integrovaný programový prostředek

Transkript

integrovaný programový prostředek
The use of hydrological system AquaLog for flood
warning service in the Czech Republic
Jakub Krejči1) , Jiří Zezulák2)
1)
2)
Aqualogic Consulting
Czech Agricultural University, Czech Republic
Introduction
AquaLog
CHMI Hydrological Forecasting System
Since mid 1990’s, the hydrological modeling system AquaLog
became of service to the Czech Hydrometeorological Institute
(CHMI) ´office´ procedures in real-time flow forecasting in whole
Elbe river basin. The models have been already installed for
catchments, river network and reservoirs of the Elbe basin, including
Vltava, Ohre, Berounka, Sazava, and Jizera rivers and Becva
catchment, which is part of Morava river basin.
The software empowers step-wise strategies in forecasting system
implementation. In this manner, the structure of models already
completed and operational is being gradually propagated to entire
Elbe system, from its headwaters to downstream. Upon they become
fully operational, the models are integrated into a single entity of the
Elbe forecasting system.
AquaLog was designed to be a modular system that contains a variety of
modeling techniques and utilities and allows the user simulate the following
hydrological processes:
•snow accumulation and ablation
•rainfall-runoff processes
•river routing
•simulation and control of reservoirs
AquaLog provides for solution in a several distinct computational options:
Calibration, Parameter optimisation, Simulation and Forecasting.
Under a compact AquaLog GUI shell a user can make use of three
categories of modeling techniques accommodated in its library group of
hydrological routing models
•TDR transport - diffusion analogy
•MC Muskingum-Cunge
•FLD tree-shaped or looped system of interconnected river branches
based on full solution of St.Venant system by a implicit scheme
(according to US NWSRFS)
•SLF self-tuning auto regressive techniques for real time forecasting of
stage, discharge
•group of hydrological catchment models
•SNOW 17 snowmelt simulation (according to US NWSRFS)
•APIc the Antecedent Precipitation Index Continuous model
•SAC-SMA Sacramento model (according to US NWSRFS)
•group of interactive simulation of hydraulic flow-control units
•MAN kinematic reservoir equation, controlled spillways and bottom
outlets, power hose discharge and transfer of watery fee-flow channels
The CHMI guaranties the regional-scale hydrological forecasting through the Czech Republic. When- and wherever the man-supervised flow-control
becomes of concern, the Institute collaborates with respective River Boards. In the Elbe system, the regional forecasts are issued daily for 54 water gauging
sites (forecasting points). The forecast lead time ranges from several hours up to one day. CHMI produce hydrological forecast of 2 days lead time (1h time
step resolution) for catchments of size from about 100 km2 up to large basins of several thousands of km2. Due to geographical position of the Czech
Republic, the main uncertainty of the forecast in the head water basin is caused by inputting quantitative precipitation forecast (QPF) and also by quantitative
temperature forecast (QTF) in the winter and spring snow melting period. QPF and QTF of NWS ALADIN computed at CHMI input
va
Vlta
Smedá
-V IS
LP RED
20
32
L29
1
20
01
90
01
78
e
Metuj
LI0
LJ6
LI1
0
0 20
Zd
ob
Ro nic e
ky
ten
ka
L50
LJ
Kn 8
ìž
ná
0390
LN
L5
6
0
LN
Bì 3
lá
Havlí čkův Brod
Ma
10
13
ic
e
LL1
3
árk
a
L ásenice
Y
#
12
7
0
Ne
ž
Římov
VD Římov
2
MARI
LM
LT
1
EH
RE
Br a
un ab
ach
11
Dolní Ostrovec
Písek
La
ins
itz
25
Y
#
HO
Ehrendorf
L
È e M6 L ičov
7
rn
L M á LM8
á
1081
en Vlta
va
Studva
VD Lipno
V lta
V LL1 LL6
Vyšší Brod
10
90
Hoheneich
HE
L L9
Mal
LP0
še
LM0
11 26
Pořešín
1070
Vltav
a
Len ora LP 6
Chlum
1
Tepl
á
Varvažov #Y
LL8
LM
nice
2 LM 3
1150
119
0
L už
1110
Pilař
Roudné
4
LP
2
LM
1130
M
Orlík
11 51
České Budějovice
Březí
10
60
L57
L38
80
5
LN
Otav
a
L68
1390
L64
Lu
žn
Volyòk
a
L66
LL
L P4
14
70
1480
Černý Kříž
1 L
H2
LK
8
LH
L54
20
80
L1
5
L35
Blanice
32
VD Husinec
1
LP
Klatovy
0
LK
Chrud 0 Hamry
imka
4
LL
V ydra
Heřmaň
1500
Poded vory
Staňkov
LG0
04
052 0
16 72
L36
15 39
1533
Přemilov
LL2
Bech yně
L L0
BLHU
LL7
04
9
Klenovice
10
15
e
nic
Bla 1
L6
L56
1380
Otava
L58
Nemětice
1430
Slatina
04
L34
L11
16
1546
1537
1879
Úhl
ava
lé L
abe
LA
2
era
L3 0
0850
08
60
LK
5
Jav
or ka
6
L0
2040
J iz
LB
Mrli 7
na
LK
90
21
B erounka
L83
2
L8
L73
L77
1801
2
LQ4
1900
Teplá
L7
Litavka
L85 LR
1
7
L8
L76
Katovice
1350
Y
#
L
B ys K3
tøice
00
09
Svitá
vka
L V3
LV
1
2 400
L22
be L21
La
L02
03
21 60
L9
0
Oh ø
e
L5 a
v
Ota
Sušice
Modrava
Y
#
0491
Sáza
va
LP3
Y
#
Kolinec
Y
#
Katovice
Sušice #Y
# Stará Lhota
Y
Y
#
Heřmaň
Y
#
Nemětice
Y
#
Bechyně
Y
#
Klenovice
Y
#
an
ice
1
Vl tava
Bl
VD Bystřička
Y
#
Modrava #Y
Podedvory #Y
Lásenice
Y Husinec
#
České Budějovice
Y
#
Vsetín
Y
#
Y
#
Y
#
VD Karolinka
Lenora #Y
Březí
Y
#
Černý Kříž #Y #Y Chlum
Ústí
Y
#
Y
#
Y
#
Římov
Y
#
Lipno#Y
Pilař-Majdaléna
Roudné
Pořešín
Mal š
e
FREE
SUPLEMENT.
WATER
UHNY
0300 nad Kněžnou
L2
0
Chlístov
Písek
1410
L65
Týniště
0240
L6
9
7
0
038
Kolinec
Stará Lhota
VD Nýrsko
4
Čenkov
01 80
Y
#
L4 1
0 Novoh
rádka
0 58
CRSV
LH8
L 19
ZESV
VD Orlík
1330
Y
#
Os
tr
LL užná
5
1820
5
L7
Nová Huť
Y
#
Y Klabava
#
Stříbro
VD České Údolí #Y #Y
Koterov
Lhota #Y #Y Stěnovice
Bílá Hora #Y
LJ
VD Hracholusky
6
LH3
LN
7
Dolní
LN
Ostrovec om nice
152 L
0
Rych nov
L40
LG 7
7
15
30
15 S kalic
e
N8
Chábory
6
LH
58
15
Y
#
16
V LOR
Varvažov L
Hamry
Soutice
1656
V LKA
Z ruč
Dì dina
Mitrov
5
Úh řetice
VD Seč
L18
61
16
0210
LH
Hradec O
Králové rli ce
Svídnice
LH
Louňovice
VD Kamýk
Koterov
18 70
Klatovy
Y
#
16 Libež
59
Jaroměř
52
LN4
Paří žov
L16
Radonice
a L37
Chotýšank
Radíč
G1
Y
#
Krčín
PRRO
LG4
LG3
LG5
ná
uè
Lo
30
VD Slapy
Mas
tník
38 Hrachov
1 5 Brzin
a
tuje
Me
Staň kov
Nesp eky
0148
Zlíč
60
L J5
18
##
Y
Y
Liblín
V LSL
01
065 0
S ázava
3
VD Král ovství
L
La 53
be
Přemilov#Y
M aršov nad Metují
Hronov
70
04
B e1 860
ro
un
k a Bílá Hora
L8
0
VD
RACU České Štěnovice
Údolí
1799
Labe
066
0
L14
L13
4
15
VLST
Ú pa
uza
db 4
R a L7
Čen kov
1 960
Slatina
n/Ú.
1
LG
be
La
L70
Stříbro
17 4
0
Klab
avaVD Klabava
Nová Huť LQ
5
KLKL
Štěchovice
(Kocába)
VD Štěchovice
2
LG
LQ2
L08
Ž leby
Zbraslav
2
LQ1
Beroun
LC
LC1 a
brav
LQ
Liblín
1910
Støela
ka
un
ro
L10 Be
VLVE
Beroun
D ou
Plasy
VD Hracholusky
Mž e
1980
3
LQ
L 17
Y
#
0820
Chuchle
L8 4
ka
ro un
Be
6
ka
Želiv
Beroun
Plasy
Sány
0060
Jaroměř
0170
øe
víè
Velký
01 41 Dřevíč
Svídnice
VD Seč #Y
0
n/Zdob.
0 31
Žamberk
0270 02
Klášterec
Často lovice
55
L4
Kostelec
Němčice
0370
L55
4 LN2
L42
PRPA
80
L
06
02
VD Pastviny
Orlice N1
Malá Čermná
10
Div oká
Nekoř
LG
Přel ouč
6
0
360
9
LG
0250
LH0
034
Dašice
L45
0
LG8
Dolní Lib chavy
Nemošice
Cerekvice
Tichá Orl ice
Ústí n/Orl.
LJ9
0590
03 50
LM9
0450
10
16
LQ7
LJ2
S TZL
1761
50
17 MZHR
VD Lučiná
na
LK6
D
Horní Staré
M ěsto
0
Opato vice
Plaňany
Trpísty
95
16
L25
1
LK
2109
00
08
Cidli
0140
42
Rohoznice
0
VD Jesenice
2065
LX5
L
po om
tok nic
ký
VD Žlutice
9
1 88 S tøela
07 50
00
Deb rné
0 70
LX3
T epl ička LX1
L24
Stanovice
Nový Bydžov
Vestec
LB5 LB8
0
LC
Cheb
VD Skalka
07 70
Nymburk
7
Březo vá
e L 86
Oh ø
L9
5
8
Před měřice
1040
9
LB
2060
2 073
101
L3
1
Brandýs
Prosečné
0710LALK
L ázně
Běloh rad
LK
2030
1
Vraň any
L3 2
va
V lta
0690
a
lin
C id
4
LK
Žatec
Mělník
Louny
L97
LJ
3
Vestřev 0
05
Cerekvice
Y
#
Y
#
Horní Maršov
0030
L5
Oleš ka
0 LA8
6
ka
Výrov
LB6
LX4
LV 8
2
LA
era
21 01 Stará Role
LV
L V6
2
L9
e
Ohø
L0 3
Stranná
VD Nech ranice
LX2
e
Lab
08
L88
0678
Jičín
409
42
240
L91
L98
9
5
0870
409
Klášterec
21 45 L9
Ostrov
LA
Slaná
L04
va 2
4
Karlo vy Vary
2140
Svatava L V5 L8 9
LV 7
Citice
Calibrating system
Ensemble Streamflow Prediction
Y
#
Ličov
Y
#
Vyšší Brod
Statistics
Probability forecast
Operational forecasting system
Hydrological
models
Verification
Preprocessor of
meteorological
ensembles
Hydrological
Ensemble
Processor
Products
Generator
Data
Assimilator
Products
MODS, Updating,
Optimalization of initial
conditions
Interactive forecasting
program
Precipitation and
Temperature
ensembles
Weather
Generator
Historical data
Method was originally inspired by ESP US NWS procedure,
however because of using deterministic hydrological forecasting
system the aim was to reduce number of ensembles. There is not
enough historical meteorological data (since 1961) to apply simply
random selection of few years from the historical dataset; therefore
LARS-WG generated long time series were used instead of
historical observation of precipitation and temperature.
MAN – interactive reservoir control
Hluboká
01
Inflow CO00
Zvíkov
Orlík
Koloděje
RES
CC
900.00
800.00
Discharge
CKEL
DMY
LL
06
05
RE S
EE
Slapy
DMY
DD
Mastník C223
Brzina C222
04
VD KAMÝK
Pool HKRE
elevation
(m asl)
Kamýk
700.00
Pool HSRE
400.00
Vrané
300.00
100.00
400
300
200
100
DMY
FF
VD SLAPY
0
distance (km)
Pool HTRE
09
11
Discharge
CTEL
DMY
MM
10
RES
II
Modřany
Discharge CSEL
08
RES
GG
Orlík
500.00
07
DMY
HH
Štěchovice
VD ŠTĚCHOVICE
600.00
200.00
Flood 1890
Děčín
Discharge COEL
03
Orlík
AquaLog provides export of forecast to the WEB sites and
to the special client program ALView.
Simulation characteristics
• Interactive versus non-interactive
• Modifications of processed input data
• Optimalisation of initial conditions (Rosenbrock)
• Modifications through special adjustment runtime parameters
• Temporary modification of parameters
• Updating of forecast
Nash Statistics
Hourly, Daily and yearly basis Sutcliffe
DMY
BB
02
Zbraslav
Pool HVRE
354
352
350
3000
348
2000
346
1000
344
time
Models
•Reservoir
•Rating
curve
•Spilway
•Bottom
outlet
•Power
generator
•Release
324
304
284
264
244
224
204
184
164
144
124
104
84
64
44
24
4
-16
-36
342
-56
0
stage (m )
4000
Petri-net algorithm
offers a powerful tool
for decomposition of a
system and for
subsequent userindependent numerical
simulation
DMY
JJ
Berounka C190
5000
356
VD VRANÉ
dam inflow
dam outflow
DT=X1..X10
discharge - Prague
optimal discharge
sub basin inflow
dam water stage
6000
12
13
DMY ODTOK
KK
Reservoir optimization control
discharge (m 3.s-1)
Optimalisation of SAC-SMA initial conditions using different
optimalisation criteria to adjust simulated hydrograph to
observed discharge time series.
•Temporary modification of parameters
Modification of initial snow water equivalent (SWE) for snowmelt
model is performed quite often in spring months if measured and
calculated SWE differs significantly. Manual changes of initial
condition is made trough MODS module.
BASEF changes the recessing base flow amount in base flow
MFC changes the melt factor correction value for SNOW-17
SACBASEF multiplies the base flow runoff from the SAC-SMA
SACCO changes the SAC-SMA soil moisture carryover values
UCBASEF change the constant base flow amount for IUH
UHGADJ - modifies a unit hydrograph with horizontal and/or
vertical adjustment factors
UHGCHNG changes the ordinates of a unit hydrograph
WECHNG changes the value of snow water equivalent
PXADJ multiplies the input rain data by a constant
PXADJ adds number of degrees to temperature data
Pool HORE
Controlled variable
VD ORLÍK
Týn
Optimized and original
hydrograph. Initial conditions
of SAC-SMA model
optimized by automatic
optimisation using
Rosenbrock optimisation
scheme.
Moldau Cascade
Písek
RES
AA
Hněvkovice
Kocába C224
Nespeky C226
Run time modifications represent temporary adjustments to time
series or initial conditions. The forecaster uses MODs at forecast
execution time to adjust these values in an attempt to improve the
results of the forecast model computations. MODs are available for
making temporary or, in a few cases, permanent changes to selected
parameters.
•Modifications of processed input time series
Modification of PXADJ – Input precipitation is multiplied by
PXADJ parameter based on radar data and other information.
Modification of TXADJ –input air temperature may be adjusted by
change of TXADJ, usually when it rains and air temperature is close
to 0 °C
• Optimalisation of initial conditions
SACRAMENTO and SNOW-17 initial condition are kept from
previous simulations to keep continuity of soil saturation and
characteristics of snow. AQUALOG uses automatic
Hněvkovice
Calibration Characteristics
• Performs computations for few forecast points for many time
steps.
• Long time series
• Compatible with operational system.
• Produces graphical output for manual calibration.
• Includes algorithms for automatic optimisation
Applications:
• Historical watershed simulation
• Reconstruction of historical events, scenario analysis
• Model calibration
Optimisation schemes
•
Rosenbrock
•
Pattern search
•
Shuffled complex evolution
Convergence criteria – different criteria available
•
Daily RMS error
•
Nash-Sutcliffe
•
Pearson coefficient of corelation
•
Multi-Step Automatic Calibration Scheme MACS
České Budějovice
Run-Time Modification
Lipno
Calibration and Simulation
Observed
Time Series
Controlled discharge
Radar And
Remote
Sensing
Precipitation +
Temperature forecast
LABE
Automatic
Observing
Stations
Hydrological and
hydraulic models
Štěchovice
Vrané
Modřany
Analysis
and data
processing;
Praha
Operational
database
Kamýk
Network of
Voluntary
Observes
Hydrological
And Hydraulic
Models
Slapy
Professional
Observing
Stations
Database of
Model
Parameters
Short time deterministic hydrological forecasting has became a
standard real time practice The experience from recent flood events
in the Czech Republic proved the increased forecast user demands
for the longer lead time of the forecast and some probabilistic
interpretation of forecast outputs. Longer lead time hydrological
forecast is necessary for effective water management of reservoirs
to successfully combine their different, often antagonistic, purposes
such as the flood protection on one side and water supply and
hydropower generation on the other hand. However with prolonging
lead time the need of probabilistic expression is increasing what
was proved by common evaluation of QPF uncertainty as well as by
some case studies of QPF and QTF impact on real time
hydrological forecast.
Kořensko
International
Exchange of
Data(ECMWF,
ALADIN etc.)
Historical
database
Historical
Data
Analysis
Forecast Dissemination
1
7
L 0 iz era
J
0980
Štěpanice
Jizerka
4 LA3
LA
Probabilistic Forecast
Automatic interface between primary real-time data collection
system including archiving of the passed data and the modeling and
forecasting system. Provides for both automated and mansupervised data pre-processing and quality control, using graphical
and statistical data-validation procedures. Consists of set of
procedures, that are used as the tool in analysis and pre-processing
of raw climatological and hydrological data to update time series
used in forecasting by AquaLog.
• historical and operational data collection
-input of regularly observed data from data collection
systém (stations, radar etc.)
-input of forecasted data (QPF by ALADIN and ECMWF)
• database management, including the data validation,
primary and secondary data processing system (validation,
screening reconstruction and missing data entry
• graphical, tabular and statistical tools for primary processed
data and their validation in manual or automated mode
• methods of supplementary processing and analysis of time
series
• creation and maintenance of station files (characteristics of
meteo- and hydro- stations)
• topographical representation of the basin, river system and
location of the stations based on GIS generated data
Y
nice
S TRAZ
091 0
LR3 Stráž p .RalskemŽ elezný Brod
Dolní
LA6 Sytová
Mimoň
02
5
L0
Sv ata
Data processing - AquaBase
Inverse Distance Weights (number of stations, max.
distance, exponent)
• Inverse Distance Weights – QUADRANTS
• Kriging and Co-Kriging – (http://www.gslib.com/)
• Thiessen Polygon Network
Input Formats: ESRI ASCII Grid, GeoEAS, ESRI shapefile
Export Formats: HEC-RAS (DSS-VUE),CSV etc.
Conversion utilities WGS-84, UTM, S-42 and S-JTSK
2322
Harrach
ov 0010
LK Mu
Špindlerův Mlýn
9 mla
va
00
20
45
LALA
08 Jablo nec
VD Labská 0
n.Jiz.
13
Dolní
0
J iz
2350 P louè
AZ
Bohuňovsko-Jesenný
L V2
Česká Lípa
S TR
Z ákupy
LA7
022
24
Byst
øice
Ro
lava
Basic scheme of AquaLog system
•
Josefův Důl
2340
LV
0
23 90 P lou
ènice
Aqualog system consit of main modules, AquaLog itself and
AquaBase, SOLWIN, AquaESP, Mods, Manipul and ALVIEW.
Methods of MAP, MAT, MAE (Mean Aerial Precipitation,
Temperature and Water Equivalent)
08 30
0880
Benešov
n.Ploučnicí
Vltava
Y
#
L2
3
L0 9
Dluhonice
O
Děčín
Bakov
Trpísty
2
F rýdlant
Bílý Potok
R YD
-BP
LF
3230
10
22
L26
226
0
Jesenice
Rychnov nad Kněžnou
Y
#
Týniště nad Orlicí#Y
Y Slatina nad Zdobnicí
#
Y#
#
Y Klášterec
#
Y
Častolovice
Y Žamberk
#
Kostelec
Y Němčice
#
Y
#
Y Nekoř
#
Přelouč
Malá Čermná
Y
#
Y Dašice
#
Nemošice#Y
Y Dolní Libchavy
#
Y Úhřetice
#
Y Ústí nad Orlicí
#
Předlánce
FR
YD
LA
Y
#
I S-
40
Hřensko
LA9
Kamenice
Y
#
Cheb
Ústí n.Labem
ina
Trmice Bíl
L67
Y
#
Y
#
Y Mitrov
#
5
LP
PERCOLATION
Žatec
Stará Role
Y #
#
Y Karlovy Vary
Svatava
Y
#
Y
#
Bøezová
Citice#Y
Y
#
Teplièka
a
2
Y
#
va
V lta
WATER
Y
#
Louny
15 34
TENSION
3260
Y
#
0
FREE
PRIMARY
WATER
Želivka
32
5 Beč 4
v
Y
#
Chábory
Bí lý Pot ok
Chlístov
Y
#
Y
#
245
BASE FLOW
Y
#
Kelč
Y
#
Višňová LV
Y
#
Valašské Meziříčí
Y
#
Y
#
Jarcová
Rožnov
Frýdlant v Čechách
Trmice#Y
80
10
BASE
FLOW
Y
#
Y
#
Y
#
Y
#
Y
#
#
Y
Hradec Králové
LP7
LOWER ZONE
F
Teplice
Višňová
Y
Y#
#
Y
#
73
19
NO
FF
DIR
ECT
RUN
OF
Předlánc e
Pařížov
Y
#
Soutice
Louňovice
Hrachov
80
RU
Y
#
VD Kamýk#Y
18
FLO
W
CE
Y
#
Radonice
Zruč
#
Y
Y
#
Libež
Radíč
a
lav
Ús 1
L7
Probability forecast
Scenarios
(pseudo –
real time)
RFA
Maršov nad Metují
Velký Dřevíč
Hronov
Y
#
Y Slatina nad Úpou
#
Království
Y Česká Skalice
#
Jaroměř #Y
Krčín
Y
#
Žleby
Y
#
9
Deterministic
forecast
SU
Dluhonice
Horní Staré Město
Y
#
Prosečné
Y
#
Y Vestřev
#
Y Debrné
#
Y
#
Nespeky
Y
#
L7
UPPER ZONE
INT
ER
8
Horní Maršov
Y
#
Sány
Plaňany
Y Chuchle
#
#
Y
LQ0
TENSION WATER
9
Špindlerův Mlýn
Nový Bydžov
Y
#
Štěchovice
1
Valašské Meziříčí
Y
#
4 R2
3 2 #Y Rožnov
ožno
vská
Y
#
Bečv
5
a
Jarcová
6
3
Y
#
2
1
VD Bystřička
5
a
čv
4
3
e
áB
2 1
1
4 Vsetínsk
1
3
5 #Y
2
11 12
VD Karolinka
2
1 #YVsetín 7 6
1
10
Y
#
13 Ústí
8
5
9
3
4
Y
#
Y
#
Nymburk
Y
#
VD Štěchovice#Y VD Slapy
09
18
FREE WATER
The Sacramento model
represents an attempt to
parameterize soil moisture
characteristics in a manner that:
• would logically distribute
applied moisture in various
depths and energy states in
the soil
• would have rational
percolation characteristics
• would allow an effective
simulation of streamflow
Rohoznice
Y Zbraslav
#
1
3
Y
#
3 Kelč 1
Labem#Y
Brandýs nad
3
6 Teplice
Y
#
Y
#
Vestec
YPředměřice #
#
Y
Lhota
Y
#
Lázně Bělohrad
Y
#
Y
#
VD Žlutice
6
Y
#
Mělník
Y
#
Vraňany
Y
#
4
Harrachov
Y
#
Kbelnice
17 90
Planning,
training
Y
#
MZLU
5
Y
#
Zákupy
Y
Y #
#
Y Mimoň
#
Y
Česká lípa
Y#
#
Y Dolní Štěpanice
# #
Y
Železný Brod
Dolní Sytová
Y
#
Slaná
Ústí nad Labem
01
200
Operational mode
Josefův Důl
Děčín #Y Benešov
Y
#
2
7
SAC-SMA
scheme
Y
#
101
AquaLog
Catchments are subdivided into zones (1-20).
The area of the zone is aprox, 10-40 km2.
Each zone has individual parameters. Typical
subdivison for Becva catchment.
Hřensko
20
21
AquaLog is multipurpose decision-supporting system in field of
water management and hydrology and uses methods of deterministic
modelling to investigate hydrological and environmental processes
in the real and historical data and, possibly, also on artificially
generated data. Apart from field of operative hydrology AquaLog
can assist as a tool to judge the measures taken in water management
processes and scenarios.
Scheme of Elbe River flood
forecasting system
Od
rava
L9
3
AquaLog
The Elbe, Vltava, Ohre, Berounka, Sazava and
Jizera river-basins ara subdivided into lesser
subsystems. Elbe hydrological model consist of
210 main river reaches, where the transport
diffusion (TDR) model is used for channel routing,
173 sub-catchments where the SAC-SMA rainfallrunoff model coupled with ablation and snow-melt
SNOW-17 model is applied and
27 dams with forecasted outflow.
The model is subdivided at 5 parts, according of
regional offices.
The models are daily- and continuously operated.
Simulation time step is one hour.
DMY
NN
14
Signal
15
Inflow Scenario
Inflow Forecasts
Forecast-Decision System
Reservoir
regulation Policy
Forecast/Control
Horizon
(e.g., 48 hours)
System Configuration
Regulation Policy
Demand Scenario
One Hour- Time
Step System
Simulation
Flood Control
Outflow Energy
Assessment Horizon
(e.g., 2009-2012)
Six Hour- Time
Step System
Simulation
discharge (m3.s-1)
4500
4000
Observed hydrograph
3500
Simulated for natural
conditions
Simulated for affected
conditions
3000
Water Supply
Pool Level
Recreation, etc.
2500
2000
1500
1000
500
Software HISTORY
• Late 1970s the first application on Mainframe (SIMFOR)
• Mid 1980s SIMFOR is ported on PC with GUI (OS DOS)
• Mid 1990s AQUALOG is a fully MS Windows based application
• Mid 1990s AquaBase is added to AquaLog
• Mid 2008 AQUAESP is added to AquaLog
• Most of the core code is Fortran, GUI is in Visual Basic and
VB.NET
0
26.08.1890:00 31.08.1890:06 05.09.1890:12 10.09.1890:18 16.09.1890:00 21.09.1890:06
tim e
Contacts:
Jakub Krejci [email protected], AquaLogic Consulting, Ltd,
Roklinka 224. 25244 Psary, , Czech Republic
Jiri Zezulak [email protected],Czech University of Life Sciences
Prague, Kamýcká 129, 165 21 Praha 6 – Suchdol, Czech Republic
Updating of forecast
Simulated hydrograph always more or less differs from the
observation. Therefore forecast usually doesn’t “start“ at last
observed value and have to be update. Automatic updating mode is
extended by module UPDATE has been developed for advanced
manual updating. It enables complete interactive modification of
forecasted hydrograph in every time step.
Reservoir
Intreractive
Module

Podobné dokumenty

celek-resume

celek-resume Kryštof Clam-Gallas koupil Obříství pravděpodobně roku 1810 a záhy nechal k zámku přistavět čelní křídlo. Již roku 1817 však sídlo prodal. V současné době vlastní zámek Obříství restituent Igor Hav...

Více

Možnosti využití srážko-odtokových modelů na malých a středně

Možnosti využití srážko-odtokových modelů na malých a středně lokalizované (české) verze produktů (zde je výhoda či nevýhoda čistě subjektivní), zkušenosti jiných uživatelů a celková používanost produktu v Česku i jinde ve světě.

Více

URL

URL Numerické metody v testovaných softwareových systémech poskytují několik parametrů, které můžeme specifikovat a které ovlivní výpočet řešení. Naprosto zásadní z pohledu fungování metody jsou tolera...

Více

k nahlédnutí zde

k nahlédnutí zde Ferebauerová Eva Ing., Palackého 347, 517 54 Vamberk Frühbauer Aleš, Mírová 1435, 516 01 Rychnov nad Kněžnou Genzerová Anna, Staročeská 264/4, 165 00 Praha 6 Güllichová Monika, Sluhy 257, 250 63 Pr...

Více

D.1 - Hodnoty N-letých průtoků a poměru Q 100 /Q a pro vybrané

D.1 - Hodnoty N-letých průtoků a poměru Q 100 /Q a pro vybrané Dolní Libchavy Třebovice Hylváty Ústí n. O. - Kerhartice Čermná nad Orlicí Týniště nad Orlicí Chábory Mitrov Hradec Králové Němčice Litomyšl Cerekvice Dašice Hamry Přemilov Padrty Svídnice Luže Leš...

Více