Metoda datových obalů – DEA

Transkript

Metoda datových obalů – DEA
Metoda datových obalů – DEA
Modely datových obalů slouží pro hodnocení technické efektivity produkčních jednotek
systému na základě velikosti vstupů a výstupů. Protože vstupů a výstupů může být více druhů,
řadí se DEA mezi metody vicekriteriálního rozhodování.
Podstata modelů DEA
Cílem této metody je rozdělení zkoumaných objektů na efektivní a neefektivní podle velikosti
spotřebovávaných zdrojů a množství vyráběné produkce nebo jiného typu výstupů. Dea
porovnává jednotky vzhledem k nejlepším jednotkám. Jedná se o metodu odhadu produkční
funkce založenou na teorii lineárního programování. Modely DEA vycházejí z Farrelova
modelu pro měření efektivity jednotek s jedním vstupem a jedním výstupem, který rozšířili
Charnes, Cooper a Rhodes (CCR) a Banker, Charnes a Cooper (BCC).
Vstupní údaje můžeme zapsat do tabulky, která má charakter kriteriální matice (sloupce
vstupů odpovídají hodnocení podle minimalizačního kritéria a sloupce výstupů podle
maximalizačního kritéria). Je akceptována kompenzace (vyšší výstupy potřebují více vstupů
při zachování efektivity spotřeby).
Předpokládejme, že zkoumaný objekt zahrnuje p jednotek, jsou označeny S1, S2, …,Sp. Každá
z nich spotřebovává m vstupů na produkci n výstupů. Potom xik je množství spotřebovávaného
vstupu k- tou jednotkou a yjk je množství výstupu produkovaného k- tou jednotkou. Vstupy a
výstupy lze zapsat do přehledné tabulky:
X1
S1 x11
S2 x12
… …
Sp x1p
Vstupy
X2 …
x21 …
x22 …
… …
x2p …
Xm
xm1
xm2
…
xmp
Y1
y11
y12
…
y1p
Výstupy
Y2 … Yn
y21 … yn1
y22 … yn2
… … …
y2p … ynp
Jednotka je efektivní, pokud spotřebovává malé množství vstupů na velké množství výstupů.
Efektivita jednotlivých jednotek je dána vztahem:
výstup
efektivita =
.
vstup
Neefektivní jednotky by měly snížit množství vstupů nebo zvýšit množství výstupů.
V případě více spotřebovávaných vstupů na produkci více výstupů se používá relativní míra
efektivity:
vážená suma výstupů
,
efektivita =
vážená suma vstupů
což lze vyjádřit vztahem:
n
Φk =
∑u
j =1
j
y jk
, k = 1,2,..., p,
m
∑v x
i =1
i
ik
kde ui a vj jsou jednotné váhy vstupů a výstupů pro všechny hodnocené jednotky.
Vzhledem k tomu, že každé středisko je jinak zaměřené, lze uvažovat váhy odděleně pro
každé středisko. Tyto váhy nejsou odvozené od ceny, ale spíše od používané technologie
v jednotlivých střediskách. Z tohoto důvodu se používá termín relativní technická efektivita,
kterou vyjadřuje následující vztah:
n
Φk =
∑u
j =1
jk
, k = 1,2,..., p,
m
∑v
i =1
y jk
ik
xik
kde uik a vjk jsou individuální váhy vstupů a výstupů pro jednotlivé jednotky.
Hypotetická (virtuální) jednotka je charakterizována jako vážený průměr efektivních jednotek
(peer jednotek). Tato jednotka vyjadřuje spotřebu vstupů a produkci výstupů pro skutečnou
neefektivní jednotku, která produkuje méně výstupů nebo spotřebovává více vstupů než její
virtuální jednotka.
Modely DEA hledají individuální váhy pro jednotlivé hodnocené jednotky. Tyto váhy jsou
hledány tak, aby byla maximalizována efektivita jednotek.
CCR vstupově orientovaný model
U modelů CCR předpokládejme konstantní výnos z rozsahu. Pomocí tohoto modelu lze určit,
jaké má být množství vstupů, aby se neefektivní jednotka stala efektivní. Koeficient technické
efektivity je definován jako poměr vážené sumy výstupů a vážené sumy vstupů. Váhy musí
být stanoveny tak, aby koeficient technické efektivity byl z intervalu 0;1 . Jednotka
s koeficientem technické efektivity rovným 1 je efektivní, koeficient menší než 1 ukazuje na
neefektivní jednotku a určuje míru potřebného snížení vstupů k zajištění efektivity jednotky.
Pro jednoduché případy lze znázornit model CCR graficky.
Model CCR stanoví váhy vstupů a výstupů pro každou jednotku tak, aby jednotka
maximalizovala svůj koeficient technické efektivity a byly splněny podmínky:
• Váhy nesmí být záporné
• Při použití tohoto souboru vah nesmí žádný koeficient technické efektivity být větší
než jedna.
Neznámými jsou v tomto modelu váhy přidělené vstupu i a váhy přidělené výstupu j
jednotkou k. Váhy jsou určovány individuálně, proto je nutno vyřešit p modelů.
Matematický model pro jednotku H je následující:
n
ΦH =
∑u
j =1
jH
→ max ,
m
∑v
i =1
y jH
iH
xiH
za podmínek
n
∑u
j =1
jH
y jk
≤ 1, k = 1,2,..., p,
m
∑v
i =1
iH
xik
u jH ≥ 0, viH ≥ 0.
Model lze upravit na lineární
n
Φ k = ∑ u jH y jH → max ,
j =1
za podmínek
m
∑v
i =1
iH
xiH = 1,
m
n
i =1
j =1
− ∑ viH xik + ∑ u jH y jk ≤ 0,
u jH ≥ 0, j = 1,2,..., n,
viH ≥ 0, i = 1,2,..., m.
Když sestavíme k tomuto modelu duální model, zjistíme, které jednotky tvoří množinu peer
jednotek neefektivní jednotky H a zároveň získáme koeficienty λ kH kombinace peer jednotek,
které tvoří virtuální efektivní jednotku k jednotce H.
Duální model má tvar.
z H → min
za podmínek
p
xiH z H − ∑ λ kH xik ≥ 0, i = 1,2,..., m,
k =1
p
∑λ
k =1
kH
y jk ≥ y jH , j = 1,2,..., n,
λ kH ≥ 0, k = 1,2,..., p.
Velikost vstupů a výstupů virtuální jednotky lze spočítat jako kombinaci vstupů a výstupů
peer jednotek
p
´
xiH
= ∑ λ kH xik , i = 1,2,..., m,
k =1
p
y ´jH = ∑ λ kH y jk , j = 1,2,..., n.
k =1
Příklad:
Hodnocení prodejních skladů (příklad je převzatý ze skript Vícekriteriální rozhodování –
autoři Brožová, Šubrt, Houška PEF ČZU Praha)
Máme zhodnotit efektivitu pěti prodejních skladů, které se liší počtem zaměstnanců (vstup) a
plochou skladu(vstup v 10m2) a počtem obsloužených zákazníků (výstup) a výší tržeb (výstup
v tis.Kč). Údaje o jednotlivých střediscích jsou v následující tabulce:
Vstupy
Výstupy
zaměstnanci plocha zákazníci tržby
S1
2
5
4
10
S2
3
6
10
23
S3
1
3
2
4
S4
5
8
6
13
S5
2
5
4
17
Protože je pět středisek, bude nutno vyřešit pět modelů.
Primární model pro S1
Φ 1 = 4u11 + 10u 21 → max
2v11 + 5v 21 = 1
− 2v11 − 5v 21 + 4u11 + 10u 21 ≤ 0
− 3v11 − 6v 21 + 10u11 + 23u 21 ≤ 0
− v11 − 3v 21 + 2u11 + 4u 21 ≤ 0
− 5v11 − 8v 21 + 6u11 + 13u 21 ≤ 0
− 2v11 − 5v 21 + 4u11 + 17u 21 ≤ 0
v11 ≥ 0, v 21 ≥ 0, u11 ≥ 0, u 21 ≥ 0
Optimální řešení modelu
Maximální hodnota účelové funkce primárního modelu
0,641026
Strukturní proměnné
Název
Hodnota
v11
v21
u11
u21
0,5
0
0,032051
0,051282
Omezení
Typ
Název
bázická
dolní mez
bázická
bázická
R-OM 1
R-OM 2
R-OM 3
R-OM 4
R-OM 5
R-OM 6
Hodnota
Rezerva
1
0
0 0,358974
0
0
0 0,230769
0 1,641026
0
0
Optimální hodnota účelové funkce je 0,641, to znamená, že při stejných výstupech by se
vstupy měly snížit na 64,1% tedy zaměstnance snížit na 1,282 a plochu snížit na 2,66.
Váhy vstupů jsou v11 = 0,5; v21 = 0; u11 = 0,032051; u 21 = 0,051282 .
Duální modle pro S1
z1 → min
2 z1 − 2λ11 − 3λ 21 − λ31 − 5λ 41 − 2λ51 ≥ 0
5 z1 − 5λ11 − 6λ 21 − 3λ31 − 8λ 41 − 5λ51 ≥ 0
4λ11 + 10λ 21 + 2λ31 + 6λ 41 + 4λ51 ≥ 4
10λ11 + 23λ 21 + 4λ31 + 13λ 41 + 17λ51 ≥ 10
λ≥0
Optimální řešení modelu
Minimální hodnota účelové funkce duálního modelu
0,641026
Strukturní proměnné
Název
z1
λ11
Λ21
Λ31
Λ41
Λ51
Hodnota
Omezení
Typ
Název
bázická
dolní mez
bázická
dolní mez
dolní mez
bázická
R-OM 1
R-OM 2
R-OM 3
R-OM 4
0,641026
0
0,358974
0
0
0,102564
Hodnota
Rezerva
0
0
0 -0,53846
4
0
10
0
Peer jednotky pro neefektivní jednotku S1 jsou jednotky S2 a S5 a jejich koeficienty jsou
λ 21 = 0,358974; λ51 = 0,102564 . Virtuální jednotka pro středisko 1 je určena jako kombinace
peer jednotek S2 a S5
VS1 = 0,358974S 2 + 0,102564S 5
´
x11
= 0,358974 * 3 + 0,102564 * 2 = 1,28205
Primární model pro S2
Φ 2 = 10u12 + 23u 22 → max
Duální model pro S2
z 2 → min
3v12 + 6v 22 = 1
3z 2 − 2λ12 − 3λ 22 − 3λ32 − 8λ 42 − 5λ52 ≥ 0
− 2v12 − 5v 22 + 4u12 + 10u 22 ≤ 0
4λ12 + 10λ 22 + 2λ32 + 6λ 42 + 4λ52 ≥ 10
− 3v12 − 6v 22 + 10u12 + 23u 22 ≤ 0 10λ12 + 23λ 22 + 4λ32 + 13λ 42 + 17λ52 ≥ 23
− v12 − 3v 22 + 2u12 + 4u 22 ≤ 0
λ≥0
− 5v12 − 8v 22 + 6u12 + 13u 22 ≤ 0
− 2v12 − 5v 22 + 4u12 + 17u 22 ≤ 0
v12 ≥ 0, v 22 ≥ 0, u12 ≥ 0, u 22 ≥ 0
Primární model pro S3
Φ 3 = 2u13 + 4u 23 → max
Duální model pro S3
z 3 → min
v13 + 3v 23 = 1
2 z 3 − 2λ13 − 3λ 23 − λ33 − 5λ 43 − 2λ53 ≥ 0
− 2v13 − 5v 23 + 4u13 + 10u 23 ≤ 0
4 z 3 − 5λ13 − 6λ 23 − 3λ33 − 8λ 43 − 5λ53 ≥ 0
− 3v13 − 6v 23 + 10u13 + 23u 23 ≤ 0 4λ13 + 10λ 23 + 2λ33 + 6λ 43 + 4λ53 ≥ 2
10λ13 + 23λ 23 + 4λ33 + 13λ 43 + 17λ53 ≥ 4
− v13 − 3v 23 + 2u13 + 4u 23 ≤ 0
− 5v13 − 8v 23 + 6u13 + 13u 23 ≤ 0
λ≥0
− 2v13 − 5v 23 + 4u13 + 17u 23 ≤ 0
v13 ≥ 0, v 23 ≥ 0, u13 ≥ 0, u 23 ≥ 0
Primární model pro S4
Duální model pro S4
Φ 4 = 6u14 + 13u 24 → max
z 4 → min
5v14 + 8v 24 = 1
5 z 4 − 2λ14 − 3λ 24 − λ34 − 5λ 44 − 2λ54 ≥ 0
− 2v14 − 5v 24 + 4u14 + 10u 24 ≤ 0
8 z 4 − 5λ14 − 6λ 24 − 3λ34 − 8λ 44 − 5λ54 ≥ 0
− 3v14 − 6v 24 + 10u14 + 23u 24 ≤ 0 4λ14 + 10λ 24 + 2λ34 + 6λ 44 + 4λ54 ≥ 6
− v14 − 3v 24 + 2u14 + 4u 24 ≤ 0
10λ14 + 23λ 24 + 4λ34 + 13λ 44 + 17λ54 ≥ 13
− 5v14 − 8v 24 + 6u14 + 13u 24 ≤ 0
λ≥0
− 2v14 − 5v 24 + 4u14 + 17u 24 ≤ 0
v14 ≥ 0, v 24 ≥ 0, u14 ≥ 0, u 24 ≥ 0
Primární model pro S5
Φ 5 = 4u15 + 17u 25 → max
Duální model pro S5
z 5 → min
2v15 + 5v 25 = 1
2 z 5 − 2λ15 − 3λ 25 − λ35 − 5λ 45 − 2λ55 ≥ 0
− 2v15 − 5v 25 + 4u15 + 23u 25 ≤ 0
5 z 5 − 5λ15 − 6λ 25 − 3λ35 − 8λ 45 − 5λ55 ≥ 0
− v15 − 3v 25 + 2u15 + 4u 25 ≤ 0
4λ15 + 10λ 25 + 2λ35 + 6λ 45 + 4λ55 ≥ 4
− 5v15 − 8v 25 + 6u15 + 13u 25 ≤ 0
10λ15 + 23λ 25 + 4λ35 + 13λ 45 + 17λ55 ≥ 17
− 2v15 − 5v 25 + 4u15 + 17u 25 ≤ 0
λ≥0
v15 ≥ 0, v 25 ≥ 0, u15 ≥ 0, u 25 ≥ 0
váhy
ф
Zam.
S1 0,641 0,5
S2 1
0
S3 0,6
1
S4 0,45 0
S5 1
0,255
sklad
0
0,167
0
0,125
0,098
Zák
0,032051
0
0,3
0,075
0
tržby
0,0513
0,0435
0
0
0,0588
koeficienty
Zam. sklad
S1 0,359*S2+0,103*S5 1,282 2,66
S2
S3 0,2*S2
0,6
1,2
S4 0,6*S2
1,8
3,6
S5
Virtuální jednotka
Zák. Tržby
4
10
2
6
4,6
13,8
Z tabulky je patrné, že efektivní jsou střediska S2 a S5. Neefektivní středisko S1 by se mělo
chovat jako kombinace peer jednotek S2 a S5, neefektivní střediska S3 a S4 by se měla chovat
podle peer střediska S2.
CCR výstupově orientovaný model
Vychází ze stejných předpokladů, jako vstupově orientovaný model. Určuje takové množství
výstupů, aby se neefektivní jednotka stala efektivní. Zde je koeficient technické efektivity
určen jako poměr vážené sumy vstupů a vážené sumy výstupů. Váhy musí být stanoveny tak,
aby hodnota tohoto koeficientu byla větší nebo rovna 1.
Jednoduchý model lze opět znázornit graficky.
Výstupově orientovaný model CCR stanoví pro každou jednotku individuální váhy vstupů a
výstupů tak, aby jednotka minimalizovala svůj koeficient technické efektivity a přitom byly
splněny podmínky:
Váhy nemohou být záporné
Při použití souboru vah pro všechny jednotky nesmí žádný koeficient technické efektivity být
menší než 1.
Výstupově orientovaný model pro jednotku H
m
∑v
iH
xiH
∑u
jH
y jH
i =1
n
ΦH =
j =1
→ min
za podmínek
m
∑v
iH
xiH
∑u
jH
y jH
i =1
n
j =1
≥ 1, k = 1,2,..., p,
u jH ≥ 0, j = 1,2,..., n,
viH ≥ 0, i = 1,2,..., m.
Stejně jako u vstupově orientovaného modelu lze zafixovat jmenovatele na hodnotu 1:
m
Φ H = ∑ viH xiH
i =1
za podmínek
n
∑u
j =1
jH
y jH = 1
m
n
i =1
j =1
− ∑ viH ik + ∑ u jH y jk ≥ 0, k = 1,2,..., p,
u jH ≥ 0, j = 1,2,..., n,
viH ≥ 0, i = 1,2,..., m.
Duální model má tvar
z1 → max
za podmínek
p
∑λ
k =1
kH
xik ≤ xiH , i = 1,2,..., m,
p
z H y jH − ∑ λ kH y jk ≤ 0, j = 1,2,..., n
k =1
y kH ≥ 0, k = 1,2,..., p
váhy
ф
Zam.
S1 1,56 0,78
S2 1
0
S3 1,67 1,67
S4 2,22 0
S5 1
0,255
sklad
0
0,167
0
0,278
0,098
Zák
0,05
0
0,5
0,167
0
tržby
0,08
0,0435
0
0
0,0589
Virtuální jednotka
koeficienty
Zam. sklad Zák.
S1 0,56*S2+0,16*S5 2
4,16 6,24
S2
S3 0,33*S2
1
2
3,33
S4 1,33*S2
4
8
13,33
S5
CCRin CCRout
S1 0,641
1,56
S2
1
1
S3 0,6
1,67
S4 0,45
2,22
S5
1
1
Tržby
15,6
7,66
30,66

Podobné dokumenty

n-boký hranol

n-boký hranol        b) povrch  Příklad 3: Prodlouží‐li se hrana dané krychle o 5 cm, zvětší se její objem o 485 cm3. Určete     povrch původní i zvětšené krychle.  Příklad  4:  Kolik  pytlů  cementu  se  spotře...

Více

alternativní PDF podoba - Ponořme se do Pythonu 3

alternativní PDF podoba - Ponořme se do Pythonu 3 • V části Případová studie: Přepis chardet pro Python 3 se setkáte se zatraceným zmatkem mezi bajty a řetězci úplně všude. Dokonce i kdyby vás Unicode nechával úplně chladné (ale ne, nenechá), bude...

Více

Mikroprocesorová technika, prednáška c. 6

Mikroprocesorová technika, prednáška c. 6 Aplikačnı́ část (anglicky: Application section): k uloženı́ aplikace, která se má vykonávat, Bootovacı́ část (anglicky: Boot loader section): zde může být uložen program, který umožn...

Více

Elektroměry – historie a současnost

Elektroměry – historie a současnost je rozšířená a je v ní šikmo uložená pórovitá přepážka. Nad ní je rtuť se zavedenou elektrodou. Druhá elektroda je pod přepážkou. Pokud mezi elektrodami neprotéká proud, povrchové napětí udržuje rt...

Více

Přednáška

Přednáška I. Podle Definice 6, vlastnı́ vektor u1 je nenulovým řešenı́m soustavy (A − 2E)u1 = 03 , tedy rovnic −2u11 − u12 + 3u13 = 0 2u11 + u12 − 3u13 = 0 ; −6u11 − 3u12 − u13 = 0 lze volit napřı́klad u...

Více