VIDEO PROCESSING IN MOTION MODELLING

Transkript

VIDEO PROCESSING IN MOTION MODELLING
VIDEO PROCESSING
IN MOTION MODELLING
Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA
[email protected], [email protected], [email protected]
Institute of Chemical Technology
Department of Computing and Control Engineering
Digital Signal and Image Processing Research Group
http://dsp.vscht.cz
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.1/10
Contents
Introduction
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.2/10
Contents
Introduction
System Description
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.2/10
Contents
Introduction
System Description
Three-Dimensional Object Detection
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.2/10
Contents
Introduction
System Description
Three-Dimensional Object Detection
Motion Visualization
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.2/10
Contents
Introduction
System Description
Three-Dimensional Object Detection
Motion Visualization
Conclusions
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.2/10
Introduction
Goals of the project
Study of image acquisition using synchronized two
camera system and A/D convertors
Study of mathematical methods for body
localization in the three dimensional space
Visualization of the body movement using virtual
reality environment
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.3/10
Introduction
Goals of the project
Study of image acquisition using synchronized two
camera system and A/D convertors
Study of mathematical methods for body
localization in the three dimensional space
Visualization of the body movement using virtual
reality environment
Application
Modelling of the body movement
Analysis of the object movement
using several reference points
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.3/10
System Description
Light
@i
@
Technical details
Cameras with color CCD
sensor and with resolution
1024x768, 30 fps
A
Camera
B
Camera
Synchronization 125 µs
Connection with computer
via IEEE 1394
Direct connection to the
MATLAB system and Image
Acquisition Toolbox
IEEE 1394
?
?
MATLAB
&
Image Acquisition Tlbx
Computer
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.4/10
Three-Dimensional Object Detection
Principle of the object localisation
(b) K−TH POSITION
(a) INITIAL POSITIONING
FRONT VIEW
FRONT VIEW
C [xC(k),zC(k)]
b2(k)
C [x (1),0]
a (k)
2
α2(k)
C
β2(k)
TOP VIEW
TOP VIEW
C [x (1),y (1)]
C
C
C [xC(k),yC(k)]
b (1)
1
α1(1)
a1(1)
c
b (k)
1
β1(1)
α1(k)
a1(k)
c
β1(k)
A [xA,yA]
B [xB,yB]
A [xA,yA]
B [xB,yB]
Camera A
Camera B
Camera A
Camera B
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.5/10
Three-Dimensional Object Detection
Principle of the object localisation
(b) K−TH POSITION
(a) INITIAL POSITIONING
FRONT VIEW
FRONT VIEW
C [xC(k),zC(k)]
b2(k)
C [x (1),0]
a (k)
2
α2(k)
C
β2(k)
TOP VIEW
TOP VIEW
C [x (1),y (1)]
C
C
C [xC(k),yC(k)]
b (1)
1
α1(1)
a1(1)
c
b (k)
1
β1(1)
α1(k)
a1(k)
c
β1(k)
A [xA,yA]
B [xB,yB]
A [xA,yA]
B [xB,yB]
Camera A
Camera B
Camera A
Camera B
2
2
2
α1 (1) = arccos (b1 (1) + c − a1 (1) )/(2 b1 (1) c)
2
2
2
β1 (1) = arccos (a1 (1) + c − b1 (1) )/(2 a1 (1) c)
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.5/10
Three-Dimensional Object Detection
Calibration of the camera system
HORIZONTAL AND VERTICAL CAMERA ANGLE EVALUATION
(b) INITIAL LIGHT POSITIONING
(a) CALIBRATION GRID
α2max
α (1)
2
d
svertical/2
CAMERA
α
2min
d
shorizontal/2
α
1min
α1(1)
α
1max
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.6/10
Three-Dimensional Object Detection
Calibration of the camera system
HORIZONTAL AND VERTICAL CAMERA ANGLE EVALUATION
(b) INITIAL LIGHT POSITIONING
(a) CALIBRATION GRID
α2max
α (1)
2
d
svertical/2
CAMERA
α
2min
d
shorizontal/2
α
1min
α1(1)
α
1max
αhorizontal
αvertical
= 2 arctan shorizontal /2/d
= 2 arctan svertical /2/d
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.6/10
Motion Visualization
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.7/10
Motion Visualization
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.7/10
Motion Visualization
MOTION MODELLING
19
30
20
8
z−axis
25
20
18
15
21
2728
7119
10
23
22
17
1
10
16
5
3
15
2
0
26
24
25
4
29
1230
6
CAMERA B
−5
13
5
14
1500
1500
CAMERA A
1000
1000
500
y−axis
500
0
0
x−axis
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.7/10
Motion Visualization
MOTION MODELLING
19
30
20
8
z−axis
25
20
18
15
21
2728
7119
10
23
22
17
1
10
16
5
3
15
2
0
26
24
25
4
0
29
1230
6
CAMERA B
−5
13
5
Display
14
1500
1500
CAMERA A
1000
1000
500
y−axis
500
0
simin
0
Bally.translation
x−axis
From
Workspace
VR Sink
Scope
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.7/10
Motion Visualization
MOTION MODELLING
19
30
20
8
z−axis
25
20
18
15
21
2728
7119
10
23
22
17
1
10
16
5
3
15
2
0
26
24
25
4
0
29
1230
6
CAMERA B
−5
13
5
Display
14
1500
1500
CAMERA A
1000
1000
500
y−axis
500
0
simin
0
Bally.translation
x−axis
From
Workspace
VR Sink
Scope
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.7/10
Conclusions
Results
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.8/10
Conclusions
Results
Successfully tested system with one moving object
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.8/10
Conclusions
Results
Successfully tested system with one moving object
Creation of the virtual reality model based on the
real movement
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.8/10
Conclusions
Results
Successfully tested system with one moving object
Creation of the virtual reality model based on the
real movement
Further Research
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.8/10
Conclusions
Results
Successfully tested system with one moving object
Creation of the virtual reality model based on the
real movement
Further Research
Deterministic and statistical analysis of the set of
moving objects
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.8/10
Conclusions
Results
Successfully tested system with one moving object
Creation of the virtual reality model based on the
real movement
Further Research
Deterministic and statistical analysis of the set of
moving objects
Their proper recognition and detection followed by
visualization in specific applications
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.8/10
References
1. R. Boulic, P. Fua, L. Herda, M. Silaghi, J.S. Monzani, L. Nedel, and
D. Thalmann.An Anatomic Human Body for Motion Capture. In Technologies for
the Information Society: Developments and Opportunities. EMMSEC98, 1998.
2. J. Lasenby and A. Stevenson. Using Geometric Algebra for Optical Motion
Capture. In E.Bayro-Corrochano and G. Sobcyzk, editors, Applied Clifford
Algebras in Computer Science and Engineering. Birkhauser, Boston, U.S.A., 2000.
3. M. Kubíček. Using Dragonfly IEEE-1394 Digital Camera and Image Acquisition
Toolbox. In Sborník konference MATLAB 2004, pages 280–282. VŠCHT Praha,
2004.
4. M. Nixon and A. Aguado. Feature Extraction & Image Processing. NewNes
Elsevier, 2004.
5. M. Ringer, T. Drummond, and J. Lasenby. Using Occlusions to Aid Position
Estimation for Visual Motion Capture. In Proc Computer Vision and Pattern
Recoginition (CVPR). IEEE USA, 2001.
6. M. Ringer and J. Lasenby. Modelling and Tracking of Articulated Motion from
Multiple Camera Views. In Proc. British Machine Vision Conf (BMVC), pages
172–181, 2000.
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.9/10
Thank You!
http://dsp.vscht.cz
VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.10/10

Podobné dokumenty

Následky dopravních nehod seniorů na jízdních

Následky dopravních nehod seniorů na jízdních 2. Český statistický úřad. Populační prognóza ČR do r. 2050. 1. vyd. 2009. http://www.czso.cz/csu/2004edicniplan.nsf/p/4025–04. 3. Český statistický úřad. Vnější příčiny úmrtí v ČR v letech 1994 až...

Více

Beskyd Cup 2013

Beskyd Cup 2013 H10C, H12C, H14C, H16C, H18C, H20, H21E, H21B, H21C, H35C, H40, H45C, H50, H55C, H60, H65C, H70. D10C, D12C, D14C, D16C, D18C, D20 (jen sobotní závod), D21E, D21B, D21C, D35C, D40, D45C, D50, D55C,...

Více

POKYNY Velkobystřické jarní kufříky

POKYNY Velkobystřické jarní kufříky Závodníci kategorie HDR obdrţí pamlsek při vyčítání. Protesty:

Více

Ranger

Ranger Base, XL a XLT, 2 klíče s dálkovým ovládáním pro Limited a Wildtrak

Více

POSLEDNÍ KUFR 2015

POSLEDNÍ KUFR 2015 D10C, D12C, D14C, D16C, D18C, D21C, D35C, D45C, D55C, H10C, H12C, H14C, H16C, H18C, H21L, H21K, H35C, H45C, H55C, H65C, DH10N – smajlíci  (bez doprovodu), T – tréninková trať (4-6km) P – trať pro ...

Více

26 COMMUTATING CAPACITORS (only for spare parts

26 COMMUTATING CAPACITORS (only for spare parts see table / viz. tabulka -40 / +85 °C max 85 °C 120 000 h

Více