy numbers.
Work plan, concepts and methods The fuzzy analysis will be solved mostly on calculation models, the input
and output of which are fuzzy numbers defined based on a set of real numbers. In general, the fuzzy arithmetic
is based on the so-called extension principle which enables to transfer any set within crisp sets to an operation
in fuzzy sets.
Achievements The fuzzy probabilistic studies will evaluate the uncertainty of procedures and methods securing
the reliability by predicting the limits of actual actions of load-carrying steel structures. The ultimate limit state
will be studied. The significance of input variables will be assessed. Variables with the dominant influence on
the ultimate limit state will be analyzed. The result will be the refinement of theoretical basis of modeling and
the complex analysis of uncertainty of fuzzy and random character.
Milestones
M2.4.1 (2013): Identification of fuzzy, stochastic and fuzzy random uncertainty of the limit states of simple
types of structures. Literature search and acquisition of available data on geometric and material characteristics.
M2.4.2 (2015): Mathematical description of characteristic types of uncertainties that are not of a stochastic
character. Selection and adaptation of software instruments. Description of input and output parameters and
their constitutive relations.
M2.4.3 (2016) Numerical simulation based on iterative solution of computational models. Fuzzy analysis of
deterministic and stochastic response of selected types of steel structures.
M2.4.4 (2018) Analysis of fuzzy and random uncertainty of limit states according to the Eurocodes.
Task 2.5 Worst-case scenario method and multi-scale energetic systems (CTU)
Background So far, the worst-case scenario method has been used mainly for single-scale problems. Its
extension towards multi-scale models will contribute to the development of theoretically supported robust
design tools for engineering materials.
Work plan, concepts and methods Establishing the connection between the Mielke-Theil energetic framework
and the worst-case scenario method in the multi-scale setting. We will depart from the treatment of single-scale
convex problems, such as small-strain plasticity with hardening, for which a number of results are currently
available [Hlaváček et al., 2004], and extend it to incorporate the multi-scale convergence results due to
[Nechvátal, 2010]. Extension of the analysis to general non-convex systems, with a number of potential
applications. The solution methods will incorporate the techniques specified in Task 3.1, extended by numerical
sensitivity analysis and optimization methods to solve the worst-case maximization problem.
Achievements Development of a mathematical framework connecting the mathematical tools of multi-scale
analysis with the worst-case scenario method. Rigorous analysis of uncertainty propagation in multi-scale
systems and its efficient numerical treatment. Application of the general theory to relevant engineering models.
Milestones
M2.5.1 (2013): Connection between the theory of rate-independent systems and the worst-case scenario
method is established.
M2.5.2 (2015): Multi-scale extension for convex systems is formulated and supported with numerical
experiments, based on results of task 3.1.
M2.5.3 (2016) [internal]: Based on outcomes of task 3.1, an appropriate strategy to address non-convex
models will be selected.
M2.5.4 (2018): General theory for multi-scale version of the worst-case scenario method is developed and
supported by numerical experiments.
Work package number
Work package title
3
Multiscale and multiphysics modeling of complex heterogeneous
materials.
Participant
Activity
CTU
X
BUT
CUNI
CDV
X
Objectives:
Extend the state-of-the-art techniques of multi-scale modeling to systems described by non-convex energies and
uncertain input data. Formulate advanced regularized multi-scale and multi-physics models for inelastic
deformation and dissipative processes in heterogeneous materials.
Improve the understanding and description of fundamental multi-physics processes playing an important role in
the behavior of heterogeneous materials. Tailor the properties of man-made heterogeneous porous materials,
based on description of their evolving micro/nanostructure and identification of the weakest points. Develop
tools interconnecting chemistry, physics for tailored design.
Improve the understanding of geodynamic processes and provide descriptive and predictive models of
continental underthrusting, development of orogenic root and high topography, magma transport and related
exchanges of mass and energy within the thickened orogenic crust, and subsequent orogenic collapse.
Description of work
Task 3.1 Multi-scale homogenization techniques for heterogeneous materials
(CTU)
Background Most man-made engineering materials, as well as biological tissues and other natural materials,
have a complex internal structure, with characteristic heterogeneities at different scales, often spanning many
orders of magnitude. Classical material models usually have a phenomenological character and reflect the actual
processes in the material only indirectly. A deeper insight into the link between the internal structure of
materials and their properties can be provided by multi-scale approaches, considering also the interplay among
various mechanical, physical and chemical processes on various scales.
The existing techniques for homogenization of rate-independent processes are available for the systems
described by convex energies, which fail short in describing the localized phenomena. To address the issues of
integrity and durability, these techniques must be extended to the non-convex case and to models with uncertain
input data.
Work plan, concepts and methods We will employ the rational-mechanical approach and the concept of the
global energetic solution introduced by [Mielke & Theil, 1999]. During the last decade, such setting was
successfully used to analyze a wide range of inelastic continuum models such as classical and gradient
plasticity, models of shape memory alloys, fracture, damage, delamination or ferromagnetism. Three major
aspects will be addressed: (i) the development of multi-scale homogenization techniques for abstract rateindependent systems and their approximation, (ii) application of the general results to particular classes of nonconvex continuum models and (iii) numerical simulations supporting the theoretical developments.
Tools and methods for multi-scale description of inelastic deformation processes and mass and energy transport
in heterogeneous materials will be analyzed, further developed and integrated. Efficient numerical algorithms
for large-scale simulations will be implemented, verified and optimized. The main challenge is the bridging of
spatial and temporal scales over many orders of magnitude. A promising technique, so far not fully exploited, is
the incorporation of fine-scale characteristics and processes by additional non-standard terms of the coarse-scale
models. Such enrichments, formulated within the framework of generalized continua based on integral-type
nonlocal variables, higher-order gradients or additional kinematic variables, have already been used for the
regularization of mechanical failure models. The influence of the boundary shape, internal interfaces and
discontinuous material properties can be properly taken into account only if the corresponding fine-scale
phenomena are resolved.
Achievements
General methodology for matching of a generalized continuum model to detailed solutions obtained by a finescale model. Improved regularized model for localized failure of quasibrittle materials, giving realistic results
for non-trivial benchmark examples that mimic the typical features of real-life problems. Extension of the
mechanical model to couplings with heat and mass transfer and with chemical or biological processes in the
microstructure.
Novel mathematical results for the treatment of mechanical systems described by non-convex energies in the
multi-scale setting. Application of the theory to relevant engineering problems, including the numerical aspects.
Convergence properties of computational modelling and simulation approaches, including the homogenization
techniques and the sense of convergence on periodic and non-periodic microstructures.
Mathematical support of identification of material characteristics, with the relationship to the optimal
arrangement and planning of inexpensive experiments.
Milestones
M 3.1.1 (2013) Available energy-based framework for multi-scale plasticity will be extended to the general
setting, including numerical approximation results.
M 3.1.2 (2013) [internal] An appropriate strategy to treat non-convex systems will be selected, based on the
foreseen developments in this active research field.
M 3.1.3 (2016) General framework for the treatment of non-convex systems is developed, with emphasis on
qualitative properties of the solution and approximation results.
M 3.1.4 (2018) The proposed theory is applied to relevant engineering models and supported with results of
numerical benchmark problems.
Task 3.2 Multi-physics models for heterogeneous materials (CTU)
Background Many materials are of heterogeneous and porous nature, and a realistic assessment of their performance requires taking into account the interplay among various mechanical, physical and chemical processes
on various scales. In the case of geodynamic processes, material models for solid rocks are relatively well established (REFS) but representation of geomaterials during phase transition still represents a challenge, which must
be addressed from a multi-physics perspective.
Work plan, concepts and methods In view of the underlying heterogeneous microstructure, which drives not
only the mechanical but also the physical response, the analysis will utilize the classical concepts of hierarchical
modeling combined with detailed geometrical models based on Statistically Equivalent Periodic Unit Cell (SEPUC) using the methodologies developed in Task 3.1.
Homogenization techniques will be employed in order to obtain the equivalent macroscopic thermal and mechanical properties. The mesoscopic properties of individual phases and evolving rheological behavior of these
melt-solid compounds will be modeled for both static and dynamic conditions (tectonic deformation). The key
input parameters for the multi-physics modeling are the melt viscosity and topology and three-dimensional ge-
ometry of melt regions within the modeled rock (WP1 Task 1.3); these parameters will be obtained from natural
examples of various textural types of migmatites and granites.
Achievements
Extension of the mechanical model based on a generalized continuum to couplings with heat and mass transfer
and with chemical or biological processes in the microstructure.
Assessment of the effects of fully coupled heat and moisture transport in the analysis of large-scale historic
structures on their integrity when combined with mechanical sources of loads.
Constitutive (thermal and mechanical) models for partially molten rocks in different phases.
Milestones
M 3.2.1 (2012): Selection of thermal and mechanical constitutive models for components of partially molten
rock on mesoscale and establishment of phase-transformation conditions on mesoscale.
M 3.2.1 (2014): Macroscopic (homogenized) thermal and mechanical constitutive laws and phasetransformation conditions for partially molten rock (at various levels of solidification).
Task 3.3 Development of advanced numerical tools for simulation of processes at
multiple scales (CUNI)
Background In recent years, the geodynamic processes that lead to the formation and destruction of mountain
belts have been the subject of intense fundamental research, which is mostly based on field observations,
theoretical considerations and simplified modeling. We intend to develop advanced models of physical
phenomena governing the processes in question and combine them with the power of state-of-art numerical
methods to simulate these processes more realistically. Simulations have to capture the highly nonlinear
behavior of the solid phase, flow and strain in multiphase mixtures (magma), fluid-solid interaction, evolving
boundaries and phase transformations (rock melting, magma solidification), nonlinear heat conduction and
advection in the solid and fluid phases, respectively, heat production or consumption, metamorphic reactions,
and radioactive decay.
Considering the portfolio of man-made materials (ceramics, concrete, or porous glasses), understanding their
heterogeneous structure on multiple scales is a crucial factor for their enhancement. Their properties are easily
engineered by changing the material inputs. Numerical tools could also assist in experimental design. Such
conjecture has recently been pioneered by the GEMS software [Lothenbach & Winnefeld, 2006], allowing
accurate chemical predictions of heterogeneous components in hydrating cementitious binders and the design of
more durable and reliable materials from a chemical standpoint. Further extension to mechanical behavior is
largely missing.
Work plan, concepts and methods In the geodynamic simulations, the mechanical model will be based on
governing equations for solid and fluid domains, with both domains evolving in time and space. The mechanical
model will be coupled with heat transport, with internal heat sources and temperature-dependent coefficients.
To capture large displacements and evolving domains, a Lagrangean formulation will be adopted. The particle
finite element method [Oñate et al. 2004] will be considered, combined with the constitutive models developed
in WP3, and implementation of thermo-mechanical coupling and phase transformations.
Numerical and semi-analytical homogenization methods (finite elements, mean-field approach) will be
employed for the analysis of available results from XRD, μCT, ESEM or GEMS software. Kinetics of material
evolution will be taken into account, emphasizing highly porous initial stages of material formation. These tools
allow correlating the input variations in material data with homogenized properties on a higher scale. Elasticity,
linear time-dependent deformations, fracture energy and material strength, all evolving in time, will be
simulated.
Nanomechanics of forming gels, which are the main binders in cementitious systems, will be deduced from
macroscale data. In this sense, downscaling technique is the only way of meeting the results from molecular
dynamics (already published) and unknown micro-scale behavior. The tools will also incorporate the effect of
carbon nanotubes as a nanoreinforcement, largely impacting the resulting properties of heterogeneous manmade materials. The mechanics of nanoreinforcement for fracture remains an open problem.
Achievements
Buildup of microstructural and micromechanical models for man-made heterogeneous binders. Correlation and
sensitivity to input data. Nanomechanics of gels and carbon nanoreinforcement.
Development of numerical techniques for solving problems involving solids under large deformations, fluid
flow, evolving boundaries, phase transformations and fluid-solid interaction.
An integrated computational tool enabling quick estimates of both mechanical and non-mechanical parameters
of an arbitrary class of heterogeneous materials with random or disordered microstructures. This tool will be
initiated through the analysis of poly(siloxane) matrix based textile composites, closed-cell metallic foams and
the above mentioned binders.
Milestones
M 3.3.1 (2015): Multiscale tools for elasticity, time-dependent behavior, fracture
M 3.3.2 (2016): Nanoscale mechanics of carbon nanoreinforcement
M 3.3.3 (2013): Tools for generating SEPUC from available binary images of real microstructures stored in a
built-in database (2D, 3D).
M 3.3.4 (2015): Synergy of micromechanical models and tools for detailed simulation of real microstructures
given in terms of SEPUC.
M 3.3.5 (2012): Modification of the PFEM method to accommodate the specifics of geodynamic simulations or
selection of another numerical method.
M 3.3.6: (2014) Completed implementation of a numerical method for geodynamic processes into an in-house
software package, verification.
M 3.3.7: (2016) Implementation of constitutive laws developed in Task 3.2.
Work package number
Work package title
4 Start date
Month 1
Verification, validation and simulation
Participant
Activity
CTU
BUT
CUNI
CDV
X
X
X
X
Objectives:
Advanced modeling and simulations of geodynamic processes which will advance fundamental knowledge in
the Earth sciences. Validation and verification of the developed models and implemented numerical methods.
Validation of new achievements developed within the previous WPs in the context of assessment of structures
and materials. Optimisation and verification of the behavior of construction elements, units and load-bearing
systems will be carried out, taking into account real geometric, material and structural characteristics. All of
these activities will be addressed from the point of view of the life cycle of building objects and the principles
of sustainable development.
Description of work
Task 4.1 Simulations of geodynamic processes (CUNI)
Background Since the 1960s and 1970s, when the plate-tectonic paradigm was formulated in the Earth sciences, a number of studies have emphasized the key role of magmas in the formation and destruction of mountain
belts. We intend to develop advanced models of physical phenomena governing the processes in question and
combine them with the power of state-of-art numerical methods to simulate the geodynamic processes more
realistically. Results of these numerical simulations will advance the fundamental knowledge in the Earth sciences namely by (a) complementing data obtained through field-oriented research with information that is not
physically measurable and (b) providing means for validation of existing and newly developed hypotheses.
Work plan, concepts and methods We plan to develop a set of numerical models to examine the mechanical
conditions and potential driving forces for this core complex formation, which cannot be solved using geologic
data. For the geometry and rock characteristic obtained in Task 1.3, we will examine how changing parameters
(temperature, tectonic stress, rheology) will influence the displacement of rocks and thus under which mechanical conditions the core complex may have formed. The problem will be, in principle, modeled on the macroscale, where host rocks and magma will be treated as continua using homogenization based methods, taking
into account the multi-physics character of the problems (Tasks 3.1 and 3.2).
Achievements
The results of this task will advance basic research in Earth sciences by complementing experimental research
and validating hypotheses. Using this particular case example of a migmatite–granite complex, a general geological model for magma generation, exhumation of partially molten rocks, and their changing rheological behavior during orogenesis will be developed.
Milestones
M 4.1.1: (2014) Modeling changes in rheological behavior of migmatites during partial melting and
emplacement mechanisms of granites.
M 4.1.2: (2015) Modeling transport through fractured brittle host rock.
M 4.1.3: (2017) Modeling of the large-scale exhumation.
M 4.1.4: (2018) A synthesis on rheological transitions in multiphase magma–partially molten rocks.
Task 4.2 Concrete structures design, strengthening, optimization (BUT)
Background In advanced countries, a substantial attention has been paid to innovative approaches in design,
implementation and management of construction activities. It is tightly connected to the challenges in the
related fundamental research because suggested design parameters for construction components should
optimally reflect the requirements mainly posed on their target properties. New materials such as highperformance concrete, fiber-reinforced polymers (FRP) and engineered composites are applied in concrete
structure design, and suitable theoretical optimization models must be developed. These models have to
consider that the optimal design parameters must also satisfy lifetime related requirements.
Work plan, concepts and methods Using experimental testing, mathematical modeling and theoretical
validation, we will define advanced models and constitutive relations for composite concrete structures design.
Analysis of challenging problems of optimal structural design has to consider life time aspects and involve
stochastic parameters to reflect the actual requirements recently posed on concrete structures in the model
building phase (life-time related, environmental, weather-related, seismic, targeted attack).
Achievements Development and description (modeling) of modern composite concrete-based structures,
development, testing and design rules for new advanced strengthening techniques, sophisticated models for
optimized design of concrete structures with verification tools; algorithmic improvements based on advanced
data structures; modification of decomposition and penalty-based algorithms.
Milestones
M 4.2.1 (2013): Fire resistance of FRP strengthening and reinforcing systems, design rules.
M 4.2.2 (2015): Formulation of time-dependent models (aging of structures), robust optimization models and
further alternatives, comparisons.
M 4.2.3 (2017): Advanced composite structures.
M 4.2.4 (2018): Advanced Monte Carlo techniques for a posteriori solution verification (prestressed and nonprestressed concrete structures), a priori modeling for improvement of solution quality (design examples).
Task 4.3 Advanced Metal Structures (BUT)
Background Reliable and effective structural design can be achieved by of the utilization of advanced
materials, such as advanced metals (progressive steels), aluminium alloys, structural glass and fibre-reinforced
polymers. Using their non-traditional combinations in load-carrying structural members is one of the pathways
to high reliability and economy.
Work plan, concepts and methods Combined use of theoretical and experimental methods of analysis. The
experimental tests (loading tests and tests of mechanical properties) as a base for the creation, verification and
calibration of static models.
Achievements Enhancement of the knowledge of the actual behavior and resistance of structural members
composed of advanced materials based on metals, structural glass and fiber-reinforced polymers and their
combinations, for the extension of existing conceptual bases for the structural design. Evaluation and
generalization of experimental verification results using theoretical methods based on mathematical approaches.
Milestones
M 4.3.1 (2014): Advanced structural members composed of introduced materials (see above) are investigated
on the base of experimental verification and the connection with theoretical structural analysis is established.
M 4.3.2 (2016): The results of numerical analyses are verified on the base of evaluated experimental results
and in connection with general design approaches.
M 4.3.3 (2018): Generalization based on the integration of the results of previous experimental and theoretical
analyses leads to the completion and extension of existing design methods.
Task 4.4 Geotechnics and Traffic Problems (BUT/CDV)
Background Geomaterials generally exhibit a highly non-linear behavior and their properties are more variable
than for other materials. It has been outlined in several studies that the compositional or structural inhomogeni-
ties and crystal microstructure of geomaterials could play a significant role in the mechanical response of geomaterials subjected to loading and in the resistance to damage or failure.
Work plan, concepts and methods The research is both experimental and theoretical. Laboratory tests will be
done in order to determine the input parameters for different constitutive models. Additional experiments will
be focused on the evaluation of material properties with respect to their structural as well as chemical
composition. In the theoretical part, the influence of different constitutive models on the predicted behavior of
geotechnical structures will be studied, and a methodology for assessment of dynamic properties of railway
tracks will be developed.
Achievements. Investigation of properties of various geomaterials. Focus on macro-scale and micro-scale
determination of compositional, mechanical, and physical properties. These properties will be investigated for
natural materials alone, as well as for natural material mixtures with other compounds (cement, lime, synthetics
fibers etc.). Evaluation of trail track sections for rail fastening with high elasticity, and comparison with the
common structure of ballasted track.
Milestones
M 4.4.1 (2014): Current theoretical background. Initial phase of laboratory testing.
M 4.4.2 (2015): Evaluation of material properties with respect to their structural and chemical composition.
M 4.4.3 (2016): Research activities will be focused on analysis of railway structure parameters at dynamic
loading.
M 4.4.4 (2018): Summary and interpretation of obtained results from laboratory and numerical analysis.
G. Time schedule, and stages
The project is implemented in four work packages, representing different stages in developing the project objectives.
The core theory and models, supplemented by input acquisition and validation, will be developed concurrently by the
cooperating partners with expertise in the relevant areas. The timing of the different WPs and their tasks (Gantt chart)
is shown in the following table.
Task
1.1
1.2
1.3
1.4
1.5
1.6
2.1
2.2
2.3
2.4
2.5
3.1
3.2
3.3
4.1
4.2
4.3
4.4
Y12 Y13 Y14 Y15


Data acquisition from small-scale experiments

Durability and surface treatment


Acquisition of geological data


Scanning electron microscopy


Concrete and mortars

Advanced ceramics


Stability, integrity and failure


Simulation techniques in stochastic mechanics



Inverse analysis


Fuzzy approaches and reliability


Worst-case scenario method

Multi-scale homogenization techniques


Multi-physics models for heterogeneous materials



Development of advanced numerical tools


Simulations of geodynamic processes


Concrete structures design and optimization

Advanced metal structures


Geotechnics and traffic problems
Table 1: Timing of individual tasks (shaded) and milestones ()
Y16
Y17



Jimp – papers in scientific journals with impact factor
Jneimp – papers in scientific journals
1
App. number per year




Methodology for evaluation of research organizations, Office of the Government of the Czech Republic.








Number per project
12
15




H. Expected achievements
Achievements according to methodology 1
Y18




Jrec – papers in reviewed national journals
15
B – book
2
C – chapter in a book
10
D – paper in proceedings
22
Table 2: Summary of expected achievements (according to methodology)
I. International cooperation
CTU has an active cooperation with Northwestern University, Evanston, USA (Z.P. Baţant) in mechanics of
quasibrittle materials; University of Tokyo, Japan (K. Maekawa) in modeling and testing of cementitious composites;
University of Texas at Austin, USA (I. Babuška) in worst-case scenario methods; Technical University of Eindhoven,
The Netherlands (M. Geers) in damage processes in discrete systems; Vienna University of Technology, Vienna,
Austria (P.K. Zysset) in bone mechanics; University of Glasgow, United Kingdom (P. Grassl) in meso- and
macroscopic modeling of concrete; Nanocem (international consortium) in nanoscience of cement; and with three
universities participating in joint organization of a series of international conferences CFRAC (Technical University of
Catalonia in Barcelona - X. Oliver, Ecole Centrale de Nantes - N. Moës, Ecole Normale Supérieure de Cachan - O.
Allix); Danish Technological Institute, Denmark (L.N. Thrane) in SCC design.
BUT has an established cooperation with RWTH Aachen University, Aachen, Germany (R. Chudoba) in stochastic
mechanics of reinforced composites, Northwestern University, Evanston, USA (Z.P. Baţant) in size effects in and
reliability of quasibrittle structures, University of Minnesota, Minnesota, USA (J.-L. Le) in fatigue of quasibrittle
materials, Technical University of Denmark, Denmark (J. Skoček) in discrete lattice-particle modeling, IKI, BOKU,
Vienna, Austria (K. Bergmeister) in inverse analysis and damage identification, University Fortalesa, Brazil, in
concrete structures, and with Texas University Austin, USA (D. Morton) in design of concrete.
CUNI has an established cooperation with University of Southern California, Los Angeles, USA (S.R. Paterson) in
pluton emplacement processes and physical processes in magma chambers, and with University of Salzburg, Austria
(F. Finger) in monazite geochronology and metamorphic and igneous petrology.
CDV has an international cooperation with Federal Highway Research Institute, Germany, in pavement testing and
design, and with Commission of the European Communities, Brussels (A. Mitsos).
The international cooperation is documented in detail in attachments.
J. Available resources and their sharing
The partners involved in the center will commit a core of key resources in terms of expertise and facilities in order to
implement the project. The key areas of commitment by respective partners are as follows:
 CTU has advanced facilities for micro- and nano-level mechanical testing - Nanotest nanoindenter (Micro Materials, UK), Tribolab nanoindenter (Hysitron, USA), Nanohardness tester (CSM Instruments, Switzerland),
Environmental scanning electron microscope XL30 ESEM-TMP, Philips, and Atomic force microscope
(DME Denmark). The Department of Mechanics has a cluster computer for numerical simulations as well as
access to university high-performance computing resources.
 CUNI has Multi-function spinner Kappabridge MFK-1A (made by Agico, Inc.) at Laboratory of Rock Magnetism (Faculty of Science, Charles University in Prague) – the world’s most sensitive commercially available
instrument for measuring the bulk magnetic susceptibility and its anisotropy in rocks and other materials.
Website: www.natur.cuni.cz/~jirizak/lrm.htm
 BUT has the AE Location Analyzer LOCAN 320, a 6-channel measuring apparatus (two channels to pick-up
signals, four channels for crack localisation), DAKEL XEDO -8 equipment for acoustic emission evaluation,
RTE made by TESTINA, equipment for Impact-echo measurement, MSNVS01, equipment for non-linear
acoustic spectroscopy, Confocal Microscope Olympus Lext 3100 with Atomic Field Microscope Module, airconditioned room.
 CDV has scanning electron microscope Tescan Vega II LSU, which allows working in high, middle or low
vacuum mode, with secondary (SE) or backscattered (BSE) electron detectors, SEM equipped with Energydispersive x-ray analyser (EDX), Energy-dispersive x-ray analyser.
K. Structure of the team, personal resources, and competence of the applicants
All the project partners have adequate human and material resources available to them to support this project. Especially the knowledge resources of the research partners are undoubtedly the biggest asset. A clear benefit is derived
from the overlapping interests of several of the committed partners. The listing in Table 3 illustrates the scientific and
knowledge potential of the key personnel.
During the solution of the project, a strong involvement of PhD as well as MSc students is planned, particularly at
CTU, BUT, and CUNI. The knowledge acquired in the project will be directly used to improve the education process.
Involvement of students in such a long-term project will enrich the universities involved and contribute to the scientific and professional growth of the young generation of researchers.
Name
Institution
Expertise
H
Cit
Jimp
Np/Ip
M. Jirásek
CTU
Material modeling
17 844
21
2/7
M. Šejnoha
CTU
Composites
7
179
20
5/0
B. Patzák
CTU
Computational mechanics
5
142
9
5/0
Z. Bittnar
CTU
Computational mechanics
6
97
28
14/2
J. Kratochvíl
CTU
Solid state physics
17 1052 25
4/2
P. Demo
CTU
Solid state physics
8
268
19
5/0
P. Kabele
CTU
Constitutive modeling
4
56
5
5/0
V. Šmilauer
CTU
Inorganic binders
2
26
8
2/1
J. Zeman
CTU
Theoretical mechanics
7
157
20
1/4
M. Kruţík
CTU
Applied mathematics
7
196
23
1/1
J. Chleboun
CTU
Applied mathematics
4
32
4
0/1
Z. Keršner
BUT
Fracture mechanics
2
11
5
7/0
M.Vořechovský
BUT
Stochastic mechanics
7
91
12
5/2
J. Vala
BUT
Applied mathematics
3
35
10
1/0
D. Lehký
BUT
Soft computing
1
12
2
1/0
D. Novák
BUT
Structural reliability
7
139
15
10/2
A. Strauss
BUT
Inverse analysis
4
48
22
4/2
Z. Kala
BUT
Fuzzy logic
6
104
5
6/0
P. Rovnaníková
BUT
Structural chemistry
6
75
19
20/0
P. Bayer
BUT
Structural chemistry
3
22
9
0/0
P. Rovnaník
BUT
Material degradation
3
18
10
1/0
R. Hela
BUT
Concrete technology
1
1
7
15/2
Z. Chobola
BUT
Applied physics
2
5
16
8/0
L. Pazdera
BUT
Applied physics
2
2
11
1/0
P. Štěpánek
BUT
Concrete structures
1
6
1
12/2
J. Melcher
BUT
Metal structures
4
39
3
14/0
J. Smutný
BUT
Traffic
2
2
4
4/0
J. Ţák
CUNI
Structural geology and tectonics
9
99
27
0/5
D. Pospíšilová-Vašíčková
CDV
Scanning electron microscopy
3
20
4
0/0
I. Dostál
CDV
Microstructure analysis
2
10
2
2/1
Table 3: Key persons and their expertise (H = H-factor, Jimp = number of papers in journals with impact factor during
the last 10 years, Cit = number of citations, Np/Ip = number of national/international projects during the last 10 years).
L. Bibliography
Allison, J, Backmann, D, Christodoulou, L. Integrated Computational Materials Engineering: A new paradigm for the
global materials profession, JOM, 25-27, 2006.
Babuška, I., Nobile, F. and Tempone R. Reliability of Computational Science, Numerical Methods in Partial
Differential Equations, 753-784, 2007.
Baţant. Z.P. Can Multiscale-Multiphysics Methods Predict Softening Damage and Structural Failure? International
Journal for Multiscale Computational Engineering, 8: 61—67, 2010.
Bea, F., Crystallization Dynamics of Granite Magma Chambers in the Absence of Regional Stress: Multiphysics
Modeling with Natural Examples. Journal of Petrology, 51(7): 1541-1569, 2010.
Bea, F., Crystallization Dynamics of Granite Magma Chambers in the Absence of Regional Stress: Multiphysics
Modeling with Natural Examples. Journal of Petrology, 51(7): 1541-1569, 2010.
Bentz, D. P.: Verification, Validation, and Variability of Virtual Standards, 12th International Congress on the
Chemistry of Cement, 2007.
Bergantz, G.W., & Ni, J., A Numerical Study of Sedimentation by Dripping Instabilities in Viscous Fluids.
International Journal of Multiphase Flow, 25: 307–320, 1999.
Bochev, P.B. and Gunzburger, M.D. Least-Squares Finite Element Methods. Springer, New York, 2009.
Brown, M., The Generation, Segregation, Ascent and Emplacement of Granite Magma: the Migmatite-to-CrustallyDerived Granite Connection in Thickened Orogens. Earth-Science Reviews, 36: 83–130, 1994.
Brown, M., Crustal melting and melt extraction, ascent and emplacement in orogens: mechanisms and consequences.
Journal of the Geological Society, London, 164: 709-730, 2007.
Brown, M., Solar, G.S., Shear-zone Systems and Melts: Feedback Relations and Self-organization in Orogenic Belts.
Journal of Structural Geology, 20: 211–227, 1998.
Burgisser, A., & Bergantz, G.W., Reconciling Pyroclastic Flow and Surge: the Multiphase Physics of Pyroclastic
Density Currents. Earth and Planetary Science Letters, 202: 405–418, 2002.
Chudoba, R., Vořechovský, M. and Konrad, M. Stochastic modeling of multi-filament yarns. I. Random properties
within the cross-section and size effect. International Journal of Solids and Structures, vol. 43, no. 3-4, pp. 413434, 2006.
Cioranescu, D. and Donato, P. An Introduction to Homogenization. Oxford University Press, 1999.
Conover, W. J., On a Better Method for Selecting Input Variables, 1975, unpublished Los Alamos National
Laboratories manuscript, reproduced as Appendix A of ―Latin Hypercube Sampling and the Propagation of
Uncertainty in Analyses of Complex Systems‖ by J.C. Helton and F.J. Davis, Sandia National Laboratories
report SAND2001-0417, printed November 2002.,
Deix, S., Geier, R. Updating FE-models using experimental modal analysis for damage detection and systém
identification in civil structures. Third European Conference on Structural Control, 3ECSC, Vienna University
of Technology, Vienna, Austria, 2004.
Der Kiureghian A., Zhang Y. & Li C.C. Inverse reliability problem. Journal of Engineering mechanics, 120(5): 11541159, 1994.
Efendiev, Y. and Hou, T. Y. Multiscale Finite Element Methods – Theory and Applications. Springer, New York, 2009.
Fairbairn, E.M.R., Paz, C.N.M., Ebecken, N.F.F., Ulm, F.J. Use of neural networks for fitting of FE probabilistic
scaling model parameters. International Journal of Fracture, 95: 315-324, 1999.
Fang, X., Luo, H., Tang, J. Structural damage detection using neural network with learning rate improvement.
Computers and Structures, 83, 2150-2161, 2005.
Geers, M.G.D., Kouznetsova, V.G. and Brekelmans, W.A.M. Multi-scale computational homogenization: Trends and
challenges. Journal of Computational and Applied Mathematics, 234:2175—2182, 2010.
Hill, R. Elastic properties of reinforced solids - Some theoretical principles. Journal of the Mechanics and Physics of
Solids, 11: 357--372, 1963.
Hinzen, M. and Brameshuber, W. Influence of short fibres on strength, ductility and crack development of textile
reinforced concrete, High performance fiber reinforced cement composites (HPFRCC5): Proceedings of the 5th
International RILEM Workshop, Mainz, Germany, Eds. Rheinhardt, H. W.; Naaman A. F., Bagneux: RILEM,
pp. 105–112, 2007.
Hlaváček,I., Chleboun, J., and Babuška, I. Uncertain input data problems and the worst scenario method, NorthHolland Series in Applied Mathematics and Mechanics, Elsevier, 2004.
Hollister, L.S., Crawford, M.L., Melt-enhanced Deformation: A Major Tectonic Process. Geology, 14: 558-561, 1986.
Huth, O., Feltrin, G., Maeck, J., Kilic, N., Motavalli, M. Damage identification using modal data: Experiences on a
prestressed concrete bridge. Journal of Structural Engineering, ASCE, 131:12, 1898-1910, 2005.
Idelsohn, S. R., Oñate, E. and Del Pin, F. The particle finite element method: a powerful tool to solve incompressible
flows with free-surfaces and breaking waves, Int. J. Numer. Meth. Eng., 61 (7), 964–989, 2004.
Iman, R.C. and W. J. Conover, Small Sample Sensitivity Analysis Techniques for Computer Models with an
Application to Risk Assessment, Communications in Statistics: Theory and Methods, A9 (17), 1749–1842,
1980.
Isakov, V. Inverse Problems for Partial Differential Equations. Springer, New York, 2006.
Kučerová, A., Lepš, M., Zeman, J. Soft computing methods for estimation of microplane model parameters. In:
Computational Mechanics Conference, WCCM VI in conjuction with APCOM´04, Beijing, China, Tsinghua
University, Press & Springer-Verlag, 2004.
Lehký, D. & Novák, D. Artificial Intelligence: New Research, chapter 7: ANN Inverse Analysis in Stochastic
Computational Mechanics. Randal B. Bernstein & Wesley N. Curtis (eds.), Nova Science Publishers,
Hauppauge NY, USA, 323-350, 2009b.
Lehký, D. & Novák, D. Neural network based damage detection of dynamically loaded structures. 11th International
Conference on Engineering Applications of Neural Networks (EANN 2009), London, Great Britain, 17-27,
2009a.
Lehký, D., Novák, D. An artificial neural network approach to solve inverse reliability problems. In: International
Symposium on Reliability Engineering and Risk Management (ISRERM2010), Shanghai, China, 564-570, 2010.
Lehký, D., Novák, D., Červenka, V. Shear failure of large concrete beams: Part I – Material parameters identification.
In: The 3rd International Congress of the International Federation for Structural Concrete (fib), Washington,
D.C., USA, 2010a.
Li, H. & Foschi, R.O. An inverse reliability method and its application. Structural Safety, 20: 257-270, 1998.
Li, V.C, Wang, Y. and Backer, S. A micromechanical model of tension-softening and bridging thoughening of short
fiber reinforced brittle matrix composites. Journal of the Mechanics and Physics of Solids 39(5), pp. 607–625,
1991.
Ljung, L. System Identification – Theory For the User, 2nd ed., PTR Prentice Hall, Upper Saddle River, N.J., 1999.
Lothenbach, B. and Winnefeld, F. (2006), Thermodynamic modeling of the hydration of Portland cement, Cement and
Concrete Research, 36(2), 209-226.
Maincon, P. Inverse FEM I: Load and response estimates from measurements. In: Progress in Structural Engineering,
Mechanics and Computation, Zingoni (ed.), Taylor & Francis Group, London, 967-971, 2004a.
Maincon, P. Inverse FEM II: Dynamic and non-linear problems. In: Progress in Structural Engineering, Mechanics
and Computation, Taylor & Francis Group, London, 991-995, 2004b.
McBirney, A.R., & Murase, T., Rheological Properties of Magmas. Annual Review of Earth and Planetary Sciences,
12, 337–357, 1984.
Mielke, A. and Timofte, A.M.. Two-scale homogenization for evolutionary variational inequalities via the energetic
formulation. SIAM Journal on Mathematical Analysis, 39: 642-668. 2007.
Mielke, A. and Theil, F. A mathematical model for rate-independent phase transformations with hysteresis. In H.-D.
Alber, R. Balean, and R. Farwig, editors, Proceedings of the Workshop on Models of Continuum Mechanics in
Analysis and Engineering, pages 117-129. Shaker-Verlag, 1999.
Mielke, A. Evolution in rate-independent systems (ch. 6). In C. Dafermos and E. Feireisl, editors, Handbook of
Differential Equations, Evolutionary Equations, volume 2, pages 461-559. Elsevier B.V., 2005.
Milton, G.W. The theory of composites. Cambridge Monographs on Applied and Computational Mathematics,
Cambridge University Press, 2002.
Möller,B. and Reuter,U. Uncertainty Forecasting in Engineering, Springer Press, p.202, 2007.
Naaman, A.E. et al. Fiber Pullout and Bond Slip I: Analytical study. Journal of Structural Engineering, vol. 117, no. 9,
pp. 2769-2790, 1991.
Nechvátal, L. Homogenization with uncertain input parameters. Mathematica Bohemica, 135:393-402. ISSN: 08627959, 2010.
Novák, D. & Lehký, D. ANN Inverse Analysis Based on Stochastic Small-Sample Training Set Simulation. Journal of
Engineering Application of Artificial Intelligence, 19: 731-740, 2006.
Oñate E., Idelsohn S. R., Zienkiewicz O. C., Taylor R. L. and Sacco C. A stabilized finite point method for analysis of
fluid mechanics problems, Comput. Meth. Appl. Mech. Eng., 139 (1–4), 315–346, 1996.
Oñate, E., S. R. Idelsohn, et al., The Particle Finite Element Method. An Overview. International Journal of
Computational Methods, 1(2): 267-307, 2004.
Ostoja-Starzewski, M. Microstructural Randomness and Scaling in Mechanics of Materials. Modern Mechanics and
Mathematics, Chapman and Hall/CRC, 2007.
Petford, N., & Koenders, M.A., Granular Flow and Viscous Fluctuations in Low Bagnold Number Granitic Magmas.
Journal of the Geological Society, London, 155: 873–881, 1998.
Planas, J., Guinea, G. V., Elices, M. Size effect and inverse analysis in concrete fracture. International Journal of
Fracture, Vol. 95, Kluwer Academic Publisher, 367-378, 1999.
Rosenberg, C.L., Handy, M.R., Experimental Deformation of Partially Melted Granite Revisited: Implications for the
Continental Crust. Journal of Metamorphic Geology, 23: 19–28, 2005.
Steinhauser, M.O. Computational Multiscale Modelling of Fluids and Solids. Springer, Berlin, 2008.
Strauss A., Lehký, D., Novák, D., Bergmeister, K., Santa, U. Probabilistic response identification and monitoring of
concrete structures. Third European Conference on Structural Control, 3ECSC, Vienna University of
Technology, Vienna, Austria, 2004.
Torquato, S. Random Heterogeneous Materials. Interdisciplinary Applied Mathematics, Springer Verlag, 2001.
Ulm, F.-J. and Coussy, O.: Couplings in early-age concrete: From material modeling to structural design, International
Journal of Solids and Structures 35, 1998, 4295-4311.
Vigneresse, J.L., et al., Rheological Transitions during Partial Melting and Crystallization with Application to Felsic
Magma Segregation and Transfer. Journal of Petrology, 37: 1579–1600, 1996.
Vořechovský, M. and Chudoba, R. Stochastic modeling of multi-filament yarns: II. Random properties over the length
and size effect. International Journal of Solids and Structures, vol. 43, no. 3-4, pp. 435-458, 2006.
Zabaras, N. Inverse Problems in Heat Transfer. Handbook on Numerical Heat Transfer, Chap.17, John Wiley & Sons,
Hoboken, 2004.
Zadeh, L.A. From Circuit Theory to System Theory, In Proc. of Institute of Ratio Eng.,50: 856-865,1962.
Ţák, J., et al., The Generation of Voluminous S-type Granites in the Moldanubian Unit, Bohemian Massif, by Rapid
Isothermal Exhumation of the Metapelitic Middle Crust. Lithos, 121: 25-40, 2011.
Zimmermann, H.J. Fuzzy Sets Theory and its Applications, Kluwer Academic Publishers, Boston, 1991.
Czech Science Foundation - Part GD1
Applicant and Co-applicants
Applicant: Prof. Dr. Ing. Bořek Patzák
Personal data:
Birth date/place: May 15, 1970 / Prague, Czech Republic
Business Address: Department of Mechanics, Faculty of Civil Engineering, Czech Technical
University, Thákurova 7, 166 29 Prague, Czech Republic
Home Address: Jana Zajíce 14, 170 00 Prague, Czech Republic
Phone: +42-02-24354375; e-mail: [email protected]
Education:
1993 – MSc (Ing.), Czech Technical University, Faculty of Civil Engineering, Finished with honors.
1997 - PhD (Dr.) - Czech Technical University, Faculty of Civil Engineering.
Professional positions:
1997–2000
Assistant professor, Department of Structural Mechanics, CTU Prague, Faculty of Civil
Engineering.
2000–2002
Research engineer, EPFL, Department of Civil Engineering, Laboratory of Structural and
Continuum Mechanics, Switzerland.
2002-2010
Associate professor, Department of Mechanics, CTU Prague, Faculty Civil Engineering.
2010-present Professor, Department of Mechanics, CTU Prague, Faculty Civil Engineering.
Research interests:
Computational mechanics, Finite element method, material modeling of heterogeneous materials, fracture
mechanics, dynamic load balancing on heterogeneous parallel architectures, high performance parallel
computing and software development
Selected research projects documenting research and activities
 EU 7th Framework project TAILORCRETE, “New Industrial technologies for tailor-made concrete structures at
mass customized prices”, ref. no. 228663, (work package leader), 2009-2012.
 Project No. MSM 6840770003 of Ministry of Education of the Czech Republic, "Algorithms for Computer
Simulation and Application in Engineering“, (research team member).
 Grant No. 103/04/1394 of Grant Agency of Czech Republic „Simulation of Fresh Concrete Flow“ (responsible
investigator), 2004–2006.
 Grant No. 103/06/1845 of Grant Agency of Czech Republic „Algorithms for Representation of Moving
Boundaries“ (responsible investigator), 2006–2008.
 Grant No. P105/10/1402 of Grant Agency of Czech Republic „MuPIF – a multi-physic integration framework”
(responsible investigator), 2010-2012.
 Grant No. P105/10/1682 of Grant Agency of Czech Republic, “Solution of large hydro-thermo-mechanical
problems using adaptive hp-FEM”, 2010-2012.
 Grant No. 103/09/2009 of Grant Agency of Czech Republic, “Isogeometric Analysis in Structural Mechanic”, 20092011.
 Open source finite element code OOFEM, www.oofem.org, (lead developer), 1997-2011.
1
Publications:
Author and co-author of 2 chapters in books and more than 60 papers in journals and conference proceedings
International cooperation:
 Dr. Peter Grassl, School of Engineering, University of Glasgow, UK – numerical modeling of fracture processes
 Dr. Daniel Balint, Department of Mechanical Engineering, Imperial College, London, UK – numerical modeling
of evolving discontinuities
 Dr. Lars Nyholm Thrane, Danish Technological Institute, DK – numerical modeling of concrete casting
 Large community of OOFEM developers and users, www.oofem.org
2
Czech Science Foundation - Part GD1
Applicant and Co-applicants
Co-applicant: Prof. Ing. Karel Pospíšil, Ph.D., MBA
Personal data:
Birth date/place: July 28, 1969 / Brno, Czech Republic
Business Address: CDV – Transport Research Centre, Lisenska 33a, 636 00 Brno,
Czech Republic
Home Address: Kainarova 79, 616 00 Brno, Czech Republic
Phone: +420 – 548 423 716; e-mail: [email protected]
Education:
1992 – Ing. (MSc.), Faculty of Civil Engineering, Brno University of Technology
2002 – Ph.D., Jan Perner Faculty of Transport, University of Pardubice, dissertation topic: "Subgrade
modulus of deformation"
2007 – MBA, BIBS/Nottingham Trent University, dissertation topic “Strategic management of
research institution”, degree awarded with distinction
Professional positions:
1992 – 1994 Designer, later chief designer of highways in Germany, TVP-ZS Brno, Czech Rep.
1994 – 2000 Chief designer of hihways in own company IngSoft, spol. s. r.o., Brno, Czech Rep.
2000 – present CDV – Transport Research Centre:
2000 – Researcher
2001 – 2006 Head of Infrastructure Research Department (approx. 20 employees)
2007 – present Director of the institution (approx. 130 employees)
2004 – present Jan Perner Faculty of Transport:
2004 – 2005 Senior lecture at Department of Transport Structures
2005 – 2010 Associated Professor (Habilitate) in the field of Transport Infrastructure
2010 – present Professor in the field of Transport Infrastructure
2009 – present Member of the Board, Technology Agency of the Czech Republic
2010 – present Member of the R&D Council (Czech governmental advisory body)
2010 – present Member of Conduct of Research Committee, TRB of National Academies, USA
Scientific secondments:
2000 – LCPC – Central Laboratory for Bridges and Highways, Paris/Nantes, France
2001 – VTRC – Virginia Transport Research Council, Charlottesville, VA, USA
2006 – TRL – Transport Research Laboratory, Crowthorne, UK
Research interests:
Degradation processes in building materials, microstructure of materials, behaviour of multilayer
systems in geotechics and pavement structures, theoretical approaches to non-destructive testing
Memberships:
Member of FEHRL Directors Board (Forum of European National Highway Research Laboratories)
President, Public Applied Research Institutions Board, Member, Member, Monitoring Committee of
Operational Programme Enterprise and Innovations, Member, Czech Governmental Board of Road
Safety, Editor-in-Chief of Transactions on Transport Sciences journal, Member, Scientific Board of
Minister of Transport of the Czech Republic, Member, Scientific Board of Brno University of
Technology School of Civil Engineering, Member, Scientific Board of Pardubice University and its
School of Transportation, Member of Board of Trustees of Grant Agency of Academy of Sciences of
the Czech Republic, Member, Technical Board of Director General of the Czech Highway
Administration, Evaluator of national grants in the Czech and Slovak Republics, evaluator of projects
submitted to EU Structural Funds, Voting member at five committees of ASTM International,
Member, International Society of Concrete Pavements
Selected research projects documenting research and activities in reliability topic:
European Frameworks Projects:
MTKD-CT-2005-029556: TITaM (Transport Infrastructure Technologies and Management), 2006 –
2008, coordinator, responsible investigator, participating countries CZ, UK, GE
G7RT-CT-2001-05057: TREE (Transport Research Equipment in Europe), 2002 – 2004, responsible
investigator for the Czech participation, leader of four group (members from: AT, CZ, GE, ES, FR,
PL, SV, UK)
TST5-CT-2006-031467: SPENS (Sustainable Pavements for European New Member States), 2006 –
2009, responsible investigator for the Czech participation
TST5-CT-2006-031272: ARCHES (Assessment and Rehabilitation of Central European Highway
Structures), 2006 – 2009, responsible investigator for the Czech participation
TCA5-CT-2006-031457: CERTAIN (Central European Research in Transport Infrastructure), 2006 –
2010, responsible investigator for the Czech participation
Czech National Projects:
CE803120108 Monitoring methodology of reinforced and pre-stressed concrete structures, Ministry of
Transport, 2001-2003, responsible investigator
1P05OC005 Indexes for evaluation of pavements from Czech Republic importance point of view,
Ministry of Education, Youth and Sport, 2005-2008, responsible investigator
CG711-082-910 Drainage systems of pavement, bridges and tunnels, Ministry of Transport, 20072010, responsible investigator
GA103/09/1499 Multichannel georadar as a tool for pavement and bridge damages monitoring, Grant
Agency of the Czech Republic, 2009 – 2011, responsible investigator
Publications:
Author and co-author of 2 books and more than 100 papers in journals and conference proceedings
incl. 10 registered design models and 6 European patents applications.
International cooperation:
In addition to above mentioned international projects and participation in international professional
bodies, there is a cooperation between applicant and:
Dr. Celik Ozyildirim, Virginia Transport Research Council, USA, topic: Concrete structures
Dr. Richard Woodward, TRL–Transport Research Laboratory, UK, topic: ground penetrating radar
Dr. Jozef Komačka, Associated Professor, University of Zilina, Slovakia, topic: pavement issues
Czech Science Foundation - Part GD1
Applicant and Co-applicants
Co-applicant: Prof. Ing. Drahomír Novák, DrSc.
Personal data:
Birth date/place: January 15, 1960 / Prostějov, Czech Republic
Business Address: Institute of Structural Mechanics, Faculty of Civil Engineering, Brno
University of Technology, Veveří 331/95, 602 00 Brno, Czech Republic
Home Address: Šaumannova 10, 615 00 Brno, Czech Republic
Phone: +420-5-41147360; e-mail: [email protected]
Education:
1984 - Faculty of Civil Engineering, Technical University of Brno
1990 - Ph.D. degree on the topic "Analysis of random behavior of RC beams"
2000 – DrSc. degree from CTU Prague on topic “Aspects of concrete structures: Reliability, degradation
and size effect”
Professional positions:
1984 – 1987 Designer, design office Brnoprojekt, Czech Republic
1994 – Associate Professor degree on the topic "Reliability-based optimization and sensitivity analysis
of structures"
1987 – 2003 Lecturer, then Associate Professor of Institute of Structural Mechanics, Faculty of Civil Engineering,
Brno University of Technology, Czech Republic
2003 – Prof. degree in the field “Theory of Structures”
2003 – now Head of Institute of Structural Mechanics, Faculty of Civil Engineering, Brno University of Technology,
Czech Republic
2010 – now Vicedean for Science and Research, Faculty of Civil Engineering, Brno University of Technology, Czech
Republic
Visiting positions:
1989 (2 months) – School of Civil Engineering, Kyoto University, Japan
1990, 1994 – Institute of Engineering Mechanics, University of Innsbruck, Austria
1991 – 93 (18 months) – School of Civil Engineering, Kyoto University, Japan, graduated from "Int. Course of Kyoto
University"
1996, 1998, 2002 – Faculty of Engineering, Kasetsart University, Bangkok, Thailand
1997, 1999, 2000, 2001, 2003 – Northwestern University, Evanston, USA (prof. Z. P. Bažant)
2007, 2008 – visiting professor of IKI, BOKU University, Vienna, Austria
1
Research interests:
Structural safety and reliability, stochastic computational mechanics, stochastic finite elements, random fields, Monte
Carlo simulation techniques, risk assessment, fracture mechanics, size effect, stochastic optimization, inverse
analysis, identification, reliability-based optimization, finite element modeling, concrete, quasi-brittle materials.
Memberships:
Member of Engineering Academy of Czech Republic (elected in 2009), member of Czech Society for Mechanics,
member of the international associations FraMCoS, IASSAR, IABMAS, Member of Czech Technical Standardization
Committee – TNK 38, member of ASRANET and IABMAS, Member of Editorial board of journal “Materials &
Reliability“, member of Scientific Board of Brno University of Technology, member of fib – Int. Federation of
Structural Concrete, Commision 2 – Safety and Performance Concepts (corr. member).
Selected research projects documenting research and activities in reliability topic:
• Grant No. 103/02/1030 of Grant Agency of Czech Republic „Nonlinear fracture mechanics of concrete based on
stochastic finite elements“ (responsible investigator), 2002–2004
• Fulbright scholarship for research project "Nonlocal Weibull theories and statistical size effect ", in cooperation
with prof. Z. P. Bažant, Northwestern University, USA, 1999
• International project “Structural Analysis and Reliability Assessment (SARA)”, Brenner Autobahn, Italy, head of
Brno team, 2000–2008
• Grant No. 103/04/2092 of Grant Agency of Czech Republic „Model identification and optimization at material and
structural levels” (responsible investigator), 2004–2006
• Project of Ministry of Education of the Czech Republic Clutch No. 1K04110 „Statistical aspects of size effect
influence on structural reliability“ (responsible investigator), 2004–2007
• Project Information Society No. 1E125S001 – VITESPO of Academy of Science of Czech Republic “Virtual testing
of safety and reliability of structures”, 2004–2007
• Project RLACS – Eurostars, Risk and Life-time analysis of concrete structures (co-investigator), 2008-2011
• Grant No. 103/07/0760 of Grant Agency of Czech Republic „Soft computing in structural mechanics (SCOME)”
(responsible investigator), 2006–2009
• Grant No. 103/08/0752 of Grant Agency of Czech Republic „ Soil-structure interaction stochastic modeling
(SISMO)” (responsible investigator), 2007–2010
• Grant No. P105/10/1156 of Grant Agency of Czech Republic „ Complex modeling of concrete structures: Aspects
of nonlinearity, reliability, life-cycle and risk (COMOCOS)” (responsible investigator), 2010–2012
• Grant No P105/11/1385 of Grant Agency of Czech Republic „ Inverse structural reliability problems (INSREL)”
(responsible investigator), 2011–2013
• Research centre CIDEAS, head of Structural Mechanics - reliability Brno team, 2005-2012
Publications:
Author and co-author of 2 books and more than 200 papers in journals and conference proceedings
International cooperation:
Prof. Konrad Bergmeister, IKI BOKU University, Vienna, Austria – health monitoring, structural reliability,
damage identification
Prof. Zdeněk P. Bažant, Northwestern University, Evanston, USA – size effect, Weibull theories
Dr. Wimon Lawanwisut, IMSL, L.t.d., Bangkok, Thailand – strengthening of concrete structures
Prof. Hitoshi Akita, Sendai University, Sendai, Japan – uniaxial tension of concrete
2
Czech Science Foundation - Part GD1
Applicant and Co-applicants
Co-applicant: Doc. RNDr. Jiří Žák, Ph.D.
Personal data:
Birth date/place: May 26, 1976 / Plzeň, Czech Republic
Business Address: Institute of Geology and Paleontology, Faculty of Science,
Charles University in Prague, Albertov 6, 128 48 Prague, Czech Republic
Home Address: Ohradní 1335, 140 00 Prague, Czech Republic
Phone: +42-02-221951475; e-mail: [email protected]
Education:
1997 – Bc., Geological Sciences, Charles University in Prague
1998/1999 – Undergraduate fellowship at Imperial College, London, UK
2000 – Mgr., Petrology and Structural Geology, Charles University in Prague
2004 – Ph.D., Geological Sciences, Charles University in Prague
Professional positions:
2002–2010 - Research Assistant, Institute of Geology and Paleontology, Faculty of Science, Charles
University in Prague
2010/present - Associate Professor of Geology, Institute of Geology and Paleontology, Faculty of
Science, Charles University in Prague
Research interests:
Structural geology, tectonics, magmatic processes, rock magnetism, Precambrian geology.
•
•
•
•
•
•
Selected research projects documenting research and activities
Grant No. 258203 of Agency of Charles University "Separation of pre-Variscan and Variscan
deformations in the Teplá-Barrandian unit: geodynamic implications" (research team member), 2008–
2010.
Grant No. 205/07/P226 of the Grant Agency of the Czech Republic "Relationship between faults
and plutons: implications for interactions between tectonic and magmatic processes in magmatic arcs
and orogenic belts" (principal investigator), 2007–2009.
Grant No. 205/07/0783 of Grant Agency of the Czech Republic "Pre-Variscan and Variscan
tectonometamorphic evolution and magmatism of the Krkonoše-Jizera Crystalline Unit" (research
team member), 2007–2009.
Grant No. KJB300120702 of Grant Agency of the Czech Academy of Sciences "Fabric patterns of
granite diapirs in static and dynamic conditions: integrated analogue, field, and numerical approaches"
(research team member), 2007–2009.
Grant No. 131607 of Grant Agency "Structural, textural and thermal evolution of granite diapirs"
(research team member), 2007–2008.
Grant No. KJB3111403 of Grant Agency of the Czech Academy of Sciences "Processes along
internal boundaries in magma chambers and their significance for interpreting rheology, fabric
formation and emplacement mechanisms" (principal investigator), 2004–2006.
Publications:
Author and co-author of 27 original research papers in international journals with IF and of 2 papers in
other peer-reviewed journals.
For the full list of publications, check at http://prfdec.natur.cuni.cz/~jirizak
International cooperation:
• Prof. Scott R. Paterson, Department of Earth Sciences, University of Southern California, USA –
pluton emplacement processes, physical processes in magma chambers
• Prof. Fritz Finger, Division of Mineralogy, University of Salzburg, Austria – igneous petrology,
monazite geochronology
>;r
F-1
o trt
23.
F J I
z
r o
?z
n6
> w
z9
Hffi
c!
c:
oo
(tt I
7>,
> !
q
P
r rzn
z
/p
i=$;Egsui,iiq
o
'
sr;E
siFp
€E i5 z
o
-
z
Fl
I
a
Fil
=
a
2
a -l
=€
>
6
lat F
o
a
<X
I
-
I
oX
4A
-o
l
;E
= =
. =
3v
z =
F
>
!
e
\
€
= e -
".r
'42
> U
z'=
*E
oe)
I
I
72
:
-Hffi
\s
-s
\
=t6l
ax-{t
>d
<
2 -<J' ZU
-)>
<n
* !-l --{ x
9 X
- t
:
cd
=F
;d
'r
!i.
,i
s:
ilq
Ed
r!
a<
s'
F$:
:* F
r's z
3-i o
ivs. E
X S
> , h
s
az
?, zr
2<
r:
F
> '
z+
t
6
>
i i
sF H
I
.
A
q
*
s
o
k.
O
s,
F
t
sF
*
(+
S
r
q.!
:
g
{
,!
si
:*
i's
$3
F{
:S
'-.
S
a
I
H
t:/t
(+
(t) (+
()
ts. <
CD
6
-
lx F e> r s A :
t
o
o
f-t
'
(
r+
6
-
:.
b
A
*
*
7
rt
CD
-.
|-:
o
(a
|
2iV
Numer. Math. (2003) 93: 583–610
Digital Object Identifier (DOI) 10.1007/s002110200400
Numerische
Mathematik
Effects of uncertainties in the domain
on the solution of Dirichlet boundary value problems
Ivo Babuška1, , Jan Chleboun2,
1
2
TICAM, The University of Texas at Austin, TX 78713, USA;
e-mail: [email protected]
Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25,
Prague 115 67, Czech Republic; e-mail: [email protected]
Received October 16, 2001 / Revised version received January 16, 2002 /
c Springer-Verlag 2002
Published online: April 17, 2002 – Summary. A domain with possibly non-Lipschitz boundary is defined as
a limit of monotonically expanding or shrinking domains with Lipschitz
boundary. A uniquely solvable Dirichlet boundary value problem (DBVP)
is defined on each of the Lipschitz domains and the limit of these solutions
is investigated. The limit function also solves a DBVP on the limit domain
but the problem can depend on the sequences of domains if the limit domain
is unstable with respect to the DBVP. The core of the paper consists in
estimates of the difference between the respective solutions of the DBVP on
two close domains, one of which is Lipschitz and the other can be unstable.
Estimates for starshaped as well as rather general domains are derived. Their
numerical evaluation is possible and can be done in different ways.
Mathematics Subject Classification (1991): 65N99, 65N12, 35J25
1 Introduction
The paper deals with uncertain boundary in the definition of Dirichlet boundary value problems. A boundary value problem is defined by a domain, an
equation in the domain, and a condition given along the boundary of the domain. It is common to assume that the three inputs are known exactly though
The research was funded partially by the National Science Foundation under the grants
NSF–Czech Rep. INT-9724783 and NSF DMS-9802367
Support for Jan Chleboun coming from the Grant Agency of the Czech Republic through
grant 201/98/0528 is appreciated
MATHEMATICS OF COMPUTATION
Volume 71, Number 240, Pages 1339–1370
S 0025-5718(01)01359-X
Article electronically published on June 14, 2001
EFFECTS OF UNCERTAINTIES
IN THE DOMAIN ON THE SOLUTION
OF NEUMANN BOUNDARY VALUE PROBLEMS
IN TWO SPATIAL DIMENSIONS
IVO BABUŠKA AND JAN CHLEBOUN
Abstract. An essential part of any boundary value problem is the domain
on which the problem is defined. The domain is often given by scanning or
another digital image technique with limited resolution. This leads to significant uncertainty in the domain definition. The paper focuses on the impact
of the uncertainty in the domain on the Neumann boundary value problem
(NBVP). It studies a scalar NBVP defined on a sequence of domains. The
sequence is supposed to converge in the set sense to a limit domain. Then the
respective sequence of NBVP solutions is examined. First, it is shown that
the classical variational formulation is not suitable for this type of problem as
even a simple NBVP on a disk approximated by a pixel domain differs much
from the solution on the original disk with smooth boundary. A new definition
of the NBVP is introduced to avoid this difficulty by means of reformulated
natural boundary conditions. Then the convergence of solutions of the NBVP
is demonstrated. The uniqueness of the limit solution, however, depends on
the stability property of the limit domain. Finally, estimates of the difference
between two NBVP solutions on two different but close domains are given.
1. Introduction
The analysis presented in this paper has been motivated by the discrepancy
between the shape of a real body and its computer description (called geometrical
model or briefly model).
Any real-life data contain some uncertainty due to measurements and simplifications. It is common to represent a real-life body by the geometrical model and
to neglect the fact that the model is obtained by postprocessing the raw data from
scanning, for example. Instead of the true body, the model is used for solving partial differential equations. However, natural questions arise: Are we authorized to
choose a particular geometrical model as the representative of the body? Should
we take a whole family of models into consideration? Can we get rid of assumptions we added to the raw data by a particular postprocessing method? How does
Received by the editor August 5, 1999 and, in revised form, October 13, 2000.
2000 Mathematics Subject Classification. Primary 65N99, 65N12, 35J25.
Key words and phrases. Elliptic equation, Neumann boundary condition, uncertainty.
The research of the first author was funded partially by the National Science Foundation under
the grant NSF–Czech Rep. INT-9724783 and NSF DMS-9802367.
Partial support for the second author, coming from the Ministry of Education of the Czech
Republic through grant ME..148(1998) as well as from the Grant Agency of the Czech Republic
through grant 201/98/0528, is appreciated.
c
2001
American Mathematical Society
1339