EP 2009-1.indd - Milan Kubiatko

Transkript

EP 2009-1.indd - Milan Kubiatko
Adresa on-line časopisu: http://epedagog.upol.cz
Tato publikace neprošla jazykovou úpravou.
Za obsahovou správnost odpovídají autoři jednotlivých příspěvků.
Předsedkyně redakční rady: prof. PhDr. Helena Grecmanová, Ph.D.
Oponenti: Mgr. Michal Bartoš, Ph.D.
Ing. Michal Burda, Ph.D.
doc. RNDr. Jaroslav Beránek, CSc.
Mgr. Miroslav Dopita, Ph.D.
PhDr. et PaedDr. Jiří Dostál, Ph.D.
Mgr. Martin Fafejta, Ph.D.
prof. PhDr. Helena Grecmanová, Ph.D.
doc. RNDr. Libuše Hrabí, Ph.D.
doc. RNDr. Jana Kapounová, CSc.
PhDr. Martin Kopecký, Ph.D.
doc. RNDr. Jitka Laitochová, CSc.
prof. RNDr. Jan Melichar, CSc.
doc. PhDr. Bohumil Novák, CSc.
PhDr. Jitka Novotová, Ph.D.
PaedDr. Petr Petráš
PhDr. & Mgr. Petra Potměšilová, Ph.D.
doc. Ing. Berta Rychlíková, CSc.
doc. RNDr. Iveta Scholtzová, Ph.D.
doc. PhDr. Eva Šmelová, Ph.D.
prof. PaedDr. Milan Valenta, Ph.D.
RNDr. Olga Vránová, Ph.D.
ISSN 1213-7758
ISSN 1213-7499
tištěné verze
elektronické verze
Obsah
OBSAH
Články. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Secondary school students’ interest
in physics, chemistry and mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Miroslav Dopita
High school students relation to information
and communication technologies
in the context of biology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Milan Kubiatko, Zuzana Haláková
Biology textbooks of FRAUS publishing company
and their text difficulty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Libuše Hrabí
Inclusive education in Greece and Czech Republic . . . . . . . . . . . . . . . . . . . .38
Adéla Hanáková
Why should parents cater for the development
of emotional intelligence in their children? . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Jolanta Karbowniczek, Dorota Wosińska
Computer software as a help provider
to students unsuccessful in mathematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Bohumil Novák, Michal Novák
Hearing impairment and its projection
in the integrative education process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Miloň Potměšil
Professional profile of individuals
with development disabilities in sheltered
employment settings: a methodological change . . . . . . . . . . . . . . . . . . . . . . .70
Sanahuja, Josep M. Olmos, Patricia, Ruiz, Carmen
On mathematical imagination
of pre-school aged children . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
Anna Stopenová
3
e-Pedagogium č. I/2009
HIGH SCHOOL STUDENTS RELATION TO INFORMATION
AND COMMUNICATION TECHNOLOGIES
IN THE CONTEXT OF BIOLOGY
Milan Kubiatko, Zuzana Haláková
Abstract
The impact of information and communication technologies and computers
on our daily lives has been steadily increasing. This fact influences the change
of attitudes toward information and communication technologies. In our contribution we focused on finding the differences between genders according to
computer attitudes. A questionnaire with 33 Likert type items was used in our
research. The sample consists of 518 students from 9 high schools. Data were
evaluated with factor analysis, ANOVA, Pearson’s chi-square test, Pearson’s
product moment and for finding out reliability of questionnaire we used Cronbach’s alpha. The results of the questionnaire were divided into five dimensions
in the concrete 1. The positive influence of ICT; 2. The negative influence of
ICT; 3. Advantages of ICT; 4. ICT used in biology lesson; 5. Disadvantages of
ICT. Totally, boys have more positive attitudes than girls.
Key words
attitudes, information and communication technologies, biology, students,
questionnaire
Introduction
The recent time is influenced by an intensive usage of information and
communication technologies. These technologies extend into everyday life of
people; they make easier a lot of things. Their influence is obvious in educational
process, for example students can pose questions to teacher through web, but
they also use internet to interact with one another.
Biology teaching traditionally takes place in one or more of three different
environments; the lecture theatre or classroom, the laboratory and the field
(‘outdoors’). However, with the advent of multimedia technology attempts are
being made to translate features of each of these three learning environments
to the biology student’s computer desktop (Peat, Fernandez 2000; Spicer, Strat-
20
High school students relation to information and communication technologies…
ford 2001). Biological educators may see the possibilities and opportunities
for opening up whole new and exciting ways of learning and teaching using
this new technology. Information and computer technologies could be used as
a compensation for real dissection. When students were asked, what is more
favorable for them, if real dissection or computer-based dissection, majority
of students chooses the second alternative (Downie, Meadows 1995; Samsel,
Schmidt, Hall, Wood, Schrotf, Schumacker 1994). As we can see, students are
influenced by ICT to a large degree and the successful integration of computers
in educational environments depends, to a great extent, on students’ attitudes
towards them. Among investigators, who belong to this research area is used
term called computer attitude. It is defined as a person’s general evaluation
or feeling of favor or antipathy toward computer technologies and specific
computer-related activities. Computer attitude evaluation usually encompasses
statements that examine users’ interaction with computer hardware, computer
software, other persons relating to computers, and activities that involve computer use. (Smith, Caputi, Rawstorne 2000). Various computer/ICT scales have
been developed on the measuring of attitudes toward ICT (Al-Khaldi, Al-Jabri
1998, Loyd, Gressard 1984).
Many explorations are focused on finding differences in attitudes and using
ICT between genders. Dorup (2004) found that in his sample, males had more
access to computers at home, and held more favorable attitudes towards the use
of computers in their medical studies compared to females. A small proportion
of students reported that they would prefer not to use computers in their studies. Males were also significantly more inclined to replace traditional teaching
activities with better ICT resources. Kaplan (1994) reported that while female
users of office personal computers (PCs) believe computers are fun, men buy the
machines. Men, on the other hand, are reportedly more interested in mastering
computer commands and they want to own computers with voice recognition
and features that extend their senses. Women want to be able to use the machines; men want to command the machines. This difference in attitude about
computer technology based on gender has been explained by some individuals
as an outcome of the socialization process. Society views computers as highly
technical and part of a male domain (Campbell & McCabe, 1984). The current
study of Palaigeorgiou et al. (2005) also confirmed that both men and women
had similar engagement with computers and held concerns for the future effects
of continuous computer use, but women were more anxious about hardware
usage, and judged less positively the consequences of computers in personal
21
e-Pedagogium č. I/2009
and social life. The investigations of attitudes toward using ICT in biology are
not too much extended. Haunsel and Hill (1989) found out that pupils using
computers had more positive attitude towards biology and natural sciences than
pupils who were educated by traditional styles.
The main aim of our study was to find out differences between genders in attitudes toward use information and communication technologies in biology. The
hypotheses followed from this aim: The attitudes toward use of ICT in biology
are more positively in boys than attitudes toward use of ICT in biology in girls.
Methodology
The measurement tool used in our research was self constructed scaled
questionnaire of Likert type. The questionnaire was anonymous and it was
divided into two sections. In the first section there was introductory text, following demographic variables namely, gender, age and the year of study. The
second section consisted of 33 items. The assignment was to express own opinion and to use the scale from „I completely agree“ to „I completely disagree“
with given statement. 17 items were negatively formulated, what was taken into
consideration by recoding during the evaluation. The questionnaire was filled
in by 518 students of nine Slovak high schools, who were 15 to 19 (x = 16.97,
SD = 1.00) years old. The sample consisted of 37.84 % of boys and 62.16 % of
girls from the 1st to the 4th year of study. Respondents filled the questionnaire
during lesson. At first the questionnaires were sent to teachers, who distributed
instruments among students. The time of filling the measurement tool was not
longer than 20 minutes.
For the statistical evaluation we used Factor analysis with Varimax rotation,
which divided items in questionnaire into the five dimensions namely: 1. The
positive influence of ICT; 2. The negative influence of ICT; 3. Advantages of
ICT; 4. ICT used in biology lesson; 5. Disadvantages of ICT. We deleted 5 items
which factor score was smaller than 0.3 (Anastasi 1996). Next we calculated
Cronbach’s alpha (α = 0.82), which indicate a high value of questionnaire’s
reliability. On the finding differences between genders was used ANOVA test,
Pearson’s chi-square test (χ2) and Pearson’s product moment.
Authors of study afford a completely questionnaire on request of interested
persons.
22
High school students relation to information and communication technologies…
Results
During questionnaire evaluation we found out, that there was no item where
the respondents unanimously chose the strictly „yes“ or „no“ (the average would
be 1.0 or 5.0) (table 1). They were close to these extrems in item No 32 „I have
got a fear, when I used a computer“, where the predominate the attitude, that
the pupils have no fear to use computer and there were no statistic significant
differences between the attitudes of boys and girls. The similar stand was taken
on the statement No 10 „I consider the work with internet for unimportant on
teaching process“, where many students didn´t agree with the statement and
consider using an internet during teaching process important (4.49).
The items 22 and 29 belonged to the same dimension (Negative influence of
ICT) and the students expressed disagreement with uselessness of owning the
PC, with making learning harder (or impossible) by using PC (4.35), and with
unsuitability usage of PC during learning because of space requirement (4.26).
Table 1 Values of Licerts’ scales
item No.
1
2
3
4
5
6
7
8
9
10
11
3.74 4.22 3.39 3.49 2.89 3.65 3.78 4.36 3.97 4.49 2.48
item No. 12
13
14
15
16
17
18
19
20
21
22
3.24 4.03 3.49 3.49 3.49 3.06 2.23 3.78 3.45 3.96 4.35
item No. 23
24
25
26
27
28
29
30
31
32
33
2.83 3.82 3.34 3.58 3.95 2.88 4.26 3.99 3.55 4.69 4.01
By the use of Pearson chi-square test (χ2) we found out statistical significant
difference in results between genders in 14 of 33 questions (table 2).
Table 2 Values of Pearson’s chi-square test
item No.
χ2
item No.
χ2
item No.
χ2
1
2
3
4
5
6
9.74* 13.34** 5.51
26.78*** 8.22 22.04***
12
13
14
15
16
17
12.51* 6.14
5.48
12.40* 11.44* 16.97**
23
24
25
26
27
28
31.22*** 11.64* 34.34*** 9.01
17.32** 33.25***
7
8
9
10
11
8.29 8.78
7.49 3.99 25.71***
18
19
20 21
22
7.95 7.31
9.01 7.43 4.28
29
30
31 32
33
7.74 12.10* 8.93 6.68 7.49
* statistically significant difference p < 0.05
** statistically significant difference p < 0.01
*** statistically significant difference p < 0.001
23
e-Pedagogium č. I/2009
In the first question girls more disagree with the statement that ICT are important in the biology teaching. Similar finding was in second question, where
girls did not agree with statement that ICT make biology lesson more interesting. Girls have bigger problems with understanding of biology curriculum, when
is ICT used during teaching. In the next question we were interested in which
equipment is better for students, if overhead projector or computer. There is an
interesting finding, that girls did not know, what is better for them. They more
often mark neutral statement in comparison with other possibilities and in
comparison with boys. But in the next, in which we can reject null hypotheses,
girls had more positive attitudes toward teachers examining with the ICT assistance in comparison with boys. Girls have bigger problems with concentrating
during biology lesson, when the camera is using and they have problems with
communication with teacher, when ICT are used during biology lesson. The
girls were not convinced of sufficient using of ICT in biology lesson. In general
boys are more satisfied with ICT using in biology lesson than girls (figure 1).
Figure 1
The attitudes of boys and girls to the statement No17
"I am not satisfied with ICT using on biology lessons at our school. "
25%
20%
15%
girls
boys
10%
5%
0%
I completely
agree
I agree
I don´t know
I disagree
I completely
disagree
The girls are convinced of negative influence of ICT on eyes. They think that
ICT injure eyes, boys are not convinced of this statement. Similar item, which
was connected with injuring of human body by the using of ICT, is concerned
24
High school students relation to information and communication technologies…
to spine damage. In these statement girls in higher measure marked neutral
possibility in comparison with boys. Girls are inclined to believe that ICT could
be used in foreign as well as in Slovak language (figure 2).
Figure 2
35%
The attitudes of boys and girls to the statement No24
"It is impossible to meaningfully use ICT, because a majority of
information is in other language than Slovak. "
30%
25%
20%
girls
15%
boys
10%
5%
0%
I completely
agree
I agree
I don´t know
I disagree
I completely
disagree
Both, boys and girls think that their teachers are good in the use if ICT in
biology lesson. Teachers need not any training, their abilities are sufficient. In the
genders comparison a higher score achieved girls in comparison with boys. Girl
marked more often the neutral statement in the item “ICT does not save energy”
in comparison with boys. And the last question where was found statistical significant difference in results between genders was about ICT and mess. We found
out an interesting result, that girls perceive ICT and chalk as similar in making a
mess. Boys think that computers are less dusty in comparison with using chalk.
We used Pearson correlation (Pearson’s product moment), if there is a relationship between dimensions. The values of correlation are shown in table 3.
The statistical significant differences between mentioned pupils´ attitudes were
not found out in comparison of two dimensions called „positive“ and „negative“
influence of ICT. It is possible to conclude that the items were not defined as
ordered pairs which might express the same reality. We focused on different aspects of positive or negative influence of ICT. In comparison of the dimensions
„advantages“ and „disadvantages“ of ICT the small correlation between the results
25
e-Pedagogium č. I/2009
was found out. This shows the same, that the claims were not duplicated, neither
defined in positive nor the same in negative way. Our aim was to think about and
to expose different aspects of ICT influence on learning and teaching of high
school students. The questionnaires were anonymous and the students express
their own points of view and attitudes, which were not allowed to be sanctioned.
That’s why we didn’t investigate the students’ trustworthiness. The highest value
of correlation is between factor 3 (Advantages of ICT) and factor 4 (ICT usage
in biology lesson). These two dimensions correlate on the medium level.
Table 3 Values of correlation between dimensions
factor 1
factor 2
factor 3
factor 4
factor 2
0.01
factor 3
0.22
0.11
factor 4
0.28
0.13
0.40
factor 5
0.21
0.35
0.30
0.31
The most imortant thing is to find out, if it is statistical significant difference
in the attitudes toward ICT between genders. We found out statistical significant
difference by the use of Analysis of Variance (ANOVA) in the results between
gender (F 1, 516) = 4.48; p < 0.05). Girls achieved average score 3.61 (n = 322,
SD = 0.60) and boys achieved average score 3.68 (n = 196; SD = 0.54). It means
that boys have more positive attitudes to ICT in comparison with girls.
Discussion
In our research we tried to investigate differences in gender attitudes toward ICT usage in biology lesson. Our hypothesis, which was followed: The
attitudes toward use of ICT in biology are more positively in boys than attitudes
toward use of ICT in biology in girls could be accepted. Boys have more positive attitudes toward ICT. This statement is confirmed by the use of statistical
procedure. For this finding was used ANOVA. On statistic evaluation we used
except an analysis of variance, a factor analysis, Pearson chi-square test (χ2), and
a Pearson’s correlation and for findings out of reliability we used Cronbach’s
alpha. We found out five dimensions or categories namely: 1. The positive
influence of ICT; 2. The negative influence of ICT; 3. Advantages of ICT; 4.
ICT usage in biology lesson; 5. Disadvantages of ICT. There is normal thing,
that public view consider boys and males for more technically competent like
girls. The similar affirmation has got Cooper (2006). Cooper (2006) wrote
26
High school students relation to information and communication technologies…
that the general public believes that men and boys are more interested in using
computers, and are more competent in the usage of computers. The negative attitudes of girls adversely impact their computer performance. Knowing that girls
have negative attitudes towards computers and are reluctant to use them only
reinforces the stereotype that computers are for boys and not for girls. Females
may have been socialized differently in today’s computer generation to become
more comfortable with computers hence removing barriers to opportunities for
training. This could be due to the increased use of computers for teaching and
learning at schools that might have worked against the cultivation of gender
differences as reported in previous research (North & Noyes 2002). Computer
attitudes and computer skills are related to gender in favor of men, that is, men
have better attitudes to computers and more computer skills and experiences
than women have (Varank 2007). However, there comes forth a question, how
could teachers and educational workers improve students attitudes toward ICT.
In our study we present, that in Slovakia are positive attitudes toward ICT, but
they could be higher and there are differences between boys and girls. There are
some advises: the use of ICT is generally helpful during class suspension, most
students preferred a mixed-mode learning environment, i.e. a combination of
face-to-face interaction and online activities. Teachers would have to find ways
of stimulating a more face-to-face situation without being in the same physical
surroundings. One such imperfect solution is the provision of resources such
that teachers can do real-time, live, video-broadcasts of their lectures (Bodomo
2003). Teaching and learning of biology could be made more interesting if
the lesson presentation using PowerPoint is implemented with other activities
to reinforce understanding of the concepts learned. There are many software
available which can be provided to the students to allow them to engross the
biology concepts, thus making learning more meaningful. The impact of ICT
on students’ learning outcomes will ultimately depend on the biology teachers.
They are the ones who will decide how impart the knowledge the best. The use
of ICT will undoubtedly bring new educational experiences for both the learners and the teachers.
So there is important piece of information that students prefer use of computers. Dorup (2004) found out that between 3 and 7 % of the students (significantly more females than males) who indicated that they would prefer not
to have to use computers in their studies.
As an example, roughly 50 % of males versus 25 % of females responded that
they would like to replace some traditional teaching with IT-based activities. In
27
e-Pedagogium č. I/2009
the comparison with this study we found out similar results in our research, our
respondents like use computers and they would like more use ICT in teaching.
So from this results are followed that ICT making the lessons more interesting,
easier, more fun for them and their pupils, more diverse, more motivating for
the pupils and more enjoyable among others.
Conclusion
Attitudes results toward ICT using in biology subject among high school
students were based on statistical evaluation – a factor analysis, an analysis of
variance, a Pearson’s product moment, Pearson’s chi-square test, and Cronbach’s alpha.
Using factor analysis we found out five dimensions/categories. Using of
Analysis of Variance we found out some statistical significant differences between boys and girls. Boys perceive ICT in biology more positive than girls and
younger students reached higher score in attitudes toward ICT.
Students, whose were respondents of our investigation showed an interest
about using ICT in the biology classes, it was obvious from their answers. It
is important awake to, that ICT can enhance students’ learning in science/
biology from an early age. But there can be problem, there is much pressure
to use ICT in science/biology lessons but teachers are not always clear about
the benefits of ICT.
The major reason, why use ICT in lessons, is that it allows teachers to do
things better that can be done without it. The use of ICT shouls allow the
teacher or the pupil to achieve something could not be achieved without it
or allow the teacher to teach or the pupil to learn something more effectively
(Taylor, Corrigan 2007).
Successful science lessons that employed ICT were associated with the following pedagogical skills:
– The lesson objectives were clearly identifiedand tasks were clearly defined.
– The time bonus was used creatively and often involved interventions to encourage discussion and investigate approaches.
– ICT activities were explicitly linked to other activioties before, during and
after the ICT lessons.
– Teachers planned a greater emphasis on interpretation of results and thinking
about science.
– Teachers recognised and built upon the technical skills already acquired by
students (Rogers, Finlayson 2003).
28
High school students relation to information and communication technologies…
Knowing when not use ICT can be just as important as knowing when and
how it should be used.
Acknowledgement
This study was supported by VEGA 1/0021/09 and LC06046.
Resources
PEAT, M., FERNANDEZ, A. The role of information technology in biology education: an Australian perspective. Journal of Biological Education, 2000, Vol.
34, No. 2, pp. 69–73.
SPICER, J. I., STRATFORD, J. Student perceptions of a virtual field trip to replace
a real field trip. Journal of Computer Assisted Learning, 2001, Vol. 17, No.
4, pp. 345–354.
DOWNIE, R., MEADOWS, J. Experiences with a dissection opt-out scheme in university level biology. Journal of Biological Education, 1995, Vol. 29, No. 3,
pp. 187–194.
SAMSEL, R., SCHMIDT, G., HALL, J., WOOD,L., SCHROTF, S., SCHUMACKER, P. Cardiovascular physiology teaching computer simulations vs. animal demonstrations. Advances in Physiology Education, 1994, Vol. 11, no. 1, pp. 36–46.
SMITH, B., CAPUTI, P., RAWSTORNE, P. Differentiating computer experience and
attitudes toward computers: an empirical investigation. Computers in Human
Behavior, 2000, Vol. 16, No. 1, pp. 59–81.
AL-KHALDI, M., AL-JABRI, M. The relationship of attitudes to computer utilization: new evidence from a developing nation. Computers in Human Behavior,
1998, Vol. 14, No. 1, pp. 23–42.
LOYD, B.H., GRESSARD, C. Reliability and factorial validity of computer attitude
scales. Educational and Psychological Measurement, 1984, Vol. 44, No. 2,
pp. 501–505.
DORUP, J. Experience and attitudes towards information technology among
first year medical students in Denmark: Longitudinal questionnaire survey.
Journal of Medical Internet Research, 2004, Vol. 6, No. 1, e10.
KAPLAN, R. The gender gap at the PC keyboard. American Demographics, 1994,
Vol. 16, No. 1, p18.
CAMPBELL, P., MCGABE, G. Predicting the success of freshman in a computer
science major. Communications of the ACM, 1984, Vol. 27, No. 11, pp. 1108–
1113.
29
e-Pedagogium č. I/2009
PALAIGEORGIOU, G. E., SIOZOS, P. D., KONSTANTAKIS, N. I., TSOUKALAS, I. A. A
Computer Attitude Scale for Computer Science Freshmen and Its Educational Implications. Journal of Computer Assisted Learning, 2005, Vol. 21,
No. 5, pp. 330–342.
HAUNSEL, P.B., HILL, R.S. The microcomputer and achievement and attitudes
in high school biology. Journal of Research in Science Teaching, 1989, Vol.
26, No. 6, pp. 543–549.
ANASTASI, A. Psychological testing (7th ed.). New York, Macmillan, 1996, 721p.
ISBN 1-4288-0058-1
COOPER, J. The digital divide: the special case of gender. Journal of Computer
Assisted Learning, 2006, Vol. 22, No. 5, pp. 320–334.
NORTH, A. S., NOYES, J. M. Gender influences on children computer attitudes
and cognitions. Computers in Human Behavior, 2002, Vol. 18, No. 2, pp.
135–150.
BODOMO, A. Student Attitudes towards the Use of ICT during SARS-induced
Class Suspension - A Preliminary Report. Sars Bulletin, 2003, on-line http://
www.hku.hk/cgi-bin/sars/message_bulletin.pl (2008-06-12).
VARANK, I. Effectiveness of Quantitative Skills, Qualitative Skills, and Gender
in Determining Computer Skills and Attitudes: A Causal Analysis. Clearing
House: A Journal of Educational Strategies, 2007, Vol. 81, No. 2, pp. 71–80.
TAYLOR, N., CORRIGAN, G. New South Wales primary school teachers’ perceptions of the role of ICT in the primary science curriculum – a rural and
regional perspective. International Journal of Science and Mathematics Education, 2007, Vol.5, No. 1, pp. 85–109.
ROGERS, L., FINLAYSON, H. Does ICT in science really work in the classroom?
Part 1: The individual teacher experience. School Science Review, 2003, Vol.
84, No. 309, pp. 105–112.
PaedDr. Milan Kubiatko, PhD.
Educational Research Centre
Faculty of Education
Masaryk University
Poříčí 31
603 00 Brno
Czech republic
[email protected]
30
RNDr. Zuzana Haláková, PhD.
Department of Didactics in Sciences,
Psychology and Pedagogy
Faculty of Natural Sciences
Comenius University
Mlynska dolina
842 15 Bratislava
Slovakia
[email protected]
E-PEDAGOGIUM
Nezávislý časopis určený pedagogickým pracovníkům všech typů škol
Ročník 2009, 1. číslo
Reg. č. MK ČR E 13459
Vydala a vytiskla Univerzita Palackého v Olomouci
Křížkovského 8, 771 47 Olomouc
www.upol.cz/vup
IČO 61989592
Olomouc 2008
Adresa redakce:
Pedagogická fakulta Univerzity Palackého v Olomouci
Žižkovo nám. 5, 771 40 Olomouc
Tel.: 585 635 171
e-mail: [email protected]
Vychází čtyřikrát ročně
Adresa on-line časopisu: http://epedagog.upol.cz
ISSN 1213-7758
ISSN 1213-7499
tištěná verze
elektronická verze
lV/2009
Univerzita Palackého v Olomouci
Pedagogická fakulta
Časopis e-Pedagogium je zařazen do „Seznamu recenzovaných neimpaktovaných periodik“ schváleného Radou pro výzkum a vývoj dne 20. 6. 2008.
Adresa on-line časopisu: http://www.upol.cz/fakulty/pdf/e-pedagogium/
Tato publikace neprošla jazykovou úpravou.
Za obsahovou správnost odpovídají autoři jednotlivých příspěvků.
Vědecká redaktorka a předsedkyně redakční rady:
prof. PhDr. Helena Grecmanová, Ph.D.
Příspěvky prošly recenzním řízením. Pro každý článek jsou jmenováni dva posuzovatelé.
Jména recenzentů budou uveřejněna v posledním čísle daného ročníku časopisu.
ISSN 1213-7758
ISSN 1213-7499
tištěná verze
elektronická verze
OBSAH
ČLÁNKY
Efektivní výukové metody ekonomie: síla metaforických parabol .................... 7
Dora Assenza
Uplatnění absolventů dvouoboroveho studia na Pedagogické fakultě
Univerzity Palackého v Olomouci – učitelství pro druhý stupeň
základní školy: německý jazyk a další obor....................................................... 20
Jarmila Dubová
Zvládacie stratégie školského stresu .................................................................. 30
Katarína Macková
Implementace geoinformačních technologií do výuky zeměpisu
na základních školách ......................................................................................... 46
Kateřina Mrázková, Milan Kubiatko
Poradenský informační systém Pedagogické fakulty
Univerzity Palackého v Olomouci.......................................................................61
Čestmír Serafín, Alena Opletalová, Josef Konečný, Zdenka Nováková,
Gabriela Smečková, Dagmar Pitnerová
Analýza podmínek souvisejících se studiem speciální pedagogiky
u nastupujících studentů s akcentem na exploraci jejich motivů,
potřeb a očekávání v kontextu studijního zaměření ......................................... 68
Kateřina Stejskalová, Pavel Bič
Případové studie jako náhled do praxí studentů .............................................. 84
Linda Švrčinová, Jarmila Šťastná
Charakter interakcie rodičov k dieťaťu s postihnutím v ranom veku
bez podpory z oblasti pomáhajúcich profesií ................................................... 95
Erika Tichá
Syndrom vyhoření učitelů ve vztahu k vybraným determinantám .............. 108
Eva Urbanovská – Pavel Kusák
3
RECENZE
Vybrané špecifiká regionálnej výchovy v okolí Banskej Bystrice .................. 125
Beata Akimjaková
Deutsch im tourismus ....................................................................................... 128
Ivona Dömischová
Kazuistiky z oftalmologie II ............................................................................ 130
Kateřina Stejskalová
Diagnostika dítěte předškolního věku ............................................................. 132
Jitka Vítová
4
IMPLEMENTACE GEOINFORMAČNÍCH TECHNOLOGIÍ
DO VÝUKY ZEMĚPISU NA ZÁKLADNÍCH ŠKOLÁCH
Kateřina Mrázková, Milan Kubiatko
Abstrakt
Informační a komunikační technologie (ICT) zažívají v současné době nebývalý rozvoj a zasahují do všech sfér lidské společnosti. Součástí informačních a komunikačních technologií jsou také geotechnologie, které se zavádějí
především do výuky zeměpisu. Příspěvek představuje výsledky prvního výzkumu, zaměřeného na využívání geoinformačních technologií ve výuce zeměpisu
na základních školách a nižších stupních gymnázií Jihomoravského kraje. Výzkum byl zaměřen na zjištění rozdílů ve využívání geotechnologií mezi muži
a ženami a mezi učiteli začátečníky a učiteli experty. Jako výzkumný nástroj
byl použit autory zkonstruovaný dotazník, obsahující 12 položek. Jak učitelé,
tak učitelky a stejně tak i učitelé začátečníci a učitelé experti využívají geoinformační technologie přibližně na stejné úrovni.
Klíčová slova
Geoinformační technologie, informační a komunikační technologie, metoda
dotazníku, výuka zeměpisu.
IMPLEMENTATION OF GEOINFORMATION TECHNOLOGIES
INTO GEOGRAPHY TEACHING AT BASIC SCHOOLS
Abstract
Information and communication technologies (ICT) are developing in
present days. They influence every part of the human society. Geoinformation technologies as part of information and communication technologies are
implemented especially into geography teaching. The contribution presents
results of the first research that is focused on using of geoinformation technologies in geography teaching at basic schools and lower grades of gymnaziums in
the South Moravian Region. The research was dealing with questions whether
there are any differences in using geotechnologies between women and men
46
teachers and between novice and expert teachers. A i12-item questionnaire,
which was made by the authors, was used within the research. As well as men
teachers as women teachers, all of them use geoinformation technologies
equally. The same results have been found between novice and expert teachers.
Key words
Geography teaching, geoinformation technologies, information and communication technologies, questionnaire method
Úvod
Informační a komunikační technologie (dále jen ICT) se postupně stávají
nezastupitelnou součástí celé společnosti a tedy i školního prostředí. ICT zpřístupňují účastníkům vyučovacího procesu obrovské množství informací, což
znamená, že škola už nemusí být jediným místem, kde se vzdělává. Tento trend
zavádění ICT do vyučování vede i k postupnému zavádění ICT do školních
vzdělávacích programů. Součástí ICT jsou také geoinformační technologie,
resp. geotechnologie, které jsou spíše používané pro osobní účely, například
jako navigace. Jejich implementace do škol je pomalejší a učitelé je využívají
v mnohem menší míře než například osobní nebo přenosný počítač, dataprojektor atd. Předpokládá se, že zavedením geotechnologií do výuky zeměpisu se
zvýší zájem žáků o tento vyučovací předmět.
Teoretická východiska
Učitelé používají ICT ve výuce různými způsoby. Někteří vytvářejí jen
prezentace, pomocí kterých vysvětlují žákům učivo, jiní naopak využívají celou řadu technologií. Vliv na používání ICT ve výuce má také důvěra učitelů
ve vlastní schopnosti pracovat s těmito technologiemi a vést studenty k jejich
správnému využívání. Nezastupitelnou roli hraje samozřejmě vybavenost školy
těmito technologiemi.
Samotné začleňování ICT do škol je poměrně složitý proces, ve kterém se
střetávají představy, potřeby a očekávání různých subjektů, přičemž do konfliktu přichází učitelé, ředitelé i žáci. V českém školství jsou možnosti začleňování
ICT do výuky limitované koncepcí kurikula. ICT jsou často používané při otevřených a osvědčených vyučovacích postupech (Zounek, 2006).
Součástí informačních a komunikačních technologií jsou také geotechnologie, které se pomalu zavádějí především do výuky zeměpisu (respektive geografie) a geologie. Jejich implementace do výuky těchto předmětů ale není
47
jednoduchá. Požadavky na úspěšnou implementaci jsou mnohem vyšší v porovnání s požadavky na zavádění počítačů do výuky. To je způsobeno především jejich vysokou specifikací a s tím související i složitější manipulací.
Geotechnologie nebyly původně vytvořené pro pedagogické procesy, jejich zavádění do výuky začalo asi před dvaceti roky (Demirci, 2009). V současnosti
se využívají hlavně v geografii a geologii a především v technologicky vyspělejších státech, jako jsou USA nebo Německo (Kerski, 2003). Preferovanou
činností používání geotechnologií je vizualizace geografických a geologických
objektů. Důvodem je trojrozměrné prezentování daných objektů, jejich úprava
a také přidávání vlastních animací a tvorba fiktivních modelů (Sanchez, 2009).
Geoinformační technologie v sobě skrývají velký potenciál uplatnit se hlavně
ve výuce zeměpisu (Zhou, Smith, Spinelli, 1999).
Někteří autoři uvádějí, že používání geotechnologií má pozitivní vliv
na zvýšení motivace v hodinách zeměpisu. Jiní autoři uvádí také pozitivní změnu komunikace mezi žákem a učitelem a lepší výsledky u studentů, u kterých
se ve výuce využívají geoinformační technologie (Baker, White, 2003). Podle
Wannera a Kerskiho (1999) využití geoinformačních technologií zjednodušuje
proces analýzy a prezentace geografických informací a urychluje řešení geografických úloh ve vyučování. Geotechnologie mají také potenciál přispět k rozvoji prostorového vnímání (Bednarz, 2004; Patterson, Reeve, Page, 2003).
Wiegand (2003) vyzdvihuje zařazení geografických informačních systémů
(dále GIS) především proto, že nabízejí žákům a studentům větší interaktivitu
v porovnání s klasickými atlasy a pomáhají jim pochopit, jak číst mapu. Při
práci s GIS mají studenti větší kontrolu nad tím, jak bude vypadat výsledná
mapa, určují její formu, vybírají symboly a barvy. Můžou také určit, které vrstvy budou v mapě viditelné a které ne.
Bednarz & Van der Schee (2006) uvádějí tři hlavní důvody, proč učitelé
používají geoinformační technologie, respektive GIS: 1) GIS podporují vyučování a učení se zeměpisu (geografii); 2) GIS jsou nástrojem k řešení geografických úloh na různé úrovni; 3) GIS jsou nevyhnutelným nástrojem pro svět
v 21. století.
Navzdory zjevnému vysokému potenciálu geoinformačních technologií
v zeměpisném vzdělávání není použití těchto technologií ve výuce příliš rozšířené. Zavádění geoinformačních technologií do výuky je problematické. Jak
uvádí Demirci (2009), téměř 82 % učitelů v Turecku neví, jak by měli GIS
ve výuce používat. Zjištěný počet této skupiny učitelů vysoko koreloval s počtem učitelů, kteří by se rádi zúčastnili školení zaměřeného na používání GIS
48
ve výuce. Demirci (2009) dále uvádí, že pouze 16 % učitelů použilo GIS při
výuce zeměpisu na základní škole. Také Kerski (2003) uvádí, že jen velmi málo
učitelů z jeho výzkumného vzorku používalo GIS ve výuce zeměpisu. Podle
Lloyda (2001) existují 3 hlavní příčiny, proč je tak málo aktivních uživatelů
geotechnologií: 1) ztížená dostupnost hardware, software a dat; 2) nedostatek školení pro učitele a nedostatek kurikulárních materiálů; 3) neustále nové
a nové problémy, znemožňující zavést jakékoli inovace do vzdělávání.
Počet metod pro využití geotechnologií ve výuce zeměpisu neustále narůstá. Stejně tak narůstá i počet nových metod pro výzkum a vývoj geotechnologií a jejich pedagogického využití (Crawford, Kajs, Sanders, 2001; Thomas,
2005). Literatura uvádí dvě metody, které mají potenciál přispět k úspěšné
implementaci geotechnologií do výuky zeměpisu. První metodou je projektové
vyučování (Wilder, Brinkerhoff, Higgins, 2003). Jedním z posledních projektů,
kde byly geoinformační technologie úspěšně implementované do projektového
vyučování, byl projekt GISAS, kterého se zúčastnili studenti a učitelé ze sedmi zemí. Studenti pracovali s různými materiály, vypracovávali úlohy na téma
„Voda“ – pozorování a analýza vodních zdrojů v blízkosti školy, jejich zmapování a sdílení zjištěných informací s ostatními účastníky projektu. Kromě
zeměpisu byly do tohoto projektu zapojené i předměty jako biologie, chemie,
dějepis, a protože do projektu bylo zapojeno více zemí, byly zapojeny i jazykové předměty (Johansson, 2006). Druhou metodou je aplikované vyučování,
které se skládá ze zavádění GIS do výuky zeměpisu (Baker, White, 2003).
Výhody využívání GIS spočívají především ve zvýšení zájmu studentů o počítačovou technologii a hodiny zeměpisu (Lemberg, Stoltmant, 2001; Meyer,
Butterick, Olkin, Zack, 1999).
Na světě existuje několik prací zabývajících se implementací geotechnologií do vyučování. Téměř každá práce je lokálního charakteru a všímá si všeobecného zavádění geotechnologií do vyučovacího procesu. Nerozlišuje se při
tom, zda s těmito technologiemi pracují více muži nebo ženy, či starší nebo
mladší učitelé. Například Baker & White (2003) porovnávali úspěšnost dvou
skupin studentů při řešení úloh. Jedna skupina pracovala s tradičními mapami
a druhá pracovala s GIS. Skupina studentů pracujících s GIS byla při řešení
úloh úspěšnější než skupina pracující s tradičními mapami. Autoři také uvádějí
pozitivní vliv práce s GIS při řešení problémových úloh. V dalších výzkumech
(Demirci, 2008), které byly zaměřené na zavádění geotechnologií do výuky,
zkoumali autoři překážky v zavádění geotechnologií, v tomto případě do vyu-
49
čování zeměpisu v Turecku. Mota, Painho, Curvelo & Vidal (2008) se zaměřili
na studentské výzkumné aktivity za podpory GIS a GPS.
Cíl výzkumu a výzkumné otázky
V České republice dosud žádný výzkum zaměřený na využívání geotechnologií ve výuce nebyl realizován. Protože geoinformační technologie pracují
s mapou a umožňují uživatelům různé mapy vytvářet, zaměřili jsme se na jejich
využití přímo v hodinách zeměpisu. Hlavním cílem našeho výzkumu bylo zjistit, zda učitelé zeměpisu pracují při výuce s počítačem a zda využívají některé
z geoinformačních technologií. Za geoinformační technologie byly v dotazníku
považovány GIS, materiály dálkového průzkumu Země (dále DPZ), interaktivní mapy na internetu, Google Earth a globální poziční systémy (dále GPS).
Pro dotazníkové šetření byly stanoveny tyto výzkumné otázky:
1. Používají geotechnologie více muži nebo ženy?
2. Používají geotechnologie více učitelé začátečníci nebo učitelé s více než
pětiletou praxí?
V rámci výzkumného šetření se ověřovaly následující hypotézy:
H1 Ve využívání geoinformačních technologií ve výuce zeměpisu mezi muži
a ženami je rozdíl.
H0 Ve využívání geoinformačních technologií ve výuce zeměpisu mezi muži
a ženami není rozdíl.
H2 Ve využívání geoinformačních technologií ve výuce zeměpisu mezi učiteli
začátečníky a učiteli experty je rozdíl.
H0 Ve využívání geoinformačních technologií ve výuce zeměpisu mezi učiteli
začátečníky a učiteli experty není rozdíl.
Metodika
Výzkumný nástroj
Zjišťování využívání ICT a geoinformačních technologií bylo realizované
prostřednictvím vlastního vyrobeného dotazníku. Dotazník je rozdělený na tři
hlavní části a dohromady obsahuje 12 položek. První tři se týkají demografických údajů, dalších 6 je zaměřených na využívání geoinformačních technologií
ve výuce zeměpisu a poslední 4 jsou více zaměřené na konkrétní využívání
geoinformačních technologií ve výuce zeměpisu. Otázky byly uzavřené. Učitelům byly nabídnuty možnosti odpovědí, které se pohybovaly v rozmezí od dvou
do sedmi možností. Při jedné z otázek, konkrétně u otázky týkající se využívání geoinformačních technologií ve výuce, byla učitelům nabídnuta mož-
50
nost „jiné“, kde mohli doplnit další technologie, odlišné od těch, které uvedl
autor výzkumného nástroje. V otázkách týkajících se vybavení specializované
učebny pro výuku zeměpisu a využívání různých geoinformačních technologií
mohli respondenti označit více než jednu možnost. Důsledkem toho je součet
vyšší než 100 při procentuálním vyhodnocování dané položky. Do vyhodnocení nebyly některé otázky zahrnuté, protože na odpovědi měl vliv i jiný faktor,
jako je pohlaví nebo délka praxe respondentů.
Respondenti
Výzkumu se zúčastnilo 87 učitelů, z toho 71 ze základních škol a 16 z osmiletých gymnázií. Z gymnaziálních učitelů byli do výzkumu zahrnuti pouze
ti, co učí na nižším stupni, tedy v primě až kvartě. V rámci výzkumu byly
o spolupráci požádány všechny základní školy s druhým stupněm a všechna
osmiletá a šestiletá gymnázia v Jihomoravském kraji. Návratnost dotazníků
byla 29 %, proto výzkumný vzorek není reprezentativní pro území České republiky. Výzkumný vzorek tvořili pouze učitelé z Jihomoravského kraje, výzkumné zjištění je možné vztahovat jenom na ně. Jako nezávisle proměnné
pro vyhodnocování byly určeny pohlaví a délka praxe. Výzkumu se zúčastnilo
40 mužů a 47 žen. Kritériem pro rozdělení učitelů do dvou skupin byla délka
jejich praxe. Jak uvádí Palmer a kol. (2005) ve své studii, časová hranice pro
určení, zdali je učitel začátečník nebo expert, je 5 let nepřetržité praxe. První
skupinu tvořili učitelé, jejichž délka praxe nepřesáhla 5 let a byli označení jako
učitelé začátečníci (n = 35). Druhou skupinu tvořili učitelé, jejichž délka praxe
přesáhla zvolenou hranici, ti byli označeni za experty (n = 52). Průměrná délka
praxe byla 10,24 let (SD = 9,01; min = 0 let; max = 34 let).
Průběh výzkumu
Výzkumný nástroj byl rozeslán prostřednictvím elektronické pošty učitelům zeměpisu základních škol a nižších stupňů gymnázií Jihomoravského
kraje. V průvodním dopise byli učitelé kromě instrukcí informováni také o anonymitě výzkumného nástroje a použití výsledků pouze pro vědecko-výzkumné
účely. Rozeslání dotazníků proběhlo v jeden den, aby bylo eliminované šíření
informací o výzkumném nástroji mezi samotnými učiteli zeměpisu a aby následně nedocházelo ke zkreslení získaných výsledků. Předpokládaný čas na vyplnění neměl přesáhnout 5 minut. Učitelům byla poskytnuta emailová adresa
autorky výzkumného nástroje pro případné zodpovězení nejasností a otázek
51
týkajících se výzkumného nástroje. Na danou adresu učitelé posílali také vyplněné dotazníky.
Statistické zpracování
Kromě procentuálního zpracování byly použité také metody deskriptivní
statistiky – průměr, směrodatná odchylka, minimum, maximum. Deskriptivní
statistika byla použitá pro účely popisu délky praxe učitelů. Z metod induktivní
statistiky byl použit chí-kvadrát nezávislosti (χ2) pro zjištění rozdílu ve výsledcích mezi sledovanými proměnnými (pohlaví, délka praxe). Tato metoda byla
zvolena na základě dat, která měla povahu nominální proměnné. V případě
zjištění statisticky významného rozdílu bylo záměrem použít testové kriterium
z (z-skóre), které umožňuje bližší odhalení rozdílů v odpovědích respondentů.
Z důvodu nezjištění statisticky významných rozdílů ve výsledcích s použitím
χ2 testu nebylo nutné použít testové kritérium z. Demografické údaje (pohlaví
a délka praxe) byly nezávisle proměnné a závislými proměnnými byly odpovědi
respondentů.
Výsledky
Rozdíly ve využívání ICT v hodinách zeměpisu v závislosti na pohlaví respondentů
V první otázce výzkumného nástroje jsme se zaměřili na zjištění využívání
počítačů ve výuce zeměpisu. Zajímalo nás, zda učitel používá počítač sám,
nebo s počítačem v hodinách zeměpisu pracují i žáci. Jen velmi malá část respondentů odpověděla, že počítač ve výuce zeměpisu nepoužívá vůbec. Značná část respondentů uvedla, že počítač využívá pro práci žáků. Tento způsob
výuky uváděli více učitelé než učitelky (graf 1). V této položce nebyl zjištěný
statisticky významný rozdíl ve výsledcích (χ2 = 0,97; p = 0,61).
52
Graf 1 Využití počítačů ve výuce zeměpisu v závislosti na pohlaví respondentů
V další položce dotazníku jsme se zaměřili na využívání učebny informatiky
pro výuku zeměpisu. V této položce nebyl zjištěný statisticky významný rozdíl
ve výsledcích mezi učiteli a učitelkami (χ2 = 1,02; p = 0,78). V tabulce 1 vidíme,
že frekvence využívání počítačů alespoň jednou týdně byla vyšší u učitelů. Více
učitelů také v porovnání s učitelkami nevyužívá učebnu informatiky pro výuku
zeměpisu. Dotazník nezjišťoval, zda je učebna nevyužívaná z důvodu souběžně
probíhající výuky jiného předmětu, ani zda je nebo není tato učebna ve škole.
Tab. 1 Frekvence využívání učebny informatiky pro výuku zeměpisu v závislosti na pohlaví respondentů
Využívání učebny
alespoň 1 týdně
alespoň 1 měsíčně
méně než jednou měsíčně
vůbec
muži %
7,50
30,00
35,00
27,50
ženy %
6,38
40,43
29,79
23,40
Následující otázkou jsme zkoumali využívání geoinformačních technologií
ve výuce zeměpisu. Nejpoužívanějšími technologiemi byly interaktivní mapy
na internetu a Google Earth. Obě tyto technologie byly využívané více učiteli
než učitelkami. Větší rozdíl byl pro software Google Earth. V menší míře byly
využívané geografické informační systémy – ty byly učitelkami zeměpisu téměř
nevyužívané, dálkový průzkum Země (DPZ) a nejméně využívanou geotech-
53
nologií byly Globální Poziční Systémy (GPS). GPS byly také jedinou technologií, kterou využívaly více učitelky než učitelé (graf 2). Navzdory tomu, že
existovaly rozdíly mezi používáním geotechnologií, statisticky významný rozdíl
ve výsledcích zjištěný nebyl (χ2 = 6,46; p = 0,17).
Graf 2 Využívání geoinformačních technologií ve výuce zeměpisu v závislosti
na pohlaví respondentů
%
muži
70
ženy
60
50
40
30
20
10
0
GIS
GPS
interaktivní mapy
Google Earth
DPZ
Poslední otázkou jsme se zaměřili na zjištění zájmu o zavedení geoinformačních technologií do výuky zeměpisu. V odpovědích učitelů jednoznačně
převážila kladná odpověď. U učitelů to bylo 82,5 % respondentů a u učitelek
téměř 77 %, ti všichni projevili zájem o zavedení geoinformačních technologií do výuky zeměpisu. Statisticky významný rozdíl ve výsledcích mezi učiteli
a učitelkami nebyl zjištěný (χ2 = 0,29; p = 0,59).
Rozdíly ve využívání ICT v hodinách zeměpisu v závislosti na délce praxe respondentů
V otázce zaměřené na využívání počítačů ve výuce zeměpisu nebyl zjištěný
statisticky významný rozdíl ve výsledcích v závislosti na délce praxe respondentů (χ2 = 2,14; p = 0,34). Z grafu jsou patrné minimální rozdíly mezi učiteli
začátečníky a učiteli experty. Počítač buď sami, nebo pro práci s žáky využívají
více učitelé experti. Z toho vyplývá vyšší absence ve využívání počítačů u učitelů začátečníků (graf 3).
54
Graf 3 Používání počítačů ve výuce zeměpisu v závislosti na délce praxe respondentů
%
Učebnu informatiky alespoň jednou týdně využívají častěji učitelé začátečníci. K dalším dvěma možnostem využívání učebny informatiky se častěji přiklánějí učitelé s více než pětiletou praxí. Učebnu informatiky vůbec nevyužívá
asi čtvrtina dotázaných učitelů (tab. 2). Navzdory zjištěným rozdílům nebyl
zjištěný statisticky významný rozdíl ve výsledcích v závislosti na délce praxe
respondentů (χ2 = 5,16; p = 0,16).
Tab. 2 Frekvence využívání učebny informatiky pro výuku zeměpisu v závislosti na délce praxe respondentů
využívání učebny
začátečníci %
experti %
alespoň 1 týdně
14,29
1,92
alespoň 1 měsíčně
31,43
38,46
méně než jednou měsíčně
28,57
34,66
vůbec
25,71
25,00
Z geoinformačních technologií využívají interaktivní mapy na internetu,
Google Earth a materiály DPZ více učitelé začátečníci. Naproti tomu geografické informační systémy jsou více využívané učiteli experty. V používání
55
GPS není žádný rozdíl mezi těmito dvěma skupinami (viz graf 4). Statisticky
významný rozdíl ve výsledcích v závislosti na délce praxe respondentů nebyl
zjištěný (χ2 = 0,97; p = 0,91).
Délka praxe respondentů nehrála úlohu ani při zjišťování zájmu učitelů
o zavedení geoinformačních technologií do výuky zeměpisu (χ2 = 0,02; p =
0,89). Obě skupiny učitelů, tzn. jak začátečníci, tak učitelé experti, mají zájem
o zavedení geoinformačních technologií do výuky zeměpisu. U obou skupin
projevilo zájem přibližně 80 % respondentů.
Graf 4 Využívání geoinformačních technologií ve výuce zeměpisu v závislosti
na délce praxe respondentů
%
začátečníci
80
experti
70
60
50
40
30
20
10
0
GIS
GPS
interaktivní mapy
Google Earth
DPZ
Diskuze
V předkládaném příspěvku jsme se snažili najít odpovědi na dvě hlavní
otázky: 1) Používají geotechnologie více muži nebo ženy?; 2) Používají geotechnologie více učitelé začátečníci nebo učitelé s více než pětiletou praxí?
Zodpovězení výzkumných otázek bylo podmíněné vhodným zpracováním získaných dat. Kromě procentuálního zpracování byly výsledky podrobeny také
induktivnímu statistickému zpracování, konkrétně chí-kvadrát testu nezávislosti.
Ve výsledcích jsme nenašli statisticky významný rozdíl u žádné z obou sledovaných proměnných. To znamená, že jak učitelé, tak učitelky a stejně tak
učitelé začátečníci i učitelé experti využívají počítače, učebnu informatiky i geoinformační technologie přibližně na stejné úrovni.
56
První část otázek v dotazníku byla zaměřená na zjištění používání počítačů ve výuce zeměpisu a využití učebny informatiky na škole, kde daný učitel
působí. Většina učitelů odpověděla, že používá počítač spolu s žáky, což je
vhodnější metoda, než když používá počítač jen sám učitel. Učitel počítačem
pouze nahrazuje používání tabule a křídy a žáci na hodině sedí stejně pasivně
jako při tradiční hodině bez použití ICT. Tento názor zastávají také Tao a Gunstone (1999), kteří ve svém výzkumu zjistili pozitivní změnu v chápání pojmů
při práci s ICT. Také další autoři uvádějí pozitivní vliv ICT na osvojování vědomostí u žáků, kteří mají možnost pracovat s ICT spolu s učitelem, v porovnání
se žáky, kteří jen pasivně přijímají informace prezentované pomocí dataprojektoru (Schofield, Davidson, 2003; Solomon, 2002). Hennessey, Deaney, Ruthven (2003) zjistili, že používání ICT vede také k nárůstu samoregulace žáků
a k větší spolupráci mezi žáky. Spolupráce mezi žáky zlepšuje jejich výkon
a následně i výsledky (Crook, 1998). Největší účinek na zvýšení snahy žáků
je, když jsou nuceni přemýšlet a ptát se, nebo když používají výukový software
zaměřený na dané téma, a to buď samostatně, nebo se spolužáky (Cox a kol.,
2003).
Druhá část otázek v dotazníku byla zaměřená na zjištění používání geoinformačních technologií ve výuce zeměpisu. Učitelé nejčastěji využívají interaktivní mapy, které jsou volně přístupné na internetu, nebo program Google
Earth. V malé míře učitelé používají technologie GIS a GPS. Jaké jsou příčiny
tohoto stavu, se můžeme jen domnívat. Může to být například nedostatek času
nebo úplný nezájem ze strany učitelů naučit se pracovat s těmito technologiemi a používat je ve vyučování. Důvodem může být nedostatek finančních
prostředků na vybavení školy geoinformačními technologiemi. Určitou roli
v nevyužívání GIS a GPS ve výuce zeměpisu hraje také vysoký stupeň obtížnosti při práci s těmito technologiemi. Jak uvádí Bednarz a Van der Schee (2006),
GIS software má vysoké technické požadavky, které nemusí každý učitel zvládnout. Podobné překážky uvádí také Kerski (2003). Pro učitele je proto snazší
využívat ve výuce jednoduše zvládnutelné programy, přístupné na internetu,
jako je například výše zmíněný Google Earth. Z toho také pravděpodobně
vyplývá i značný zájem učitelů (více než 80 % respondentů) o školení týkající
se používání geotechnologií ve výuce zeměpisu. K podobnému zjištění a počtu
zájemců dospěl ve svém výzkumu také Demirci (2009).
Výsledky našeho dotazníkového šetření není možné aplikovat na celé území České republiky. Výzkumný vzorek tvořili jen vybraní učitelé Jihomoravského kraje a návratnost dotazníků nebyla 100%. V dalších výzkumech v této
57
oblasti by se mohl rozšířit počet respondentů a odhalit tak další fakta v této
relativně nové oblasti výzkumu v České republice.
Odpověď na otázku, jak přispět k lepšímu využívání geotechnologií,
je zodpovězená naším výzkumem. Učitelé mají zájem dozvědět se co nejvíce informací o geoinformačních technologiích a naučit se s nimi pracovat
na profesionální úrovni. Sami si uvědomují, že geotechnologie umožňují lepší
a rychlejší přístup k informacím a nabízí nové příležitosti pro výuku zeměpisu.
Používáním geotechnologií se dostávají ke slovu vyučovací metody, které ve vyučovacím procesu nejsou často používané, například projektové vyučování,
integrovaná výuka apod. Tyto metody rozvíjejí myšlení a aktivitu dětí a mění
žáky z pasivních na aktivní účastníky vyučovacího procesu.
Závěr
Předkládaný příspěvek je jedním z prvních, který se snaží empirickým
zkoumáním odhalit využívání geoinformačních technologií ve výuce zeměpisu
na základních školách. Nejen v České republice, ale i ve světě existuje jen velmi
málo prací, zabývajících se problematikou propojení geoinformačních technologií a vzdělávacího procesu. Věříme, že naše práce bude inspirací k realizaci
dalších výzkumů v této oblasti.
Použitá literatura
BAKER, T. R., WHITE, S. H. The effects of G.I.S. on students’ attitudes, selfefficiency, and achievement in middle school science classrooms. Journal
of Geography, 2003, roč. 102, č. 6, s. 243–254.
BEDNARZ, S. W. Geographic information systems: A tool to support geography and environmental education? GeoJournal, 2004, roč. 60, č. 2, s.
191–199.
BEDNARZ, S. W., Van der Schee, J. Europe and the United States: The implementation of geographic information systems in secondary education
in two contexts. Technology, Pedagogy and Education, 2006, roč. 15, č. 2,
s. 191–205.
COX, M., WEBB, M., ABBOTT, C., BLAKELEY, B., BEAUCHAMP, T. &
RHODES, V. ICT and Pedagogy: a review of the research literature. Annesley 2003: DfES publications http:// www.becta.org.uk/page_documents/
research/ ICT_ pedagogy_ summary.pdf [2005–08–18].
58
CRAWFORD, C. M., KAJS, L. T., SANDERS, R. L. Electronic mapping in
education: The use of geographic information systems. Journal of Research
on Technology in Education, 2001, roč. 34, č. 2, s. 121–129.
CROOK, C. Children as computer users: The case of collaborative learning.
Computers and Education, 1998, roč. 30, č. 3/4, s. 237–247.
DEMIRCI, A. Evaluating the Implementation and Effectiveness of GIS-Based
Application in Secondary School Geography Lessons. American Journal of
Applied Sciences, 2008, roč. 5, č. 3, s. 169–178.
DEMIRCI, A. How do teachers approach new Technologies: Geography teachers attitudes towards Geographic Information Systems (GIS). European
Journal of Educational Studies, 2009, roč. 1, č. 1, s. 43–53.
HENNESSEY, S., DEANEY, R., RUTHVEN, K. Pedagogic Strategies for Using ICT to Support Subject Teaching and Learning: An Analysis Across 15
Case Studies. Cambridge: University of Cambridge, 2003, s. 39.
JOHANSSON, T. (ed.). GISAS project: Geographical information systems
applications for Schools. Helsinki: University of Helsinki, 2006, 212s.
KERSKI, J. J. The implemetation and effectiveness of geographic information
systems technology and methods in secondary education. Journal of Geography, 2003, roč. 102, č. 3, s. 128–137.
LEMBERG, D., STOLTMAN, J. P. Geography teaching and the new technologies: Opportunities and challenges. Journal of Education, 2001, roč. 181,
č. 3, s. 63–76.
LLOYD, W. J. Integrating GIS into the undergraduate learning environment.
Journal of Geography, 2001, roč. 100, č. 5, s. 158–163.
MEYER, J. W., BUTTERICK, J., OLKIN, M., ZACK, G. GIS in the K-12
curriculum: A Cautionary note. The Professional Geographer, 1999, roč, 51,
č. 4, s. 571–578.
MOTA, M., PAINHO, M., CURVELO, P., VIDAL, O. Science experimental
teaching through the use of geographic information system. ESRI International User Conference, California, 2008, 12s. http://gis.esri.com/library/
userconf/proc08/papers/papers/pap_1963.pdf [2009–10–10].
PALMER, D. J., STOUGH, L. M., BURDENSKI, T. K., GONZALEZ M.
Identifying teacher expertise: An examination of researchers’ decision making. Educational Psychologist, 2005, roč. 40, č. 1, s. 13–25.
PATTERSON, M., REEVE, K., PAGE, D. Integrating geographic information systems into the secondary curricula. Journal of Geography, 2003, roč.
102, č. 6, s. 275–281.
59
SANCHEZ, E. Innovative Teaching/Learning with Geotechnologies in Secondary Education. Education and Technology for a Better World, 2009, roč.
302, č. 1, s. 65–74.
SCHOFIELD, J. W., DAVIDSON, A. L. The impact of Internet use on the
relationships between teachers and students. Mind, Culture and Activity,
2003, roč. 10, č. 1, s. 62–79.
SOLOMON, G. Digital equity: it’s not just about access anymore – sure, most
schools now have computers and internet access, but are all students receiving the same high-quality learning experience? We examine the issues.
Technology and Learning, 2002, roč. 22, č. 9, s. 18–27.
TAO, P. K., GUNSTONE, R. F. Conceptual change in science through collaborative learning at the computer. International Journal of Science Education,
1999, roč. 21, č. 1, s. 39–57.
THOMAS, R. B. Internet-based GIS mapping in support of K-12 education.
The Professional Geographer, 2005, roč. 57, č. 1, s. 44–50.
WANNER, S., KERSKI, J. The effectiveness of GIS in high school education.
Proceedings, ESRI User Conference, San Diego, 1999.
WIEGAND, P. School Students‘ Understanding of Chloropleth Maps: Evidence From Collaborative, Mapmaking Using GIS. Journal of Geography,
2003, roč. 102, č. 6, s. 234–242.
WILDER, A., BRINKERHOFF, J. D., HIGGINS, T. Geographic information technologies + project-based science: A contextualized professional development approach. Journal of Geography, 2003, roč. 102, č. 6, s. 257–261.
ZHOU, Y., SMITH, B.W., SPINELLI, G. Impacts of increased student career
orientation on American college geography programmes. Journal of Geography in Higher Education, 1999, roč. 23, č. 2, s. 157–165.
ZOUNEK, J. ICT v životě základních škol. Praha: Triton, 2006, 151s.
Kateřina Mrázková
Katedra geografie,
Pedagogická fakulta MU,
Poříčí 7, 603 00 Brno;
email: [email protected]
Milan Kubiatko
Centrum pedagogického výzkumu,
Pedagogická fakulta MU,
Poříčí 31, 603 00 Brno;
email: [email protected]
60
E-PEDAGOGIUM
Nezávislý časopis určený pedagogickým pracovníkům všech typů škol
Ročník 2009, 4. číslo
Reg. č. MK ČR E 13459
Vydala a vytiskla Univerzita Palackého v Olomouci
Křížkovského 8, 771 47 Olomouc
www.upol.cz/vup
IČO 61989592
Olomouc 2010
Adresa redakce:
Pedagogická fakulta Univerzity Palackého v Olomouci
Žižkovo nám. 5, 771 40 Olomouc
Tel.: 585 635 012
e-mail: [email protected]
Vychází čtyřikrát ročně
Adresa on-line časopisu: http://www.upol.cz/fakulty/pdf/e-pedagogium/
ISSN 1213-7758
ISSN 1213-7499
tištěná verze
elektronická verze
Česká asociace pedagogického výzkumu
a
Katedra pedagogiky Pedagogické fakulty Ostravské
univerzity v Ostravě
ČESKÝ PEDAGOGICKÝ VÝZKUM V MEZINÁRODNÍM
KONTEXTU
Sborník příspěvků XVII. ročníku celostátní konference ČAPV
Ostrava, 9. – 11. září 2009
1
Za jazykovou a obsahovou správnost odpovídají autoři příspěvků
Editoři:
PhDr. Zuzana Sikorová, Ph.D.
RNDr. Martin Malčík, Ph.D.
Mgr. Karel Pavlica
Recenzenti: Doc. PhDr. Julius Sekera, CSc.
Prof. RNDr. Erika Mechlová, CSc.
Pedagogická fakulta OU © 2010
ISBN 978-80-7368-769-4
2
V. JEŽKOVÁ: AKTUÁLNÍ PROBLÉMY ŠKOLNÍHO VZDĚLÁVÁNÍ V NĚMECKU. ANALYTICKO-SROVNÁVYCÍ STUDIE
....................................................................................................................................................... 502
S. BABIAKOVÁ: AUTOEVALVÁCIA ŠKOLY NA SLOVENSKU ...................................................................... 508
T. ALEXANDRA: AUTOEVALUACE MATEŘSKÉ ŠKOLY V SOUČASNOSTI ...................................................... 519
J. KALNICKÝ: AUTOEVALUAČNÍ TENDENCE ZÁKLADNÍCH A STŘEDNÍCH ŠKOL ............................................526
M. MALČÍK, S. DLOUHÝ: VYUŽÍVÁNÍ NÁSTROJŮ PUBLIC RELATIONS JAKO SOUČÁST EFEKTIVNÍHO ŘÍZENÍ ŠKOLY
....................................................................................................................................................... 532
SEKCE 7 – DÍTĚ, ŽÁK A STUDENT V KONTEXTU PEDAGOGICKÉ REALITY ......................................... 539
L. STAŠOVÁ, D. JANDÁKOVÁ, M. ŽUMÁROVÁ: ŽIVOTNÍ VZORY SOUČASNÝCH DĚTÍ ................................. 540
L. PROCHÁZKOVÁ, M. HAVELKOVÁ, P. KACHLÍK: VZDĚLÁVÁNÍ A KOMUNIKACE NADANÝCH ŽÁKŮ V MLADŠÍM
ŠKOLNÍM VĚKU .................................................................................................................................. 546
M. KUBIATKO, I. VACULOVÁ: JEDNA VLAŠTOVKA JARO NEDĚLÁ ANEB (NE)VĚDOMOSTI ŽÁKŮ NEJENOM
O VLAŠTOVKÁCH ............................................................................................................................... 557
D. DRAŽILOVÁ FIALOVÁ: SIMULAČNÍ HRY V KONTEXTU ZMĚNY POSTOJŮ – NÁČRT VÝZKUMNÉHO PROBLÉMU
....................................................................................................................................................... 564
V. KLAPAL: UČITEL – PŘÍSNÝ, NEBO TOLERANTNÍ? ................................................................................ 571
J. PŘIKRYLOVÁ: CALLA – JAKO JEDNA Z TECHNIK DIAGNOSTIKY STRATEGIÍ UČENÍ .................................... 576
J. NOVOTNÁ: ROZHOVORY NAD VOLBOU ŠKOLY .................................................................................. 582
B. ŠTĚPÁNKOVÁ: K PROBLEMATICE PROFESNÍ ORIENTACE ŽÁKA ZŠ ....................................................... 591
Z. HUĽOVÁ: INDIVIDUALIZOVANÉ POZNÁVANIE ŽIAKA UČITEĽOM V PEDAGOGICKEJ PRAXI, V KONTEXTE
LONGITUDINÁLNEHO KVALITATÍVNEHO SKÚMANIA ................................................................................596
J. MAREŠ, S. JEŽEK: STUDENTSKÉ HODNOCENÍ KVALITY VÝUKY V KOMBINOVANÉ FORMĚ VYSOKOŠKOLSKÉHO
STUIDA............................................................................................................................................
604
M. MANĚNOVÁ, V. SKUTILOVÁ, M. SKUTIL: ZVLÁDÁNÍ STRESU PŘED ZKOUŠKOU U STUDENTŮ VYSOKÉ ŠKOLY
....................................................................................................................................................... 611
P. OPATRNÝ, K. HRBÁČKOVÁ: STUDIJNÍ SELHÁNÍ A ADAPTAČNÍ PROBLÉMY VŠ STUDENTŮ V POČÁTCÍCH
STUDIA NA FHS UTB VE ZLÍNĚ............................................................................................................ 618
DOKTORSKÝ SEMINÁŘ ................................................................................................................... 624
K. VLČKOVÁ: METODOLOGICKÉ PROBLÉMY DOKTORSKÝCH PROJEKTŮ VÝZKUMU V PEDAGOGICE .............. 626
6
JEDNA VLAŠTOVKA JARO NEDĚLÁ ANEB (NE)VĚDOMOSTI ŽÁKŮ NEJENOM O
VLAŠTOVKÁCH
ONE SWALLOW DOES NOT MAKE A SUMMER OR WHAT PUPILS (DO NOT) KNOW ABOUT SWALLOWS
Milan Kubiatko, Ivana Vaculová
Abstrakt: Mylné představy žáků různého věku o zvířatech byly prezentovány v mnoha výzkumných
studiích. Předkládaná studie je zaměřena na zjišťování mylných představ žáku 2. stupně základních
škol. Věk žáků byl v rozmezí 10 až 16 let. Výzkumný nástroj se skládal z 30 uzavřených a také
otevřených otázek, jedna byla grafická. Do analýz bylo zahrnuto 719 vyplněných dotazníků ze 7
slovenských základních škol. Položky dotazníku byly rozděleny do 5 kategorií dle jejich charakteru,
konkrétně: 1. Identifikace ptáků; 2. Rozmnožování ptáků; 3. Potrava ptáků; 4. Ptačí smysly; 5.
Migrace ptáků. Studie je zaměřena na zjištění rozdílu ve výsledcích mezi žáky různého věku. Celkově
bylo zjištěno značné množství mylných představ u všech věkových skupin.
Klíčová slova: dotazník, mylné představy, ptáci, žáci
Abstract: Wrong ideas about animals have been reported in various research reports on the pupils of all
age groups. This cross-age study is focused on finding wrong ideas about birds among elementary
children of various ages (from 10 to 16). A questionnaire consisting of 30 multiple choice and open ended
questions was used and one was graphic. This questionnaire was administered to 719 children from 7
elementary schools in Slovakia. We divided items of questionnaire in to five dimensions by their
character namely: 1. Identification of birds; 2. Birds’ reproduction; 3. Food of birds; 4. Birds’ senses 5.
Migratory of birds. We focused on finding differences in results between age of the respondents. We
found numerous wrong ideas across all age groups.
Key words: questionnaire, wrong ideas, birds, pupils
1 ÚVOD
Dítě odmalička poznává svět kolem sebe a způsob jeho poznávání věcí a jevů bývá velmi specifický.
Přiblížit se k uvažování a vnímání světa dětí, bývá velmi obtížné. Proto není nic neobvyklého, když se
u dětí vyskytují mylné představy v chápání. Mnohé z nich přetrvávají do vyššího věku, v některých
případech až do dospělosti. Tyto nesprávné představy mají různé názvy, nejčastěji se používá pojem
miskoncepce (Čáp, Mareš 2001). Obvykle jsou pevně fixovány v mysli dítěte a musí být v rámci
vyučovacího procesu přehodnoceny, aby vznikl prostor pro nové poznávání. Tyto interpretace mají
složku poznávací, kognitivní (porozumění jevu), dále složku afektivní (vztah k jevu, jeho prožívání a
hodnocení) a také složku konativní, snahovou (co s tím můžu udělat, co s tím udělají ostatní děti, co
dospělí) (Gavora 1992b). Chybné nebo neúplné žákovské představy o učení mohou vznikat
v průběhu výkladu, a to i tehdy, je-li učitelův výklad kvalitní. Nejběžnější případy shrnuje Hejný
(1989) takto: žák přiřazuje znakům nebo slovům chybnou představu; žák nedokáže své myšlenky a
představy slovně vyjádřit; žák nedokáže slovům nebo znakům přiřadit žádnou představu.
557
Vstupem nových informací do kognitivní struktury žáka může nastat jejich zařazení, ale i celková
restrukturace informací doposud přítomných v mysli dítěte. Představy lidí o světě jsou individuální a
každý člověk chápe realitu jiným způsobem. Pokud se více lidem poskytne stejná informace, v mysli
každého jedince způsobí jiný jev. Způsob, jakým je zařazena do existenční struktury, totiž nezávisí
jen na vlastnosti přicházející informace, ale také na celkové struktuře kognitivních schémat
(Žoldošová 2004).
Odstraňováním miskoncepcí v chápání žáků se zabývalo více autorů (Hewson 1981; Gavora 1992a)
a byl navržen soubor zásad na odstranění mylných představ:
Navodit u žáka nesouhlas, nespokojenost, rozpor s jeho původním chápáním učiva. Žák musí sám
dospět k přesvědčení, že jeho doposud vytvořená představa je nesprávná.
Nové učivo musí být vysvětleno tak, aby bylo žákům srozumitelné, dokázali ho pochopit a začali
o něm přemýšlet.
Vysvětlování učiva musí být pro žáka přesvědčivé, hodnověrné a hlavně přijatelné. Při akceptování
těchto podmínek je žák ochotný si vyzkoušet, jestli by bylo pro něho akceptovatelné a jak velké
změny by musel udělat.
Pochopení učiva musí být pro žáka použitelné a užitečné. Žák by si měl vyzkoušet, nakolik je nové
přijetí výhodnější při řešení problémů a situací, se kterými se setkává.
Oblast zkoumání mylných představ je široká. Výzkumy se týkají téměř každé oblasti učiva biologie.
Některé jsou prozkoumány více, jiné méně. Výzkumy představ se týkají např. oblasti lidského těla
(Prokop, Fančovičová, Tunnicliffe 2009), fyziologie rostlin (Simpson, Marek 1988) a biotechnologie
(Prokop, Lešková, Kubiatko, Diran 2007).
Zajímavou oblastí je také výzkum žákovských představ v zoologii. Randler, Höllwarth a Schall (2007)
zkoumali vědomosti návštěvníků městského parku o živočišných druzích. Další výzkumy se týkají
toho, zda jsou žáci a studenti schopni rozlišit obratlovce od bezobratlých a co si žáci základních škol
představují pod těmito pojmy. Mnoho dětí přiřadí hlavu, končetiny a vnější kostru k obratlovcům.
Přítomnost vnější kostry je nejčastějším znakem přiřazovaným obratlovcům u 7 až 9-ročních dětí.
Častým znakem, který žáci přisuzují obratlovcům, je přítomnost krunýře. Tyto děti klasifikují úhoře a
hady jako bezobratlovce. Důvod, který uvádějí, je, že jejich tělo je schopné se skroutit. Děti měly
také problém klasifikovat želvu. Část dětí ji označila jako bezobratlovce (Braund 1991; Ryman 1974
a, b; Trowbridge, Mintzes 1985). Další výzkumná práce byla už konkrétnější, zabývala se
vědomostmi, postoji a chováním žáků základní školy, studentů středních škol a studentů vysokých
skol k delfínům (Barney, Mintzes, Yen 2005).
2 METODIKA
Hlavním cílem výzkumu bylo zjistit mylné představy o třídě Ptáci u žáků 2. stupně základních škol.
Při realizaci výzkumů byla věnována pozornost řešení výzkumného problému: Budou dosahovat
vyššího skóre žáci, kteří absolvovali učivo o ptácích, v porovnání s těmi, kteří ho ještě neabsolvovali?
558
Výzkumný vzorek tvořilo 719 žáků z druhého stupně sedmi ZŠ. Z toho bylo 338 chlapců a 381 děvčat.
Věkové rozmezí žáků se pohybovalo od 10 do 16 let ( x = 12,72; SD = 1,39). Zastoupeni byli
respondenti z vesnického (n = 448) i z městského prostředí (n = 271). Z hlediska ročníku studia, byli
nejvíce zastoupeni žáci šestého ročníku (n = 195), dále žáci sedmého (n = 172), devátého (n = 134) a
osmého ročníku (n = 130) a nejméně bylo žáků z pátého ročníku (n = 88).
Jako výzkumný nástroj byl použit dotazník, který měl dvě hlavní části, postojovou a vědomostní. Pro
účely příspěvku byla využívána pouze vědomostní část. Ta obsahovala 30 otázek, z nichž bylo 12
otevřených a 18 uzavřených. Z nabízených možností (3 až 5) byla vždy pouze jedna správná. Poslední
položka měla grafickou podobu. Před samotnou administrací byl dotazník posouzen dvěma
vysokoškolskými učiteli, zabývajícími se systematickou zoologií.
Dotazník byl žákům zadáván prostřednictvím jejich učitele. Ten jim dotazníky rozdal a upozornil je,
že se nejedná o testování, ale o výzkum jejich představ o ptácích. Respondenti nebyli časově
ohraničeni, ale vyplňování nepřesáhlo 30 minut.
Podle charakteru jednotlivých položek byly otázky v dotazníku rozděleny do 5 kategorií: identifikace
ptáků (10), rozmnožování ptáků (7), potrava ptáků (5), ptačí smysly (4) a migrace ptáků (4). Čísla
v závorce udávají počet otázek v jednotlivých kategoriích.
Po obdržení vyplněných dotazníků byly výsledky překódovány do číselné podoby. Správné odpovědi
bylo přiděleno číslo 1, nesprávné 0. Pro účely vyhodnocení byla nulová hodnota přiřazena i v případě,
že žák na danou otázku neodpověděl.
Kromě percentuální úspěšnosti byly při vyhodnocování použity některé deskriptivní statistické
metody, např. průměr a směrodatná odchylka. Z metod induktivní statistiky byla použita analýza
rozptylu (ANOVA), kterou byl zjišťován rozdíl ve výsledcích mezi jednotlivými ročníky. Dále byla
pomocí Cronbachova alfa zjišťována celková reliabilita dotazníku.
3 VÝSLEDKY
Celkový počet položek ve vědomostní části dotazníku byl 30. Pomocí Cronbachova alfa byla zjištěna
reliabilita dotazníku α = 0,55, což indikuje střední spolehlivost dotazníku.
V tabulce 1 jsou uvedeny některé statistické charakteristiky. Je z ní zřejmé, že žáci měli největší
problém s otázkami týkajícími se potravy ptáků, kde úspěšnost nebyla ani čtvrtinová, a také ptačích
smyslů, kde úspěšně na otázku odpověděla přibližně třetina respondentů. Nejméně problémů činily
žákům otázky z kategorie „rozmnožování ptáků“, kde byla úspěšnost více než 60 %. Ve zbylých dvou
kategoriích dosahovala úspěšnost žáků hodnoty o něco vyšší než 50 %.
559
Tabulka 1: Vybrané statistické charakteristiky sledovaných kategorií.
Počet otázek
Průměrné
skóre
Relativní
úspěšnost (%)
Směrodatná
odchylka
Identifikace
ptáků
10
5,87
58,70
1,62
Rozmnožování
ptáků
7
4,28
61,14
1,36
Potrava ptáků
5
1,09
21,80
0,94
Ptačí smysly
4
1,34
33,50
0,70
Migrace ptáků
4
2,23
55,75
0,99
V grafu 1 je uveden průměrný počet bodů dosažených v jednotlivých ročnících pro každou
z uvedených kategorií. V kategoriích identifikace ptáků, migrace ptáků a ptačí smysly dosahovali
nejvyššího skóre žáci osmého ročníku. V kategorii potrava ptáků to byli žáci šestého ročníku a žáci
pátého ročníku dosahovali nejvyššího skóre v otázkách týkajících se rozmnožování ptáků.
Graf 1: Průměrné skóre žáků jednotlivých ročníků za jednotlivé dimenze
průměrný počet bodů + směrodatná odchylka
7
6
5
4
3
2
1
0
5
6
7
8
9
identifikace ptáků
rozmnožování ptáků
potrava ptáků
ptačí smysly
migrace ptáků
ročník
Průměrné skóre jednotlivých ročníků jsme podrobili dalšímu statistickému zpracování, a to
konkrétně analýze rozptylu (ANOVA). Statisticky významný rozdíl ve výsledcích mezi ročníky jsme
zjistili v kategorii „identifikace ptáků“ (F(4, 714) = 8,98; p < 0,001). Žáci šestého ročníku v této dimenzi
dosahovali, v porovnání se žáky z ostatních ročníků, výrazně nižšího skóre. U kategorie potrava
ptáků byl také zjištěn statisticky významný rozdíl ve výsledcích mezi ročníky (F(4, 714) = 7,87; p <
0,001). Přitom žáci devátého ročníku dosahovali v porovnání s ostatními ročníky nejnižší skóre,
obzvláště v porovnání se žáky ze šestého a sedmého ročníku. Žáci pátého ročníku dosahoval
560
i výrazně vyšší skóre než jejich starší spolužáci v otázkách, které se týkaly rozmnožování ptáků (F(4,
714) = 3,47; p < 0,01). V kategorii ptačí smysly byl zjištěn rozdíl ve výsledcích mezi ročníky (F(4, 714) =
2,91; p < 0,05), největší rozdíl v dosaženém skóre byl mezi žáky šestého a osmého ročníku. Ve zbylé
kategorii „migrace ptáků“ ve výsledcích mezi jednotlivými ročníky nebyl statisticky významný rozdíl
(F(4, 714) = 2,11).
Celkové skóre z testu bylo 18,28 bodů (n = 719; SD = 4,30). Minimální hodnota byla 6 a maximální 30
bodů. Na výsledky mezi ročníky, ze kterých jsou respondenti, je možné nahlížet ze dvou pohledů.
První je ten, že do analýzy se zahrnují jednotlivé ročníky (F(4, 714) = 4,22; p < 0,01), kde nejvíce bodů
dosahovali žáci 8. ročníku ( x = 15,39) a nejnižší počet dosahovali žáci 6. ročníku ( x = 14,04) (graf 2).
Druhý pohled je ten, že se do úvahy vezmou žáci, kteří už absolvovali učivo o třídě Ptáci a žáci, kteří
toto učivo ještě neabsolvovali. I v tomto případě byl zjištěn statisticky významný rozdíl ve
výsledcích (F(1, 717) = 13,04; p < 0,001) ve prospěch žáků, kteří už dané učivo absolvovali ( x = 15,16).
Žáci, kteří ještě na hodinách přírodopisu učivo o ptácích neabsolvovali, měli průměrné skóre 14,23
bodů.
Graf 2: Průměrné skóre žáků jednotlivých ročníků
16,5
16,0
průměrné skóre
15,5
15,0
14,5
14,0
13,5
4. ZÁVĚR
13,0
5
4 ZÁVĚR
6
7
8
9
ročník
Příspěvek se zabývá mylnými představami žáků druhého stupně základních škol o třídě Ptáci. Podle
výsledků je zřejmé, že mnohé mylné představy přetrvávají u žáků i po absolvování učiva o třídě Ptáci.
Právě zde vidíme přínos naší práce, která má význam pro didaktiku jako vědu. Správným
formulováním učiva můžeme mylné představy žáků odstranit a poskytnout jim lepší vysvětlení
pojmů, které jim činí problémy. Některé mylné představy vznikající v dětství přetrvávají i u žáků 9.
ročníku (někdy až do dospělosti). Proto by se hlavně základní škola měla podílet na jejich odstranění.
Na vyučování by žáci měli mít více možností k získávání komplexnějších informací o živočišných
druzích a identifikace živočichů by neměla být redukována na zjednodušené vztahy, bez souvislostí
s biologií jednotlivých druhů. Pozornost učitelů by se měla zaměřit i na druhy, které nemají
charakteristické znaky pro danou skupinu a mohou být i v pozdějším životě žáků mylně považovány
za úplně odlišné druhy.
561
LITERATURA
BRAUND, M. Children´s ideas in classifying animals. Journal of Biological Education. Vol. 25, No. 2,
1991, pp. 103 – 110.
BARNEY, E. C.; MINTZES, J. J.; YEN, C. F. Assessing knowledge, attitudes, and behavior toward
charismatic megafauna: The case of dolphins. The Journal of Environmental Education, Vol. 36, No. 2,
2005, pp. 41 – 55.
ČÁP, J.; MAREŠ, J. Psychologie pro učitele. Praha, Portál, 2001, 656s.
GAVORA, P. Naivné teórie dieťaťa a ich pedagogické využitie. Pedagogika. roč. 42, č. 1, 1992a, s. 95 –
102.
GAVORA, P. Žiak a text. Bratislava, SPN, 1992b, 128 s. HEJNÝ, M. a kol.: Teória vyučovania matematiky
2. Bratislava, SPN, 1989, 560s.
HEWSON, P. W. A conceptual change approach to learning. European Journal of Science Education.
Vol. 3, No. 4, 1981, pp. 398 – 396.
PROKOP, P.; FANČOVIČOVÁ, J.; TUNNICLIFFE, S.D. The effect of type of instruction on expression of
children’s knowledge: how do children see the endocrine and urinary system? International Journal
of Environmental and Science Education, Vol. 4, No. 1, 2009, pp. 75 – 93.
PROKOP, P.; LEŠKOVÁ. A.; KUBIATKO, M.; DIRAN, C. Slovakian students' knowledge of and attitudes
toward biotechnology. International Journal of Science Education, Vol. 29, No. 7, 2007, pp. 895 – 907.
RANDLER, C.; HÖLLWARTH, A.; SCHAAL, S. Urban park visitors and their knowledge of animal species.
Anthrozoös, Vol. 20, No. 1, 2007, pp. 65 – 74.
RYMAN, D. Children's understanding of the classification of living organisms. Journal of Biological
Education. Vol. 8, No. 3, 1974a, pp. 140 – 144.
RYMAN, D. The relative effectiveness of teaching methods on pupils' understanding of the
classification of living organisms at two levels of intelligence. Journal of Biological Education. Vol. 8,
No. 4, 1974b, pp. 219 – 223.
SIMPSON, W. D.; MAREK, E. A. Understandings and misconceptions of biology concepts held by
students attending small high schools and students attending large high schools. Journal of Research
on Science Teaching, Vol. 25, No. 5, 1988, pp. 361 – 374.
TROWBRIDGE, J. E.; MINTZES, J. J. Students' alternative conceptions of animals and animal
classification. School Science and Mathematics. Vol. 85, No. 4, 1985, pp. 305 – 316.
ŽOLDOŠOVÁ, K. Detské predstavy o prírodných javoch. Acta Facultatis Paedagogicae Universitatis
Tyrnaviensis. Séria D. No. 8, 2004, pp. 66 – 73.
562
Kontakt
PaedDr. Milan Kubiatko, Ph.D., Pedagogická fakulta MU, Centrum pedagogického výzkumu, Poříčí
31, 603 00 Brno
[email protected]
Mgr. Ivana Vaculová, Pedagogická fakulta MU, Katedra fyziky, Poříčí 7, 603 00 Brno
[email protected]
Příspěvek byl podpořen grantem KEGA 3/6235/08 a LC06046.
zpět na obsah
563
vzdelávaní budúcnosti. In Technológia vzdelávania, r. 12,
2004, è. 2, s. 12 - 15. ISSN 1335-003X.
2. Adobe Acrobat Connect Pro, http://www.adobe.com
/products/acrobatconnectpro/webconferencing/enterprise.html.
3. BERGIN, D. A. - ANDERSON, A. H. - MOLNAR, T. BAUMGARTNER, R. - MITCHELL, S. - KORPER, S. CURLEY, A. - ROTTMANN, J. 2007. Providing Remote
Access to Field Trips (RAFT): an evaluation study. In
Computers in Human Behavior, 23, 2007, s. 192-219.
4. AT&T Knowledge Ventures (2006). Videoconferencing:
Communication skills, http://www.kn.pacbell.com/wired/vidconf/communication.html.
PaedDr. Elena Èipková, PhD.
E-mail: [email protected]
PaedDr. Tímea Gálová
E-mail: [email protected]
RNDr. Štefan Karolèík, PhD.
E-mail: [email protected]
Doc. RNDr. Katarína Ušáková, PhD.
E-mail: [email protected]
Mgr. Júlia Grešáková
E-mail: [email protected]
Univerzita Komenského v Bratislave
Prírodovedecká fakulta
Katedra didaktiky prírodných vied, psychológie
a pedagogiky
Mlynská dolina Ch-2
842 15 Bratislava
NÁZORY ŠTUDENTOV GYMNÁZIÍ NA
VYUŽÍVANIE IKT VO VYUÈOVACOM
PREDMETE BIOLÓGIA
Milan Kubiatko – ÈR
Abstrakt: Vplyv informaèných a komunikaèných technológií a poèítaèov na nᚠkaždodenný život je neustále
narastajúci. Tento fakt je jedným z faktorov, ktoré môžu
ovplyvni zmenu postojov resp. názorov na informaèné
a komunikaèné technológie. V príspevku sa snažíme
nájs rozdiely vo výsledkoch v názore na používanie IKT
medzi rôznymi vekovými skupinami študentov a medzi
chlapcami a dievèatami. Ako výskumný nástroj bol použitý dotazník Likertovho typu s 33 položkami. Výskumu
sa zúèastnilo 518 študentov z 9 gymnázií, prièom boli zastúpené všetky roèníky. Na odhalenie rozdielov vo výsledkoch bola použitá faktorová analýza a analýza rozptylu (ANOVA).
K¾úèové slová: Biológia. Informaèné a komunikaèné
technológie. Študenti gymnázií.
1 Úvod
Súèasná doba je výraznou mierou ovplyvnená používaním informaèných a komunikaèných technológií (IKT)
v bežnom živote. Vplyv IKT je zrejmý aj v samotnom edukaènom procese, kde môže prebieha komunikácia medzi uèite¾om a študentmi pomocou mailu, prípadne rôznych ïalších komunikaèných prostredí. Podobne môže
prebieha komunikácia aj medzi samotnými študentmi,
ktorí sú si pomocou mailu schopní vymieòa informácie,
vzájomne si posiela riešenia, dopåòa informácie o rie-
6
Technológia vzdelávania
šenom probléme, atï. IKT majú potenciál zvýši kvalitu
vzdelávania, pretože rôzne multimediálne programy pomáhajú svojimi ilustráciami a animáciami vysvetli ažšie
pochopite¾né, najmä abstraktné témy, ktoré by boli nároèné na vysvetlenie tradiènými vyuèovacími metódami.
S postupujúcim èasom sa funkcia IKT presúva od doplnku uèite¾ovho výkladu k plnohodnotnému zdroju informácií, ktoré sú okamžite prístupné ako študentom, tak aj uèite¾om.
2 Teoretické východiská
Každodenné využívanie IKT ovplyvòuje vzájomné pôsobenie medzi ¾uïmi a poèítaèovými zariadeniami. Úspešné zaèlenenie IKT do edukaèného prostredia závisí
vo ve¾kej miere od postojov uèite¾ov a študentov k týmto
technológiám (Selwyn 1999). Postoj k poèítaèom resp.
k IKT býva definovaný ako celkové ohodnotenie jedinca
resp. jeho pocity náklonnosti alebo antipatie k poèítaèovým technológiám a aktivitám spojeným s poèítaèmi.
Hodnotenie postojov k poèítaèom zvyèajne zahròuje posúdenia, ktorými používatelia hodnotia interakciu s hardvérom, softvérom a aktivitami, ktoré sa týkajú používania
poèítaèov (Smith, Caputi, Rawstorne 2000). Winter,
Chudoba a Gutek (1998) zistili vo svojom výskume pozitívnu koreláciu medzi postojom k poèítaèom a poètom hodín strávených používaním poèítaèa.
Výskumy, ktoré sa týkajú zisovania rozdielov v postojoch k IKT medzi chlapcami a dievèatami vo väèšej miere udávajú chlapcov, ako tých, ktorí majú pozitívnejší postoj k poèítaèom. Napríklad Dørup (2004) realizoval výskum medzi vysokoškolskými študentmi a zistil èastejšie
využívanie poèítaèov v domácom prostredí predstavite¾mi mužského pohlavia a tiež aj ich väèšiu náklonnos
k používaniu IKT zariadení pri ich štúdiu. Ïalej uvádza
väèšiu náklonnos študentov k nahradeniu tradièného vyuèovania vyuèovaním, založeným na používaní IKT zdrojov v porovnaní so študentkami. Brosnan (1998) uvádza
viac pozitívnejší postoj u chlapcov základných škôl v porovnaní s ich rovesníèkami. Palaigeorgiou, Siozos,
Konstantakis a Tsoukalas (2005) uvádzajú vo svojej štúdii rovnakú angažovanos chlapcov aj dievèat k poèítaèom. Chlapci aj dievèatá majú rovnaký záujem o používanie výpoètovej techniky, ale u dievèat sa zistil väèší
strach z používania hardvéru a dievèatá vidia v poèítaèoch menšie pozitívne dôsledky na sociálny život.
Papastergiou a Solomonidou (2005) uvádzajú lepšie
schopnosti chlapcov pri práci s poèítaèom. Títo autori zistili aj èastejšie používanie IKT zariadení chlapcami vo vo¾nom èase v porovnaní s dievèatami. Celkovo mali v ich
výskume chlapci pozitívnejší postoj k IKT v porovnaní
s dievèatami, èastejšie používajú poèítaèe na hranie hier,
viac sa zaujímajú o hardvér, atï. Na základe vyššie uvedených štúdií, ale aj iných prevláda v súèasnej dobe trend
spojenia moderných technológií s mužským pohlavím.
Môžeme sa stretnú aj s publikáciami, v ktorých nebol zistený signifikantný rozdiel v postojoch k IKT resp. k poèítaèom medzi chlapcami a dievèatami (Fanèovièová,
Prokop 2008; Mizrachi, Shoham 2004; Teo 2006), prípadne aj niektoré práce uvádzajú aj pozitívnejší postoj
dievèat k IKT v porovnaní s chlapcami (Ray, Sormunen,
Harris 1999), ale väèšina prác venujúca sa tejto problematike uvádza pozitívnejší postoj zástupcov mužského
pohlavia k poèítaèovým technológiám.
Oproti predchádzajúcemu typu prác existuje málo tých,
ktoré sa venujú porovnaniu výsledkov postojov k IKT v závislosti od veku respondentov. Bozionelos (2001) zistil,
u starších študentov pozitívnejší postoj k IKT v porovnaní s ich mladšími kolegami.
Keïže na Slovensku existuje ve¾mi málo prác zaoberajúcich sa postojom študentov k IKT, tak to bol jeden
z dôvodov realizácie výskumu, aspoò èiastoène vyplni
chýbajúcu medzeru v tejto výskumnej oblasti. Poèet poèítaèov na slovenských stredných školách rapídne stúpa
a IKT nie sú už len záležitosou predmetu Informatika, ale
sú v rozliènej miere využívané aj v iných predmetoch, tak
ïalším dôvodom realizácie výskumu bolo prispie k lepšiemu poznaniu postojov študentov k používaniu IKT vo
vyuèovacom predmete biológia.
Ciele výskumu boli nasledovné:
1. Aké sú postoje študentov gymnázií k používaniu IKT
na hodinách biológie?
2. Líšia sa postoje chlapcov k IKT od postojov dievèat?
3. Sú rozdiely v postojoch k IKT v závislosti od veku respondentov?
Na základe stanovených cie¾ov boli overované nasledujúce hypotézy
1. Chlapci majú pozitívnejší postoj k IKT v porovnaní
s dievèatami.
2. Starší študenti majú pozitívnejší postoj k IKT v porovnaní s mladšími.
3 Metodika
3.1 Výskumný nástroj
Ako výskumný nástroj bol použitý dotazník vlastnej konštrukcie. Dotazník bol anonymný a rozdelený na dve základné èasti. Prvá èas obsahovala text, v ktorom boli respondenti oboznámení s cie¾om štúdie a krátkymi inštrukciami, nasledovali demografické údaje ako pohlavie, vek
a roèník štúdia. Druhá èas dotazníka obsahovala 33 položiek týkajúcich sa postojov k IKT. Každé z gymnázií, na
ktorom bol robený výskum malo v dobe jeho realizácie
dostatoèné vybavenie IKT technikou. Na základe toho bol
stanovený predpoklad, že všetci študenti majú prístup
k poèítaèu a internetu v školskom prostredí. Položky v dotazníku boli zamerané len na IKT aktivity spojené so školským prostredím. Položky boli škálované na 5-stupòovej
škále. Èas otázok bola konštruovaná negatívne (17)
a zvyšok pozitívne (16). Negatívne formulované položky
boli prekódované v opaènom poradí.
Dotazník použitý vo výskume poskytne autor práce na
požiadanie.
3.2 Výskumná vzorka
Dotazník bol vyplnený 518 študentmi z 9 slovenských
gymnázií. Do výskumného šetrenia boli vyberané gymnázia, kde prebieha klasický štýl vyuèovania, nie alternatívny. Vo výskumnej vzorke boli zastúpení študenti z každého roèníka 4-roèného gymnázia. Najpoèetnejšie zastúpenie mali študenti tretieho roèníka (n = 187),
najmenej bolo študentov zo štvrtého roèníka (n = 60). Študentov z prvého roèníka bolo 145 a druhákov bolo 126.
Vek študentov sa pohyboval v rozmedzí 15 až 19 rokov
(n = 518; x = 16,97; SD = 1,00). Percentuálne zastúpenie
chlapcov vo výskume bolo 37,84 % (n = 196) a dievèat
62,16 % (n = 322). Respondenti vypåòali dotazník poèas
vyuèovacej hodiny a èas vyplnenia nepredstavoval viac
ako 20 minút.
3.3 Štatistické spracovanie
Po získaní dát bola zisovaná celková reliabilita dotazníka ?pomocou Cronbachovho alpha ( = 0,82). Uvedená
hodnota indikuje vysokú spo¾ahlivos dotazníka. Na ïalšie štatistické spracovanie sme použili faktorovú analýzu
s Varimax rotáciou, ktorá rozdelila dotazník do piatich kategórií, a to nasledovne: 1. Pozitívny vplyv IKT; 2.
Negatívny vplyv IKT; 3. Výhody IKT; 4. Využitie IKT v biológii; 5. Nevýhody IKT. Do ïalšej analýzy neboli zahrnuté položky, ktoré dosahovali faktorové skóre menšie ako
0,30. Na zistenie rozdielov vo výsledkoch medzi chlapcami a dievèatami a medzi jednotlivými roèníkmi bola použitá analýza rozptylu (ANOVA).
4 Výsledky
V tabu¾ke 1 sú uvedené niektoré základné štatistické
charakteristiky výskumného nástroja. Najvyššie skóre dosiahli študenti pri štvrtej kategórií „Využitie IKT v biológii“
a najmenší priemerný poèet bodov dosiahli študenti pri
druhej kategórii nazvanej „Negatívny vplyv IKT“. Na základe toho môžeme tvrdi, že študenti vidia potenciál vo
využívaní IKT vo vyuèovaní biológie, vidia v IKT pozitíva,
vedia si predstavi nahradenie tradièných vyuèovacích
metód, metódami spojenými s IKT technikou.
Na zistenie vzahu medzi jednotlivými dimenziami bol
vyrátaný Pearsonov korelaèný koeficient, ktorým sme zisovali vzah medzi jednotlivými dimenziami. Výsledná
hodnota korelaèného koeficientu dotazníka (r = 0,13) indikovala nízky vzah medzi jednotlivými položkami. K podobnému zisteniu sme dospeli aj pri zistení korelácie medzi dimenziami (tab. 2). Najviac spolu súviseli tretia a štvrtá dimenzia. Znamená to, že tí študenti, ktorí dosahovali
vysoké skóre pri výhodách IKT, tak videli väèší potenciál
pri ich využívaní vo vyuèovaní biológie.
Tab. 1 Vybrané štatistické charakteristiky merného nástroja.
faktor 1
faktor 2
faktor 3
faktor 4
faktor 5
poèet položiek
5
3
8
6
6
priemerné skóre
3,55
3,33
3,78
3,91
3,41
minimum
1
1
1
1,25
1
maximum
5
5
5
5
5
SD
0,78
0,82
0,74
0,67
0,62
rozptyl
0,61
0,67
0,55
0,44
0,38
Tab. 2 Hodnoty korelaèného koeficentu medzi jednotlivými dimenziami.
faktor 1
faktor 2
faktor 3
faktor 4
faktor 2
0,01
faktor 3
0,22
0,11
faktor 4
0,28
0,13
0,40
faktor 5
0,21
0,35
0,30
0,31
Na zistenie rozdielov vo výsledkov medzi premennými
(pohlavie, roèník) bola použitá analýza rozptylu.
Pomocou analýzy bol zistený rozdiel štatisticky významný rozdiel vo výsledkoch medzi chlapcami a dievèatami
(F1, 517 = 4,48; p < 0,05). Dievèatá dosahovali skóre 3,61
(n = 322; SD = 0,60) a chlapci dosahovali priemerný poèet bodov 3,68 (n = 196; SD = 0,54). na základe týchto
zistení je možné tvrdi, že chlapci majú pozitívnejší postoj
k IKT v porovnaní s dievèatami.
Štatisticky významný rozdiel vo výsledkoch bol zistený
aj medzi roèníkmi (F3, 514 = 2,72; p < 0,05). Použitím
Fisherovho LSD post-hoc testu bol zistený štatitiscky významný rozdiel na hladine významnosti p < 0,05 vo výsledkoch medzi študentmi prvého a štvrtého roèníka a na
tej istej hladine významnosti aj medzi študentmi druhého
7
a štvrtého roèníka. Študenti štvrtého roèníka dosahovali
najnižšie priemerné skóre a to 3,55 (n = 60; SD = 0,05).
Priemerné skóre študentov druhého roèníka bolo 3,69, èo
bolo aj najvyššie spomedzi roèníkov (n = 126; SD = 0,04).
Študenti prvého roèníka dosahovali skóre 3,68 (n = 145;
SD = 0,03) a priemerné skóre študentov tretieho roèníka
bolo 3,60 (n = 187; SD = 0,03). Na základe zistených výsledkov, môžeme tvrdi, že mladší študenti, v našom prípade študenti prvého a druhého roèníka, mali pozitívnejší vzah k IKT v porovnaní s ich staršími kolegami.
Štatistickému spracovaniu sme podrobili aj jednotlivé
kategórie. Výsledky zistené použitím analýzy rozptylu sú
uvedené v tabu¾ke 3. Štatisticky významný rozdiel vo výsledkoch medzi chlapcami a dievèatami bol zistený v každej kategórii okrem kategórie „Výhody IKT“. Pri prvej kategórii „Pozitívny vplyv IKT“ bol zistený štatisticky významný rozdiel vo výsledkoch v prospech dievèat, ale
v ostatných to už bolo v prospech chlapcov. Najväèší rozdiel v priemernom skóre bol zistený pri druhej kategórii,
kde chlapci dosahovali priemerné skóre 3,63 a dievèatá
3,15.
Štatisticky významný rozdiel vo výsledkoch medzi jednotlivými roèníkmi bol zistený len v dvoch kategóriách
(Výhody a Nevýhody IKT). V kategórii „Výhody IKT“ dosiahli najvyššie skóre študenti druhého roèníka (x = 3,94)
a najnižšie najmladší respondenti (x = 3,71). Použitím
Fisherovho LSD post-hoc testu bol zistený štatisticky významný rozdiel vo výsledkoch na hladine významnosti p
< 0,05 medzi študentmi prvého a druhého roèníka a medzi študentmi druhého a tretieho roèníka. Študenti druhého roèníka dosahovali najvyššie skóre aj pri kategórii
„Nevýhody IKT“, kde dosahovali priemerné skóre 4,02
bodu a najnižší priemerný poèet bodov v tejto kategórii
dosiahli najstarší respondenti (x = 3,48). Ïalším štatistickým spracovaním konkrétne použitím Fisherovho LSD
post-hoc testu bol zistený štatisticky významný rozdiel vo
výsledkoch na hladine významnosti p < 0,001 medzi študentmi prvého a štvrtého roèníka, tiež medzi študentmi
druhého a štvrtého roèníka a aj medzi študentmi tretieho
a štvrtého roèníka.
Tab. 3 Hodnoty analýzy rozptylu pre každú kategóriu
a premennú (štatisticky významné rozdiely sú oznaèené
hrubo).
Pozitívny
vplyv
IKT
Negatívny
vplyv
IKT
Výhody IKT
Využívanie IKT v
biológii
Nevýhody IKT
pohlavie
(F1, 517)
p
roèník
514)
7.31
0.007
1.42
47.92
0
0.62
0.73
0.39
15.93
4.76
(F3, p
priemerné
skóre
SD
0.24
3.55
0.78
0.60
3.33
0.82
2.94
0.03
3.78
0.74
0
12.41
0.07
3.91
0.67
0.03
11.30
0
3.41
0.62
5 Diskusia
V danom výskume sme sa snažili zamera na zistenie
postojov študentov gymnázií k informaèným a komunikaèným technológiám, na zistenie rozdiel v postojoch
k IKT medzi chlapcami a dievèatami a medzi jednotlivými roèníkmi. Štatistickým spracovaním bolo zistené, že
chlapci majú pozitívnejší postoj k IKT ako dievèatá. Na
základe tohto zistenia môžeme prija prvú hypotézu, ale
druhú musíme zamietnu, pretože mladší študenti (študenti prvého a druhého roèníka gymnázií) mali pozitívnejší postoj k IKT ako starší študenti. V druhej položenej
hypotéze bol predpokladaný opak.
8
Technológia vzdelávania
Pri hodnotení jednotlivých kategórií zistených faktorovou analýzou bolo zistené vyššie priemerné skóre u dievèat len v prvej kategórii „Pozitívny vplyv IKT“. V ostatných
kategóriách dosahovali vyššie priemerné skóre chlapci.
Pri porovnávaní jednotlivých roèníkov dosahovali vyššie
skóre vždy mladší respondenti (študenti prvého alebo
druhého roèníka gymnázií).
V dnešnej dobe prevláda h¾adisko, ktoré dáva do popredia mužov ako viac technicky kompetentných.
Spoloènos vníma mužské pohlavie, ako viac zaujímajúce sa o výpoètovú techniku. Poznanie, že dievèatá majú
menej pozitívne postoje k IKT len potvrdzuje fakt a upevòuje stereotypný poh¾ad, že poèítaèe sú urèené len mužom a chlapcom (Cooper 2006, Varank 2007).
Dôvody, preèo práve mladší študenti dosahovali vyššie
skóre v porovnaní s ich staršími spolužiakmi môžu by
rôzne. Mladší študenti používajú IKT zariadenia v prevažnej miere na mimoškolskú èinnos, vidia menej nevýhod spojených používaním softvéru a hardvéru. Naopak,
starší študenti využívajú IKT zariadenia na èinnos súvisiacu s vykonávaním školských povinností a stávajú sa
nervóznejšími, keï poèítaèové programy nefungujú, tak
ako majú. Spôsobov, ktoré môžu vies k stieraniu rozdielov, prípadne ešte k zvýšeniu pozitívneho vnímania
postojov k IKT je viacero. Napríklad vyuèovanie biológie
by mohlo by viac zaujímavé, keby sa na prezentáciu
uèebného materiálu používala powerpointová prezentácia. Prípadne používanie rôzneho softvéru s biologickou
tematikou, ktorý môže u¾ahèi študentov pochopenie rôznych biologických pojmov. Treba si ale uvedomi, že to
aký budú ma IKT vplyv na výsledky samotných študentov závisí v znaènej miere od ich uèite¾ov. Oni sú jediní,
kto rozhoduje ako poda študentom informácie, v èo najlepšej kvalite. Ale to, akým spôsobom bude uèite¾ IKT používa nevychádza zo samotných technológií, ale z konkrétnej osobnosti uèite¾a a jeho vyuèovacieho štýlu (Šeïová, Zounek 2009).
6 Záver
V našom príspevku sme skúmali postoje študentov
gymnázií, k využívaniu IKT na hodinách biológie. Na vyhodnocovanie sme použili štatistické metódy ako faktorová analýza, analýza rozptylu a Pearsonov korelaèný
koeficient. Použitím faktorovej analýzy bolo zistených 5
kategórií. Analýzu rozptylu bola použitá na zistenie rozdielov vo výsledkoch medzi chlapcami a dievèatami a tiež
medzi jednotlivými roèníkmi. Chlapci a mladší študenti
mali pozitívnejšie postoje k IKT používanými v biológii.
Hlavným dôvodom používania IKT vo vyuèovaní biológie uèite¾mi, je že umožòujú uèite¾om prebera uèivo lepšie ako bez nich. Používanie IKT môže umožni študentom aj uèite¾om dosiahnu nieèo, èo by bez IKT nedosiahli
a takisto umožòuje uèite¾om uèi a študentom uèi sa viac
efektívne.
SECONDARY GRAMMAR SCHOOL STUDENTS ATTITUDES TOWARD ICT USING IN THE BIOLOGY AS
THE SCHOOL SUBJECT
Abstract: The influence of information and communication technologies and computers on our daily lives has
been steadily increasing. This fact is one of factors, which
can influence the change of attitudes toward information
and communication technologies. In our contribution we
are focused on finding differences in results between age
and gender according to ICT attitudes. A questionnaire
with 33 Likert type items was used as a research tool. The
sample size consists of 518 students from 9 secondary
grammar schools. Students attented the all of grades.
Data were evaluated with the factor analysis and Analysis
of variance (ANOVA).
Key words: biology, information and communication
technologies, secondary grammar school students
Literatúra
1. BOZIONELOS, N.: Computer anxiety: Relationship
with computer experience and prevalence. Computers in
Human Behavior, Vol. 17, No. 2, 2001, 213-224.
2. BROSNAN, M. J.: The role of psychological gender in
the computer-related attitudes and attainments of primary school children (aged 6-11). Computers & Education,
Vol. 30, No. 3-4, 1998, 203-208.
3. COOPER, J.: The digital divide: the special case of
gender. Journal of Computer Assisted Learning, Vol. 22,
No. 5, 2006, 320-334.
4. DORUP, J.: Experience and attitudes towards information technology among first year medical students in
Denmark: Longitudinal questionnaire survey. Journal of
Medical Internet Research, Vol. 6, No. 1, 2004, 10p.
5. FANÈOVIÈOVÁ, J.; Prokop, P.: Students’ attitudes toward computer use in Slovakia. Eurasia Journal of
Mathematics, Science & Technology Education, Vol. 4,
No. 3, 2008, 255-262.
6. MIZRACHI, D.; Shoham, D.: Computer attitudes and
library anxiety among undergraduates: a study of Israeli
B.Ed students. The International Information & Library
Review, Vol. 36, No. 1, 2004, 29-38.
7. PALAIGEORGIOU, G. E.; SIOZOS, P. D.;
KONSTANTAKIS, N. I.; TSOUKALAS, I. A.: A Computer
Attitude Scale for Computer Science Freshmen and Its
Educational Implications. Journal of Computer Assisted
Learning, Vol. 21, No. 5, 2005, 330-342.
8. PAPASTERGIOU, M.; Solomonidou, C.: Gender issues in Internet access and favourite Internet activities
among Greek high school pupils inside and outside
school. Computers & Education, Vol. 44, No. 4, 2005,
377-393.
9. RAY, C. M.; SORMUNEN, C.; HARRIS, T. M.: Men’s
and Women’s Attitudes Toward Computer Technology:
A Comparison. Office Systems Research Journal, Vol. 17,
No. 1, 1999, 1-8.
10. SELWYN, N.: Students’ attitudes towards computers
in sixteen to nineteen education. Education and
Information Technologies, Vol. 4, No. 2, 1999, 129-141.
11. SMITH B.; CAPUTI P.; RAWSTORNE P.:
Differentiating computer experience and attitudes toward
computers: an empirical investigation. Computers in
Human Behavior, Vol. 16, No. 1, 2000, 59-81.
12. ŠEÏOVÁ, K.; ZOUNEK, J.: ICT v rukou èeských uèitelù. Pedagogika, roè. 59, è. 1, 2009, s. 54-70.
13. TEO, T.: Attitudes toward computers: A study of postsecondary students in Singapore. Interactive Learning
Environments, Vol. 14, No. 1, 2006, 17-24.
14. VARANK, I.: Effectiveness of Quantitative Skills,
Qualitative Skills, and Gender in Determining Computer
Skills and Attitudes: A Causal Analysis. Clearing House:
A Journal of Educational Strategies, Vol. 81, No. 2, 2007,
71-80
15. WINTER, S. J.; CHUDOBA, K.; GUTEK, B.A.:
Attitudes toward computers: When do they predict computer use? Information and Management, Vol. 34, No. 5,
1998, 275-284.
PaedDr. Milan Kubiatko, Ph.D.
Centrum pedagogického výzkumu,
Pedagogická fakulta MU, Poøíèí 31, 603 00 Brno
E-mail: [email protected]
SIMULAÈNÉ A REÁLNE VZDIALENÉ
EXPERIMENTY V UNIVERZITNOM
VZDELÁVANÍ
Miroslav Ölvecký, Silvia Šebenová – SR
Abstrakt: Modernizácia a optimalizácia vzdelávacieho
procesu vychádza z neustálej potreby integrova informaèné a komunikaèné technológie (IKT) do procesu
vzdelávania. Výsledky pedagogického výskumu ukazujú,
že reálne vzdialené a simulaèné experimenty prispievajú
k zvýšeniu nielen vedomostnej úrovne, ale aj úrovne trvácnosti vedomostí, k zvýšeniu záujmu a motivácie o uèenie, ako aj k zmene pasívneho na aktívne poznávanie študentov, a tým umožòujú študentom jednoduchšie a flexibilnejšie vzdelávanie.
K¾úèové slová: Simulaèné a reálne vzdialené experimenty. Vzdelávací proces. E-learning.
0 Úvod
Súèasná doba je charakteristická procesom neustálych
zmien, realizáciou nových myšlienok a nápadov, vznikom
nových koncepcií vzdelávania, ktoré si vyžadujú vyššie
nároky na poznatky v porovnaní s obdobím pred 10 - 15
rokmi. Pokroky a zmeny v oblasti IKT, ktoré sa v súèasnosti realizujú, mali a v súèasnosti aj majú obrovský vplyv
na výchovný vzdelávací systém v Slovenskej republike.
Ide predovšetkým o modernizáciu cie¾a, obsahu a foriem
vzdelávania. Škole, ktorá bola donedávna považovaná
za hlavný zdroj poznania, zaèína ve¾mi dobre konkurova
elektronické informaèné médium Internet ako prostriedok
vyh¾adávania, získavania a prehlbovania vedomostí.
Základnou výhodou tohto média je najmä to, že zabezpeèuje neustálu komunikáciu nezávisle na mieste a èase, a tým umožòuje interakciu „každého s každým“.
S Internetom ve¾mi úzko súvisí elektronické vzdelávanie
(e-learning), ktorého uplatnenie je v súèasnosti aj v takých oblastiach vzdelávacích èinností (ako napr. v praktických cvièeniach v prírodovedných a technických predmetoch), kde sa to ešte nedávno nepredpokladalo.
Pod¾a Lustiga (dostupné na www.csvs.cz/publikace/
NCDiV2006_sbornik/Lustig.pdf) a z výsledkov prieskumu
projektu GAM (2008) existujú v súèasnosti na školách
podmienky pre plnohodnotnú realizáciu fyzikálnych experimentov prostredníctvom e-learningu v kombinácii so
vzdialeným virtuálnym experimentom. Je to vïaka tomu,
že informaèné technológie vytvorili podmienky dovo¾ujúce sprostredkova reálny experiment uskutoèòovaný vo
vzdialenom e-laboratóriu (odtia¾ názov vzdialený experiment) do ¾ubovo¾ného miesta na svete cez Internet. Práve
reálny a exaktný fyzikálny experiment, ktorý v edukácii tak
èasto chýba, poskytuje študentom vysvetlenie správania
sa urèitého technického javu v reálnom prostredí. Pôsobí
9
Informatika v škole č. 36/2009
Excel
Multimediální studijní materiál
Dopad sporného kritéria
Výučba veľkých skupín študentov
25
Informatika v škole č. 36/2009
Informačné periodikum
o teoretických, metodických otázkach
a skúsenostiach z praxe pri uplatňovaní
informatiky a výpočtovej techniky
v základných a stredných školách
Predseda redakčnej rady: Ing. Miroslav Korman
Výkonná redaktorka: Ing. Alžbeta Megová
Vydáva:
Ústav informácií a prognóz školstva v Bratislave
Adresa redakcie:
Ústav informácií a prognóz školstva
Staré grunty 52
842 44 Bratislava
e-mail: [email protected]
2
Informatika v škole č. 36/2009
Obsah
Excel – pomocný nástroj pri znázorňovaní
grafov transformácií základných
elementárnych funkcií
4
A. DÁVID, G. HORÁKOVÁ
Multimediální studijní materiál k výuce
předmětu internet
11
V. VRBÍK, T. PŘIBÁŇ
Dopad sporného kritéria vo svetle zákonov
17
J. ZELEM
Výučba veľkých skupín študentov
vo vysokoškolskom štúdiu
25
J. ZELEM
Postrehy a doporučenia z pozorovania
stredoškolských študentov pri zostrojovaní
modelov elektrických motorčekov počas
výskumných aktivít organizovaných
Siemensom na Univerzite Edith Cowan
31
J. AUDY, R. IRVINE
Postoje študentov gymnázií k využívaniu
IKT vo vyučovaní biológie
M. KUBIATKO
3
43
Informatika v škole č. 36/2009
Postoje študentov gymnázií k využívaniu IKT
vo vyučovaní biológie
Úvod
V súčasnej dobe informačné a komunikačné technológie (IKT) významnou mierou
ovplyvňujú každodenný život jedinca, aj celej spoločnosti. Ich vplyv je zrejmý aj
v edukačnom prostredí Umožňujú, aby študent kládol otázky učiteľovi pomocou mailu,
umožňujú zdieľať informácie pomocou webového prostredia. Existencia rôznych on-line
aplikácií umožňuje študentom vymieňať si navzájom informácie, spoločne diskutovať, atď.
Používaním IKT vo vyučovaní sa môže zvýšiť záujem študentov o daný predmet, v ktorom sa
používajú vhodným a motivačným spôsobom. Viacerí autori uvádzajú potenciálne zvýšenie
kvality vzdelávania používaním IKT, ktoré ilustrujú a názornejšie vysvetľujú časti učiva
náročné na študentovo pochopenie (Ferrer 2002, Selinger 2004). IKT nie sú iba doplnkom
učiteľovho výkladu, ale takisto poskytujú neobmedzený prístup k informáciám, ktoré sú
prístupné pomocou internetu. Ďalšou výhodou IKT je, že učitelia, ktorí používajú počítače vo
vyučovaní nadobúdajú väčšiu sebadôveru vo vlastné schopnosti učiť (Gilmore 1995). Keďže
vo výskumných prácach prevláda názor o pozitívnom vplyve IKT na motiváciu študentov,
preto sa uvádza množstvo argumentov na použitie IKT vo vyučovaní. Ale treba mať na
pamäti jednu vec, že IKT sú len jednou z mnohých súčastí vyučovacieho procesu, ale na
druhej strane sú dôležité, pretože prinášajú do vyučovacieho procesu mnoho pozitívnych
prvkov, napríklad: rýchlosť, kapacita, prístup k obrovskému množstvu informácií,
automatické spracovanie dát, ľahkosť a jednoduchosť úpravy vykonanej práce, okamžitá
spätná väzba (Kennewell 2001).
Keďže príspevok sa zaoberá postojmi, je vhodné definovať pojem postoj k IKT, resp.
počítačom. Postoj k IKT alebo počítačom sa definuje ako hodnotenie alebo pocit náklonnosti
alebo antipatie k počítačovej technológii a aktivitám súvisiacim s počítačmi. Hodnotenie
postojov zahrňuje posúdenia, ktorými používatelia hodnotia interakciu s hardvérom,
softvérom a aktivitami, ktoré sa týkajú používania počítačov (Smith, Caputi, Rawstorne
2000).
Haunsel a Hill (1989) zistili, že študenti, pri ktorých boli vo vyučovaní používané počítače
mali pozitívnejší postoj k prírodovedným predmetom ako študenti, ktorých vyučovanie
prebiehalo tradičným spôsobom. Značná časť výskumných prác, ktoré sa venujú problematike
postojov k IKT je zameraná na zistenie rozdielov medzi chlapcami a dievčatami. Väčšina
výskumných prác uvádza pozitívnejší postoj k IKT u chlapcov v porovnaní s dievčatami.
O tejto výskumnej problematike existuje málo empirických prác zo slovenských škôl, preto
jedným z cieľom nášho výskumu bolo aspoň čiastočne doplniť chýbajúcu medzeru v tejto
oblasti. Samozrejme, ďalším z cieľov bolo zistiť, či u študentov prevažuje pozitívny alebo
negatívny vplyv k počítačom.
43
Informatika v škole č. 36/2009
Metodika
Kvôli zisteniu úrovne postojov k informačným a komunikačným technológiám u študentov
gymnázií bol vytvorený dotazník vlastnej konštrukcie. Dotazník bol rozdelený na dve
základné časti. Prvá časť obsahovala úvodné informácie, následne druhá obsahovala
demografické položky a samotné výroky zamerané na zisťovanie postojov. Dotazník
pozostával z 33 výrokov, ktoré boli zamerané na pohľad študentov na IKT. Výroky boli 5stupňové, konštruované podľa Likerta. Časť výrokov bola konštruovaná negatívne a časť
pozitívne.
Výskumná vzorka pozostávala z 518 študentov z deviatich gymnázií. Dostali sme výsledky
z každého ročníka štúdia gymnázia. Z prvého to bolo 145 respondentov, z druhého to bolo
126, najväčšiu vzorku tvorili študenti z tretieho ročníka, ktorých bolo 187 a najmenšiu
študenti štvrtého ročníka v počte 60. Vek študentov sa pohyboval v rozmedzí 15 až 19 rokov.
Priemerný vek respondentov bol 16.97 (n = 518; SD = 1,00). Počet chlapcov vo vzorke bol
196 a 322 bolo dievčat. Respondenti vyplňovali dotazník počas vyučovacej hodiny. Čas na
vyplnenie dotazníka nepresiahol 20 minút.
Výsledky
Po obdržaní dát od študentov bola vypočítaná celková reliabilita dotazníka pomocou
Cronbachovho alpha. Hodnota bola α = 0,82, čo indikuje vysokú vnútornú konzistenciu
použitého merného nástroja. Výroky v dotazníku boli rozdelené podľa ich charakteru do
piatich kategórií takto:
1.
2.
3.
4.
5.
Pozitívny vplyv IKT
Negatívny vplyv IKT
Výhody IKT
Používanie IKT v biológii
Nevýhody IKT
Ako je vidieť z grafu 1, najvyššie priemerné skóre bolo zaznamenané v kategórii „Výhody
IKT“ a „Nevýhody IKT“. Keďže všetky negatívne položky boli prekódované, znamená to, že
gymnazisti vnímajú informačné a komunikačné technológie pozitívne. Najnižšie priemerné
skóre bolo zaznamenané v kategórii „Negatívny vplyv IKT“.
44
Informatika v škole č. 36/2009
Graf 1: Priemerný počet dosiahnutých bodov v jednotlivých kategóriách
Celkovo bolo zistené, že dievčatá dosahovali priemerné skóre 3,61 (n = 322; SD = 0,60)
a chlapci skóre 3,68 (n = 196; SD = 0,54). To znamená, že chlapci majú pozitívnejší postoj
k IKT v porovnaní s dievčatami.
Okrem porovnávania výsledkov medzi chlapcami a dievčatami sme porovnávali aj dosiahnuté
skóre medzi jednotlivými ročníkmi. Najvyššie priemerné skóre dosiahli študenti druhého
ročníka (x = 3,69; n = 126; SD = 0,04) a najnižšie študenti, ktorí navštevovali v období
administrácie dotazníka tretí ročník (x = 3,60; n = 187; SD = 0,03). Na základe výsledkov
môžeme konštatovať, že študenti vnímajú informačné a komunikačné technológie pozitívne,
ako príklad je možné uviesť aj niektoré odpovede. Takmer 82 % z oslovených študentov
považuje hodiny biológie, pri ktorých sa používajú IKT, za zaujímavejšie v porovnaní
s hodinami, kde sa IKT nepoužívajú. Približne 3/4 nami oslovených študentov považuje
edukačný disk za pomôcku, ktorá môže zvýšiť úroveň kognitívneho procesu vo vyučovaní
biológie. Pozitívne je, že len 13 % študentov považuje internet za nevhodnú didaktickú
pomôcku pri vyučovaní biológie. Na druhej strane 75 % respondentov vníma internet ako
zdroj nových a neustále aktualizovaných informácií, na rozdiel od učebníc, kde sú podľa
študentov informácié zastarané a ich možnosť aktualizácie je ťažkopádna. Viac ako 85 %
študentov považuje IKT za nápomocné a dôležité vyučovacie prostriedky, ktoré majú
potenciál zvýšiť schopnosti učiť u učiteľov. Približne rovnaký počet respondentov považuje
počítače za zariadenia, ktoré nepotrebujú veľa priestoru. Študenti ich berú ako bežnú výbavu
učební. Takmer 3/4 respondentov nepovažuje IKT za znečisťovateľov ovzdušia, podľa nich
sú triedy menej prašné, keď používanie tabule a kriedy je nahradené práve používaním
výpočtovej techniky. Nadväzujúca otázka mala zistiť, či študentom vadí hluk, ktorý vydávajú
počítače. Tento jav, ktorý patrí k zapnutému počítaču, nevadí takmer 85 % študentov.
Potešiteľné zistenie je, že takmer žiadny zo študentov nemá strach z používania počítačov,
resp. informačných a komunikačných technológií.
Pri ďalších položkách už nebola frekvencia pozitívnych odpovedí, tak výrazná, ale aj napriek
tomu pozitívne odpovede prevažovali oproti negatívnym. Napríklad len 10 % študentov
45
Informatika v škole č. 36/2009
uviedlo stav nudenia sa pri používaní IKT vo vyučovaní. Zdá sa, že je to nízke číslo, ale
štvrtina respondentov sa nevedela prikloniť k žiadnej z ponúkaných možností. Vyše polovica
respondentov využíva IKT pri domácich úlohách, ako dôvod udávajú rýchlejšie vypracovanie
zadanej úlohy, v porovnaní s tým, ako keby úlohy vypracovávali bez pomoci počítača.
Niektoré položky v dotazníku sa týkali pôsobenia IKT na ľudský organizmus. Na približne
dve tretiny respondentov nepôsobia IKT vyčerpávajúco, takto pôsobia len na 11 %
oslovených, zvyšok sa nevedel prikloniť k žiadnej z ponúkaných možností. Takmer polovica
respondentov si uvedomuje poškodzovanie zraku nadmerným používaním počítača. Ale
menej, ani nie štvrtina študentov, si uvedomuje negatívny vplyv nadmernej práce za
počítačom na chrbticu. Vyše polovica opýtaných respondentov nemá problémy komunikovať
s učiteľom počas používania IKT, tento problém uviedlo cca 15 % študentov, ktorí boli
súčasťou výskumného šetrenia. Určitými otázkami sme chceli zistiť spokojnosť študentov
s vybavením školy informačnými a komunikačnými technológiami. Len 30 % respondentov
je spokojných s vybavením školy IKT a takmer dve tretiny oslovených považujú vybavenie
školy IKT za „úbohé“.
Záver
V našom výskume sme sa snažili zistiť postoje študentov k informačným a komunikačným
technológiám pri vyučovaní biológie. Na zisťovanie sme použili dotazník, ktorý obsahoval
položky likertovho typu. Položky v dotazníku boli rozdelené podľa ich charakteru do piatich
kategórií. Zistili sme pozitívnejší postoj chlapcov k informačným a komunikačným
technológiám v porovnaní s dievčatami. Nie je to nič prekvapujúce, keďže spoločnosť vníma
chlapcov technickejšie kompetentných v porovnaní s dievčatami, tiež ich vníma ako ľudí viac
zaujímajúcejších sa o informačné a komunikačné technológie. Viacero výskumných prác
uvádza dievčatá ako menej kompetentné v používaní počítačov, majú menší záujem
o informačné a komunikačné technológie a celkovo uvádza negatívnejší postoj dievčat k IKT
v porovnaní s chlapcami. Na základe týchto zistení sa do popredia dostáva otázka, ako by
mali učitelia eliminovať vznik rozdielnych postojov k IKT medzi chlapcami a dievčatami.
Bodomo (2003) navrhuje kombináciu aktivít „tvárou v tvár“ a on-line aktivitami. Vyučovanie
biológie môže byť viac zaujímavejšie, keby bola hodina prezentovaná prostredníctvom
PowerPiontu. Aj používanie softvéru s biologickou tematikou môže zvýšiť záujem študentov
o daný predmet.
Študenti, ktorí mali úlohu respondentov v našom výskume, preukázali pozitívny postoj
k informačným a komunikačným technológiám používaným vo vyučovaní biológie. Treba si
uvedomiť, že IKT môžu prispieť k záujmu o biológiu, ale na druhej strane netreba používanie
IKT preháňať, aby sa nedosiahol opačný efekt. Hlavný dôvod, prečo používať IKT vo
vyučovaní biológie je ten, že umožňujú vyučovať a robiť veci súvisiace s vyučovaním
biológie lepšie, ako bez nich. Tiež umožňujú dosiahnuť niečo, čo by bolo bez nich
nedosiahnuteľné a umožňujú učiteľom učiť a študentom učiť sa viac efektívne (Taylor,
Corrigan 2007).
Možné úspešné vyučovanie biológie, do ktorého je zahrnuté používanie informačných
a komunikačných technológií by malo obsahovať niektoré z nasledujúcich pedagogických
činností:
ciele hodiny by mali byť jasne stanovené,
učebné úlohy, ktoré majú žiaci riešiť by mali byť zrozumiteľné pre všetkých,
46
Informatika v škole č. 36/2009
časový bonus, ktorý sa získa použitím IKT by mal byť použitý kreatívne, mal by
zahrňovať intervencie k povzbudeniu diskusie,
aktivity súvisiace s IKT na hodine by nemali byť odtrhnuté od minulých hodín a učiteľ by
mal predvídať tak, aby bezprostredne na ne na ďalšej hodine nadviazal,
požiadavky na prácu študentov s IKT by mali zodpovedať ich schopnostiam.
Dôležité je vedieť, kedy IKT používať, v akom rozsahu a takisto, kedy je ich využívanie
neadekvátne.
Výskum bol podporený grantom KEGA 3/6235/08.
Milan KUBIATKO
Pedagogická fakulta MU
Centrum pedagogického výzkumu
[email protected]
Literatúra
BODOMO, A. Student Attitudes towards the Use of ICT during SARS-induced Class
Suspension - A Preliminary Report. Sars Bulletin, 2003, on-line http://www.hku.hk/cgibin/sars/message_bulletin.pl (2008-06-12).
FERRER, L. M. Computer integration in science and mathematics teaching. In H. S. Dhindsa,
I. P. A. Cheong, C. P. Tendencia & M. A. Clements. (Eds.), Realities in science, mathematics
and technical education, 2002, pp. 87−93. Gadong: Universiti Brunei Darussalam.
GILMORE, A. M. Turning teachers on to computers: evaluation of a teacher development
program. Journal of Research on Computing in Education, 1995, Vol. 27, No.3, pp. 251-269.
HAUNSEL, P.B., HILL, R.S. The microcomputer and achievement and attitudes in high
school biology. Journal of Research in Science Teaching, 1989, Vol. 26, No. 6, pp. 543 –
549.
KENNEWELL, S. Using Affordances and Constraints to Evaluate the Use of Information and
Communications Technology in Teaching and Learning. Journal of Information Technology
for Teacher Education, 2001, Vol. 10, No.1-2, pp. 101-116.
SELINGER, M. Developing and using content in technology enhanced learning
environments. In I. P. A. Cheong, H. S. Dhindsa, I. J. Kyeleve & O. Chukwu (Eds.),
Globalisation trends in science, mathematics and technical education, 2004, pp. 24−37.
Gadong: Universiti Brunei Darussalam.
SMITH, B., CAPUTI, P., RAWSTORNE, P. Differentiating computer experience and
attitudes toward computers: an empirical investigation. Computers in Human Behavior, 2000,
Vol. 16, No. 1, pp. 59 – 81.
TAYLOR, N., CORRIGAN, G. New South Wales primary school teachers’ perceptions of the
role of ICT in the primary science curriculum – a rural and regional perspective. International
Journal of Science and Mathematics Education, 2007, Vol.5, No. 1, pp. 85 – 109.
47
ORBIS
SCHOLAE
VOLUME 3 / NUMBER 2 / 2009
CHARLES UNIVERISTY IN PRAGUE – FACULTY OF EDUCATION
MASARYK UNIVERSITY – FACULTY OF EDUCATION
CENTRE FOR BASIC RESEARCH ON SCHOOLING
THEMATIC ISSUE
STUDIES ON TEACHING
AND LEARNING IN DIFFERENT
SCHOOL SUBJECTS
Guest Editors
Tomáš Janík
Educational Research Centre, Faculty of Education, Masaryk University, Brno
Pertti Kansanen
Department of Applied Sciences of Education, University of Helsinki, Finaland
___________________________________________________________
ORBIS
SCHOLAE
VOLUME 3 / NUMBER 2 / 2009
The journal Orbis scholae (ISSN 1802-4637) is published with financial support from the Ministry of
Education, Youth and Sports of the Czech Republic, by Grant No. LC06046 : “Centre for Basic Research
on Schooling”. It is published triannually (2 issues in Czech with abstracts and key words in English
and 1 issue in English).
Editor-in-Chief:
Eliška Walterová
Editorial Board:
David Greger, Tomáš Janík, Věra Ježková, Josef Maňák, Petr Najvar, Jiří Němec, Jaroslava Vašutová
International Editorial Board:
Cesar Birzea – Institute of Education Sciences, Bucharest, Romania
Botho von Kopp – Deutsches Institut für Internationale Pädagogische Forschung, Frankfurt am Main, Germany
Josef A. Mestenhauser – University of Minnesota, USA
Wolfgang Mitter – Deutsches Institut für Internationale Pädagogische Forschung, Frankfurt am Main, Germany
Pertti Kansanen – University of Helsinki, Finland
Štefan Porubský – Univerzita Mateja Bela, Slovakia
Laura B. Perry – Murdoch University, Australia
Manfred Prenzel – Leibniz Institutfür die Pedagogik der Naturwissenschaften,Kiel, Germany
Jean-Yves Rochex – Université Paris 8 - Saint-Denis, France
Renate Seebauer – Pädagogische Hochschule Wien, Austria
Rudolf Stadler – Universität Salzburg, Austria
Editorial Board contact e-mail address: [email protected]
Published by the Charles University in Prague, Faculty of Education
Address: M. D. Rettigové 4, Praha 1, 116 39, Czech Republic
Guests editor: Tomáš Janík & Pertti Kansanen
Typeset by Miroslav Albrecht
Language corrections by Andrew Oakland, Graeme Dibble, Petr Najvar
Orbis scholae ensures that all articles published in the journal have undergone rigorous peer
review, based on initial screening by the editorial committee and anonymous refereeing by two
referees who are active in the academic community.
ISSN 1802-4637
ORBIS
SCHOLAE
VOLUME 3 / NUMBER 2 / 2009
Editorial
Studies on teaching and learning in different school subjects
Tomáš Janík & Pertti Kansanen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Articles
The curious affair of pedagogical content knowledge
Pertti Kansanen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pedagogical content knowledge in sight? A comment on Kansanen
Esther M. van Dijk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Research papers
Exploring mathematics teacher knowledge for teaching: mathematics
teachers in England, France and Germany
Birgit Pepin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
On the dynamic nature of physics teachers’ pedagogical content knowledge
Tomáš Janík, Petr Najvar, Jan Slavík & Josef Trna. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
The modification of subjective theories with Viennese teacher trainees: results
from a two-year study between the first and the fourth semester of study
Renate Seebauer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Up to the garden fence or The world at primary school
Daniela Schmeinck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Pupils’ understanding of mammals: an investigation of the cognitive
dimension of misconceptions
Milan Kubiatko & Pavol Prokop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Lesson structure in different school subjects in the Czech Republic
Petr Najvar, Veronika Najvarová & Tomáš Janík . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Review
T. Janík & T. Seidel et al.: The power of video studies in investigating
teaching and learning in the classroom
Monika Černá. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Conference report
Curriculum and instruction in changing school
Simona Šebestová . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
97
PUPILS’ UNDERSTANDING OF MAMMALS:
AN INVESTIGATION OF THE COGNITIVE DIMENSION
OF MISCONCEPTIONS
MILAN KUBIATKO1, PAVOL PROKOP2
1
Educational Research Centre, Faculty of Education,
Masaryk University, Brno, Czech Republic,
2
Department of Biology, Faculty of Education,
Trnava University, Trnava, Slovakia
Abstract: The investigation of misconceptions among children is a favorite kind
of investigation among researchers. It is possible to meet with the term “cognitive
dimension of preconcept”. Misconceptions about animals have been reported in
various research reports on pupils of different ages. This cross-age study is focused
on finding misconceptions about mammals among elementary-school children of
various ages (from 10 to 15). A questionnaire consisting of 35 multiple choice and
open-ended questions was used. This questionnaire was administered to 468 children
from 6 elementary schools. We divided the questionnaire items into five categories
according to their character. We focused on finding the differences in results between
the gender and age of the respondents. We found numerous misconceptions across all
age groups. Our study provides implications for teaching biology/science especially in
the field of zoology.
Key words: misconceptions, mammals, pupils, questionnaire
Introduction
Children come into schools with their own ideas/conceptions about the world.
Children have developed conceptions about the natural world about them. They
have experiences of what happens when they drop, push, pull or throw an object,
and in this way they build up conceptions about the world around them (Driver,
Squires, Rushworth, & Wood-Robinson, 2008). Some conceptions are correct and
some are incorrect from a scientific point of view. The term “conception” denotes
a mental representation of some features of the external world or of theoretical
domains.In this paper we will present the results of research which has focused
on the investigation of pupils’ ideas about mammals. The research was carried
out among elementary schools pupils aged between 10 and 15. Some of the
children had been taught about animals and some had not. This is the reason
why the investigation was of interest; as some children could be influenced by the
surrounding world and some by using their knowledge base.
ORBIS SCHOLAE, 2009, Vol. 3, No. 2, pp. 97–112, ISSN 1802-4637
98
Milan Kubiatko, Pavol Prokop
Theoretical background
Definitions of misconception
The conceptions could be divided into two groups: preconceptions and
misconceptions. Preconceptions are those conceptions that result from informal
experiences in everyday life, whereas misconceptions are misunderstandings
that are induced through prior formal teaching (Duit, 1996). Many things play
an important role in the preconception’s creation, for example social, economic,
and religious factors. This group is called exogenous factors. Also, we know of
endogenous factors, which come from the individual psychological and biological
characteristics of each individual. The preconceptions are structured in a very
complex manner; they are not only knowledge and understanding (Richardson,
1999). Preconceptions have one important attribute; they are interactions with
other preconceptions (Nicoll, Francisco, & Nakhleh, 2001).
Škoda and Doulík (2007) suggested on the basis of investigations the following
characteristics of preconcepts. They used three descriptive categories:
1. cognitive dimension
2. affective dimension
3. conative dimension
For our purposes the most important is the first category, which is characterized
by the content and extent. Every pupil has a founded cognitive level of concept,
which is defined as the information’s quality and quantity.
A very important thing is that children’s preconceptions are stable. They
persist even after meeting with facts which contradict the children’s incorrect
preconceptions. They do not start to diminish until after multiple occurrences of
the situation in which the incorrect conception was not proved. The change from
incorrect conception to correct conception happens very slowly.
Children obtain information through all senses. Every new experience contributes
to the concept’s creation via some concrete phenomenon or object. Children have
the tendency to view objects/phenomena/situations only from their own view. This
fact influences children’s conceptions, because conceptions are represented by the
experiences of children. Gradually children have an interest in the conceptions
of other people. They have the need to share their own ideas with other people,
mainly with those, who are in the close environment (Wenham, 1995).
Wenham’s (1995) definitions of preconceptions are as follows:
 preconceptions working from experiences, not from imagination or fantasy,
 they are connected with a reality which was the basis for their creation, they
are less applicable for other situations, but what is interesting is they are
used as analogies for explanations of different phenomena
 preconceptions consist of a small amount of information which is necessary
for the creation of complex explanations
 they are connected with specific situations and are therefore impossible to
apply to similar situations
Pupils’ understanding of mammals: an investigation of the cognitive dimension of misconceptions


99
preconceptions can be influenced by other information, not only that
connected with one’s own experiences
preconceptions are expressed in a scientific way, but whose meaning is
incorrect.
There are lots of definitions for what misconceptions are. We refer only to the
information about misconceptions which is connected with our study.
Misconceptions refer to ideas formed as a result of the incorrect assimilation
of formal models or theories. Misconceptions reflect situations in which students
provide mistaken explanations of events on an intuitive basis and according
to their daily experience, lacking any informal instruction. On the other hand, a
misconceptions can be a situation in which, following formal instruction, students
still do not understand a scientific idea and they provide a mistaken explanation
(Driver & Easley, 1978).
Misconceptions are created by misunderstanding or wrongly understanding
curriculum content. These things happen when a pupil is creating a symbiosis
with a new curriculum content. Part of the knowledge from a new curriculum is
understood correctly, part is connected to a previous preconception and part of
the pupil’s knowledge remains unchanged. This last part impedes future learning.
Vosniadou (1991) demonstrated the importance of prior knowledge in the
acquisition of new information. The individual’s ability to learn something new
depends on the interaction between the information that currently exists in the
knowledge base and the new information to be acquired. And when there are
gaps in the knowledge base or when the prerequisite information has not been
activated, the result is failure in communication and in learning.
Also, misconceptions could be created from one’s own experience, incorrect
articulation or from mistakes in a text (Betkowski, 1995). Through teaching
or learning the interesting situation can occur that pupils receive a parallel
understanding of phenomena or ideas. One understanding is for school and one is
for everyday life (Gilbert, Osborne, & Fensham, 1982).
The next problem is when a pupil still believes their own preconceptions and
does not accept the teacher’s explanation (Minstrell & Smith, 1983). Similar reasons
are denoted by Duit (1996). Firstly, teachers sometimes have inaccurate conceptions
because they were not well-trained and are unfamiliar with their subject-matter
area. Secondly, inaccurate ideas survived for generations because they were taken
for granted and passed on, without any critique, from one generation of teachers
to another. Lastly, students interpret what the teacher presents to them in a totally
different way from the one the teacher intended.
The probing of misconceptions is not simple. There are two forms of diagnostic.
First is the task of teacher. He comes across different forms of the pupils’
understanding of the curriculum. The second comes from the pupil. He discovers
if his understanding of the curriculum is correct. Teachers can use a pupil’s work.
A teacher can observe the procedure of a pupil’s work. Teachers can investigate a
pupil’s outlines, drawings, written records, calculations etc.
100
Milan Kubiatko, Pavol Prokop
Hewson (1981) created a set of principles which could be used in the
misconceptions’ elimination process. The principles are as follow:
1. The teacher must introduce a contradiction with the original idea in the mind of
the pupil. The pupil must be made aware that his original idea was wrong.
2. The new theme must be clear and comprehensible for the pupil. The pupil must
understand the curriculum in order to be able to think about it.
3. The explanation of the curriculum must be believable, plausible and acceptable
for the pupil. When these conditions are fulfilled, there is the presumption that
the pupil will start to accept new ideas.
4. The new curriculum must be useful and usable for pupils. The new information
must be better for the pupil for problem solution.
Lazarowitz and Lieb (2005) stipulate that meaningful learning will occur when a
new concept to be learnt will be integrated with the relevant ideas and concepts
which had previously been learned. Students have to integrate new ideas or a
new concept into their existing cognitive structure. Without this integration, rote
learning will take place, the memory will be short lasting and transfer skills will not
be mastered.
Misconceptions have some important characteristics: they are found in males
and females of all ages, abilities, social classes and cultures; they are often resistant
to conventional teaching approaches; they interact with knowledge presented by
teacher; they resemble the ideas of previous generations of natural philosophers;
they serve a useful function in the everyday lives of people; they are the product of
direct observation, everyday language, the mass media and peer culture and they
are found frequently among teachers as well as students (Mintzes, 2003).
Research in the field of misconceptions
Nowadays there is a lot of research connected with misconceptions in zoology.
The study which focused on the investigation of misconceptions about mammals
was by Kubiatko and Prokop (2007). The authors were focused on finding
misconceptions in age related differences in knowledge of mammals. Other
studies are oriented towards the classification of animals, a knowledge of the
anatomical structure of animals, life cycles of insects etc. For example Shepardson
(1997) found problems with the determination of insect life cycles. Similar research
by Tamir, Gal-Chappin and Nussnovitz (1981) focused on life cycles, but in this
case on butterflies. They found pupils had the correct ideas about life cycles, but
pupils believed that a pupa was dead, when it was without any manifestation of
movement. Barrow (2002) investigated pupils’ ideas about insects. The author
found several misconceptions. For example pupils drew an internal skeleton for an
insect. Pupils knew only the adult phase of an insect’s life cycle.
Other research has been aimed at finding the ability to differentiate between
vertebrates and invertebrates. They found that when an animal has a head,
Pupils’ understanding of mammals: an investigation of the cognitive dimension of misconceptions
101
extremities and an external skeleton, it is a vertebrate. An external skeleton was
assigned to vertebrates by 7- and 9 year-old pupils. A frequent feature with this
group of pupils, which is related to vertebrates, is the occurrence of a carapace.
This age group of children classified eels and snakes as invertebrates. The reason
is that the body of these animals is able to twist (Braund, 1991; Ryman 1974 a, b;
Trowbridge & Mintzes 1985).
Braund (1996) found in his research that pupils do not have a problem with the
identification of large mammals like elephants as vertebrates. But pupils in his
research have problems with the identification of birds. Many children consider
birds to be invertebrates because they have light bodies and are able to fly.
Tunnicliffe et al. (2008) found an ability to classify animals at kindergarten age
and the first year of compulsory education for children. The percentage of children
able to classify animals corresponded corrrectly with age. Kindergarten children
had problems in classifying spiders, dolphins and ladybirds. More than half of
the children wrote that they were not animals. It is interesting that the authors
discovered that pupils thought that the dolphin was not an animal but a fish. This
finding is connected with the work of Carey (1985) that marine life is isolated and
distinguished from the other animals because their natural habitat is in the sea.
Similar research was carried out by Braund (1991) into the classification of
vertebrates and invertebrates. The highest level of response for “vertebrate” occurs
for animals with a well defined head and limbs or having a body that is rigid. This
feature of rigidity is also more often referred to by younger pupils. The association
with invertebrate is strongest for those instances lacking appendages (snail and
earthworm). In Braund’s study, penguins are often misclassified as mammals while
some pupils identified a penguin as a fish. The justifications used by younger
children for classifying the penguin as a mammal are split between body covering,
viviparity, and homoithermy.
Kattmann (2001) found that classifying animals by habitat was the most common
for pupils from all grades of study. The second significant criterion was the different
types of locomotion. Morphological and anatomical criteria played a minor role in
the classification of animals.
Randler et al. (2007) found an increase in knowledge about animals with the age
of respondents, but in their research there was no significant difference in results
between genders.
Yen et al. (2004) showed that pupils and students had problems with amphibians
and reptiles in their research. The turtle was classified as an amphibian by a
significant percentage of students; the reason was due to its aquatic and terrestrial
habits. A crocodile was considered to be an amphibian too by students of all
age levels. This misconception was due to students’ perceptions of the external
morphological features of crocodiles, especially segmentation, body covering and
appendages. Some vertebrates were classified as invertebrates because they lack
obvious external segmentation and limbs.
102
Milan Kubiatko, Pavol Prokop
Methods
Purpose of study
This study investigates of pupils’ misconceptions about mammals. In the strict
meaning our investigation could be classified as an investigation of the cognitive
dimension of preconceptions according to Škoda and Doulík (2007), but we were
inspired by science articles focused on this area of research which were written in
English. The pupil verifies a cognitive level of the preconcept with their own view
and with the adjusted level of a pupil’s knowledge and understanding. It means
that the cognitive dimension of preconcepts can include incorrect information.
Diagnostic tools have to be able to discover these incorrect ideas. A similar study
focusing on the influence of age on pupils’ knowledge about mammals has
already been published (Kubiatko & Prokop, 2007), so the main aim is to focus on
finding differences between gender in pupils’ knowledge of mammals. The aims
of our study were as follows: What are pupils’ ideas about mammals in elementary
school18? How much do children’s ideas about mammals change from fifth to ninth
grade? Are there any gender differences in ideas about mammals?
The instrument
The measurement tool consists of 35 open-ended and multiple-choice items. In
open-ended items we expected one word answer or short sentences. Only in the
question “Why do beavers gnaw trees?” did we expect a relatively longer answer
in comparison with the others. Not all of the multiple-choice questions had the
same number of possibilities. The number of possibilities were from two to five.
Only one possibility was correct. Before the administration of the questionnaire,
it was checked by experts in zoology (two professors of zoology from different
universities) and two biology teachers. Questions in the questionnaire were
divided into five categories, namely: 1. Animal classification and phylogeny; 2.
Food; 3. Foraging strategies; 4. Parental care; 5. Senses, morphology and anatomy.
The answers were binary coded. Incorrect answers were marked by the number 0
and correct answers by the number 1. The questionnaire included demographic
variables like gender, class and age. The time for filling in the questionnaire was no
longer than 30 minutes. The full version of the questionnaire can be provided by
the authors on demand.
Participants
We obtained 468 completely filled questionnaires from pupils of six typical
elementary schools in Slovakia. All grades were included in the investigation. The
numbers of grades were as followes 5th grade (n = 83), 6th grade (n = 86), 7th
grade (n = 112), 8th grade (n = 86) and 9th grade (n = 101). The age of pupils varied
18 According to ISCED – lower secondary education.
103
Pupils’ understanding of mammals: an investigation of the cognitive dimension of misconceptions
from 10 to 15 (n = 468; Χ = 12.62; SD = 1.47).
The number of boys (n = 229) and number of girls (n = 239) was similar.
Statistical procedure
After recoding the obtained data, we evaluated the items of the questionnaire by
percentage. Then we calculated the average and standard deviation and summary
score for each dimension. For finding the differences in results between genders
we used the Pearson chi-square test (χ2) and the MANCOVA test. We presented the
differences among grades in our previous study, and therefore, did not explore this
in this study. Our focus was on presenting pupils’ interesting ideas about mammals
and showing the results between genders. On the measure of reliability of the
questionnaire, Cronbach’s alpha calculation was used. The values of Cronbach’s
alpha close around 0.7 or higher, which generally indicate that results are consistent
(Nunnaly 1978).
Results
Statistical evaluation of categories
Based on the distribution of correct and incorrect responses, we found out
the maximum number of points acquired from the questionnaire was 34 and
the minimum was 8. The average score was 22.84 (n = 468; SD = 4.22). The value
of Cronbach’s alpha was α = 0.67. This value indicates that the questionnaire
marginally reaches the appropriate reliability.
The descriptive statistic for the mean success that pupils acquired from the
questionnaire is shown in Table 1.
Table 1: Basic statistics of questionnaire categories
Categories
Number of questions
N
X
%
SD
Animal classification and
phylogeny
9
468
5.66
62.89
1.64
Food
9
468
6.46
71.78
1.45
Foraging strategies
3
468
2.01
67.00
0.77
Parental care
4
468
2.49
62.25
1.01
Senses, morphology and
anatomy
10
468
6.61
66.10
1.44
N – number of respondents
X – average number of points
SD – standard deviation
104
Milan Kubiatko, Pavol Prokop
The highest average score was found for the category “Food”. Only in this
category was there found a percentage success higher than 70 %. The lowest score
achieved was in the category “Parental care”, where the percentage success was
62.25 %.
We found pupils of the 8th grade achieved the highest average score in animal
classification and phylogeny; parental care and foraging strategies dimensions.
Pupils of the 7th grade achieved the highest average score in the two remaining
categories. A statistically significant difference in the results between the ages
of students was found in the following categories: Animal classification and
phylogeny; Food and Parental care. More detailed information about the influence
of age on misconceptions about mammals is in our previous study (Kubiatko &
Prokop, 2007).
We focused on the differences in results between genders. For this we used the
MANCOVA test. Gender was used as an independent variable, the category results
as dependent variables and age as a covariate. The total influence of age on results
was not statistically significant (F = 1.54; p = 0.17; Wilks’ λ = 0.98) and we found out
statistically significant differences in results between gender (F = 7.41; p < 0.001;
Wilks’ λ = 0.93). A more detailed view of results shows that in some categories there
was no statistically significant difference in results (foraging strategies and senses,
morphology and anatomy) between genders and in one category the influence of
age on results was significant, specifically in parental care (table 2).
Table 2: Detailed results of a multivariate analysis of covariance (MANCOVA)
Categories
F(gender)
F(age)
Animal classification and phylogeny
14.94***
1.78
5.18*
2.42
1.68
0.59
10.73**
4.64*
1.78
0.00
Food
Foraging strategies
Parental care
Senses, morphology and anatomy
* statistically significant difference p < 0.05
** statistically significant difference p < 0.01
*** statistically significant difference p < 0.001
Gender differences
In figure 1 we are able to see that boys achieved higher scores in almost all
categories. Only in the last category named “Senses, morphology and anatomy”
did girls achieve a higher average score in comparison with boys. A statistically
significant difference in results between genders by the use of the Pearson chisquare test in the items was found only in four items. In all four categories girls
achieved a higher score than boys. Two of them belong to the category “Food”. In
Pupils’ understanding of mammals: an investigation of the cognitive dimension of misconceptions
105
the first we asked pupils what was the dominant component of hedgehogs’ food.
We found a statistically significant difference in the results between genders (χ2 =
8.86; p < 0.01). The total number of correct answers was relatively high - 81.84 %
of all answers were correct, whereby pupils wrote down that a hedgehog’s food
included worms, snails, etc. In the next question, belonging to the category “Food”,
we were interested in why beavers gnawed trees. We expected the main reason
to be the building of barriers, a source of food, teeth corrosion. We found that 90
% of all answers were correct and we found a statistically significant difference in
the results between genders (χ2 = 4.07; p < 0.05). The next statistically significant
difference in the results was found in the item relating to the flying squirrel.
We wanted to know how well pupils would be able to identify this animal; the
possibilities were a mammal, a bird and an amphibian. Only 42.95 % wrote the
correct answer that the flying squirrel was a mammal, and the majority of incorrect
answers was that a flying squirrel was a bird. A statistically significant difference in
the results was with the girls (χ2 = 6.22; p < 0.05). In the item where we asked,which
of following animals: a whale; a penguin; a flying squirrel, does not belong among
the mammals, we found a statistically significant difference in the results between
genders (χ2 = 4.15; p < 0.05). The penguin was correctly identified as the animal
which belongs to another group of animals by only 32.91 % of respondents. The
majority of incorrect answers were assigned to the flying squirrel. These two items
belong to the category “Animal classification and phylogeny”.
0,80
0,75
average score
0,70
0,65
0,60
0,55
0,50
girls
boys
gender
Figure 1: Average score of dimensions
animal classification
food
foraging strategies
parental care
senses, morphology
and anatomy
106
Milan Kubiatko, Pavol Prokop
The most problematic questions
When we focused on the responses of some items in the separate categories,
we observed some interesting results. In the first category, respondents had
problems with the identification of animals relating to dinosaurs. Only 40.69 %
of all respondents wrote the correct answer that birds are most closely related to
dinosaurs. The majority of pupils (50.85 %) considered mammoths for the animals
as being most closely related to dinosaurs. Children had problems with the name
of a female deer, 48.93 % of all children named a female deer correctly – a hind. The
most quoted incorrect answer was doe (female roe deer) – 42.74 %.
In the category “Food”, respondents had considerable problems with the food
of wild boars. Only 21.58 % of pupils gave the correct answer that wild boars are
omnivores. We found a spectrum of incorrect answers, for example wild boars are
herbivore animals or they feed on acorns, potatoes or roots of plants. Pupils had
fewer problems with the food of whales’ young. Approximately half of respondents
answered correctly that the young of whales suckle milk and a similar number of
pupils wrote plankton as a source of food.
In the category “Foraging strategies”, pupils had problems with how lions hunt.
Less than half of respondents wrote that lions hunt in groups, which is the correct
answer. The majority of pupils thought that lions hunt prey alone by stalking. The
next question, which belongs in this area, was similar to the previous one. We asked
about the typical behavior of a lynx when hunting. Approximately 2/3 answered
correctly. The lynx grab the prey from behind. According to 1/3 of children, the lynx
hunts prey alone by stalking. Pupils did not have problems with identifying animals
which hunt in groups. From the following possibilities: a fox, a lynx, a wolf, a bear,
90.60 % correctly marked a wolf.
In the category “Parental care”, pupils had the biggest problem with who takes
care of a deer’s young. More than half of children wrote the female, which is the
correct answer. But 41.88 % showed both parents. There were problems with a
similar question when we asked about a wolf’s parental care, where 56.84 % of
children wrote both parents take care of the young. It was the correct answer, but
the majority of incorrect (37.61 %) answers attributed this task to the female wolf.
In the last category pupils had problems with the reason for brown bears
hibernating. Only approximately half of respondents wrote correctly that it is due
to lack of food. Other responses, which were incorrect, of course, were different.
Pupils wrote down cold, exhaustion, because it has to, as reasons for brown bears
hibernating. The next problem item was to answer how a horse steps when it is
walking. The horse steps on the last phalanxes of the hoofs was the answer of 39.10
%, which was correct, but the majority answered incorrectly, that the the horse
steps when walking on the whole hoof. Pupils did not have the right idea about
how dolphins breathe. Approximately 1/3 showed that dolphins breathe through
lungs. The incorrect answers were distributed among branchias, lung sacks and
air sacks. The biggest problems pupils had with camels was specifically with the
contents of the camel’s hump. Only 19.66 % of all pupils wrote that there is fat
Pupils’ understanding of mammals: an investigation of the cognitive dimension of misconceptions
107
in the hump, while others wrote that the hump contains water, which is a typical
misconception.
Discussion
This study was concerned with finding misconceptions among pupils about
mammals. The term misconception is generally used in scientific literature, but
sometimes this term is substituted by the “cognitive dimension of preconcept”
(Škoda & Doulík, 2007). And we are able to confirm that elementary pupils had
serious problems with several mammals. In our previous study we focused on class
differences in results (Kubiatko & Prokop, 2007).
We found that pupils of the 8th grade achieved the highest average score
in animal classification and phylogeny; parental care and foraging strategies
dimensions. Pupils of the 7th grade achieved the highest average score in the two
remaining areas. Young children’s biological knowledge is significantly affected by
early experiences with live organisms or with themselves (Jaakkola & Slaughter,
2002). A statistically significant difference in the results between ages of students
was found in these categories: Animal classification and phylogeny; Food and
Parental care. In this study we focused on finding significant differences in results
between genders.
We divided the items in the questionnaire into five different categories according
to the character of items as follows: 1. Animal classification and phylogeny; 2. Food;
3. Foraging strategies; 4. Parental care; 5. Senses, morphology and anatomy. We
found a statistically significant difference in the results between genders without
an age influence. In summary, boys achieved higher score than girls. Only in the
category Senses, morphology and anatomy did girls achieve higher score than
boys.
By a detailed analyses the influence of age was presented in the category
“Parental care” and no statistically significant difference was found in the two
categories: “Foraging strategies” and “Senses, morphology and anatomy”. Similarly
statistically significant results between genders can be observed in studies of a
similar nature (Randler, 2008).
A more detailed analyses showed us that pupils have problems in identifying
mammals. There were problems with the identification of the flying squirrel.
The majority of children mistook this kind of mammal for a bird. This finding
confirmed the findings of other authors that use the criterion of locomotion for the
classification of animals (Markham, Mintzes, & Jones, 1994).
In the studies which were concerned with the concept of animal the investigators
were interested in the scientific meaning of the term. Students developed their
own categories. Students’ reasons for the classification or characterization of an
organism as an animal were found to be that of distinguishing between mammals
and other “creatures”. Students used criteria like a habitat, or locomotion, or
number of legs (Bell, 1981; Tema, 1989). The influence of habitat was presented by
the questions about classifying whales, platypus or mammoths.
108
Milan Kubiatko, Pavol Prokop
The children in our research had problems with the dolphin. Only one third of
pupils knew that the dolphin breathes through lungs. There is the influence of
habitat in identifying animals. Tunnicliffe et al. (2008), have had similar findings – In
their investigation a number of children recognized the dolphin as an animal, but
many respondents classified the dolphin as a fish, not an animal. This conception
may have arisen from the teaching about fish in a separate context from being
members of the animal kingdom (Tunnicliffe et al., 2008). Our respondents had
problems with the contents of a camel’s hump, where only 1/5 answered correctly
that it is fat. Other pupils wrote water.
Pupils had problems with the foraging strategies question. The lowest problems
they had were with animals which live in Slovakia (wolf, lynx) in comparison to
animals which live in another continent (lion). Some pupils had problems with
the reason for brown bears hibernating, hedgehogs’ food, whales’ youngs’ food
etc.
Many of these misconceptions are created in the preschool age of pupils.
These mistakes are often created from pictures in book, from tales which are
read by parents to their children. There is no problem to find a picture of fruit on
a hedgehog’s spines. Or we can read about a camel which crossed the Sahara
because it had water in its hump. All tales about brown bears contain information
that the brown bear must sleep all winter because it is cold outside with snow and
frost, and halfway through winter the brown bear turns its body round on the other
side. Children are influenced too much by incorrect information, which can arise
from different media.
Tunnicliffe and Reiss (1999) found home to be one of the most important sources
of information about animals for elementary aged children. Children interpret the
world and physical phenomena for themselves and hold various representations of
the world. Sources of animal knowledge apart from previous learning at school are
out-of-school activities in terms of informal, free-choice learning which influences
learning about animals. Such informal learning takes place in zoos, museums, parks
and aquariums (Falk, 2005).
Solomon (1987) points out that a greater amount of information is culled from
the media in an incidental, unintentional, casual fashion, where there is exposure
to information through watching television programmes. Watching TV programs
about animals and nature received almost a similar proportion compared to
learning about animals in school (Bjerke, Kaltenborn, & Ødegardstuen, 2001).
Conclusion
In our research we focused on the investigation of pupils’ understanding of
animals, namely mammals. We found a statistically significant difference in the
results between genders and evaluated items focused on finding which questions
cause the biggest problems for students. We found several misconceptions in all
of the categories. On the basis of these results we could suggest some educational
recommendations:
Pupils’ understanding of mammals: an investigation of the cognitive dimension of misconceptions
109
 use more pictures in the teaching process because textbooks are predominately
text-based as opposed to having photographs
 focus on atypical kinds of mammals (whales, bats, platypus) and bring attention
to their attributes, why these kinds of mammals are classified as mammals
 the visual part of the teaching process is very important, children should be in
contact with nature as often as possible.
 teach more about exotic mammals – due to children’s better ability to picture
mammals, show that in other countries there are mammals which may be
different to Slovakian ones
 try to connect the present time with phylogenetic development, not only to
teach about animals today, but also about extinct mammals
 since a knowledge deficiency within issues seems to continue throughout various
educational levels, it makes good sense to develop appropriate techniques that
help the students to improve their understanding of the curriculum (Bozkurt et
al., 2005).
We believe that our study gives new information for the investigation of
misconceptions and will help pedagogical workers in the teaching process.
Acknowledgement
We would like to express great thanks to Scott Lamphear for language
corrections. The study was carried out within financial support from the Ministry of
Education, Youth and Sports of the Czech Republic, by Grant No. LC06046: “Centre
for Basic Research on Schooling” and project KEGA 3/6235/08 “The terminological
lexicon of animals’ biology”.
References
Barrow, L.H. (2002). What do elementary students know about insects? Journal of
Elementary Science Education, 14(2), 5-56.
Bell, B. (1981). When an animal is not an animal. Journal of Biological Education,
15(3), 213-218.
Betkowski, M. (1995). Misconceptions – their importance in the learning of science.
http://www.eiu.edu/~scienced/5660/options [2008-10-10].
Bjerke, T., Kaltenborn, B.P., & Ødegardstuen, T.S. (2001). Animal-related activities
and appreciation of animals among children and adolescents. Anthrozoös, 14(2),
85-94.
Bozkurt, O., Aydin, H., Yaman, S., Usak, M., & Gezer, K. (2005). Sixth, seven and eighth
year students’ knowledge levels about greenhouse effect, ozone layer and acid
rain. Mediterranean Journal of Educational Studies, 10(2), 81-95.
Braund, M. (1991). Children’s ideas in classifying animals. Journal of Biological
Education, 25(2), 103-110.
110
Milan Kubiatko, Pavol Prokop
Braund, M. (1996). Snakes can’t have backbones – can they? Primary Science Review,
44(1), 20-22.
Carey, S. (1985). Conceptual change in childhood. Cambridge: Bradford Books, MIT
Press.
Driver, R., & Easley, J. (1978). Pupils And Paradigms: A Review of Literature Related
to Concept Development in Adolescent Science Students. Studies in Science
Education, 5(1), 61-84.
Driver, R., Squires, A., Rushworth, P., & Wood-Robinson, V. (2008). Making sense of
secondary science: Research into children’s ideas. New York, NY: Routledge.
Duit, R. (1996). Preconceptions and Misconceptions. In De Corte, E., & Weinert, F.
(Eds.), International Encyclopedia of Developmental and Instructional Psychology
(pp. 455-459). Oxford, UK: Elsevier.
Falk, J.H. (2005). Free-choice environmental learning: framing to discussion.
Environmental Education Research, 11(3), 265-280.
Gilbert, J. K., Osborne, R. J., & Fensham, P.J. (1982). Children’s science and its
consequences for teaching. Science Education, 66(4), 623-633.
Hewson, P.W. (1981). A conceptual change approach to learning. European Journal
of Science Education, 3(4), 398-396.
Jaakkola R.O., & Slaughter V. (2002). Children’s body knowledge: Understanding ‘life’
as a biological goal. British Journal of Developmental Psychology, 20(3), 325-342.
Kattmann, U. (2001). Aquatics, flyers, creepers and terrestrials – students’
conceptions of animal classification. Journal of Biological Education, 35(3), 141147.
Kubiatko, M., & Prokop, P. (2007). Pupils’ misconceptions about mammals. Journal of
Baltic Science Education, 6(1), 5-14.
Lazarowitz, R., & Lieb, C. (2006). Formative assessment pre-test to identify college
students’ prior knowledge, misconceptions and learning difficulties in biology.
International Journal of Science and Mathematics Education, 4(4), 741-762.
Markham, K.M., Mintzes, J.J., & Jones, M.G. (1994). The concept map as research
and evaluation tool: Further evidence of validity. Journal of Research in Science
Teaching, 31(1), 91-101.
Minstrell, J., & Smith, C. (1983). Alternative conceptions and a strategy for change.
Science and Children, 21(3), 31-32.
Mintzes, J.J. (2003). Understanding and conceptual change: An international agenda
from a Human Constructivist perspective. In Proceedings of the International
Conference on Science and Mathematics Learning (pp. 110-116). Taipei.
Nicoll, G., Francisco, J.S., & Nakhleh, M.B. (2001). An investigation of the value of
using concept maps in general chemistry. Journal of Chemical Education, 78(8),
1111-1117.
Nunnaly, J. (1978). Psychometric theory. 2nd edition. New York, NY: McGraw-Hill.
Randler, C. (2008). Pupils’ factual knowledge about vertebrate species. Journal of
Baltic Science Education, 7(1), 48-54.
Randler, C., Höllwarth, A., & Schaal, S. Urban park visitors and their knowledge of
animal species. Anthrozoös, 20(1), 65-74.
Pupils’ understanding of mammals: an investigation of the cognitive dimension of misconceptions
111
Richardson, J.T.E. (1999). The concepts and methods of phenomenographic
research. Review of Educational Research, 69(1), 53-82.
Ryman, D. (1974a). Children’s understanding of the classification of living organisms.
Journal of Biological Education, 8(3), 140-144.
Ryman, D. (1974b). The relative effectiveness of teaching methods on pupils’
understanding of the classification of living organisms at two levels of
intelligence. Journal of Biological Education, 8(4), 1974b, 219-223.
Shepardson, D. (1997). Of butterflies and beetles: First graders’ ways of seeing and
talking about insect life cycles. Journal of Research in Science Teaching, 34(9), 873890.
Solomon, J. (1987). Social influences on the construction of pupils’ understanding
of science. Studies in Science Education, 14(1), 63-82.
Škoda, J., & Doulík, P. (2007). Children’s Concepts Research of Selected Common
Phenomena from Physics and Chemistry at Elementary Schools. Science
Education in a Changing Society, 1, 106-112.
Tamir, P., Gal-Chappin, R., & Nussnovitz, R. (1981). How do junior high school
students conceptualize intermediate and living and nonliving. Journal of
Research in Science Teaching, 18(3), 241-248.
Tema, B.O. (1989). Rural and urban African pupils’ alternative conception of “animal”.
Journal of Biological Education, 23(3), 199-207.
Trowbridge, J.E., & Mintzes, J.J. (1985). Students’ alternative conceptions of animals
and animal classification. School Science and Mathematics, 85(4), 305-316.
Tunnicliffe, S.D. & Reiss, M.J. (1999). Building a model of the environment: how
children see animals. Journal of Biological Education, 33(4), 142-148.
Tunnicliffe, S.D., Gatt, S., Agius, C., & Pizzuto, S.A. (2008). Animals in the lives of
young Maltese children. Eurasia Journal of Mathematics, Science & Technology
Education, 4(3), 215-221.
Vosniadou, S. (1991). Designing curricula for conceptual restructuring: lessons from
the study of knowledge acquisition in astronomy. Journal of Curriculum Studies,
23(3), 219-237.
Wenham, M. (1995). Understanding Primary Science. London: Paul Chapman
Publishing Ltd.
Yen, C.F., Yao, T.W., & Chiu, Y.C. (2004). Alternative Conceptions in Animal Classification
Focusing on Amphibians and Reptiles: A Cross-Age Study. International Journal
of Science and Mathematics Education, 2(2), 159-174.
133
Notes on contributors
Monika Černá – Department of English and American Studies, Faculty of Arts
and Philosophy, University of Pardubice, Studentská 84, 532 10 Pardubice, Czech
Republic, E-mail: [email protected]
E. M. van Dijk – Didaktisches Zentrum, Carl von Ossietzky University Oldenburg,
26111 Oldenburg, Germany, E-mail: [email protected]
Tomáš Janík – Educational Research Centre, Faculty of Education, Masaryk
University, Poříčí 31, 603 00 Brno, Czech Republic, E-mail: [email protected]
Pertti Kansanen – Department of Applied Sciences of Education, Faculty of
Behavioural Sciences, University of Helsinki, P.O.Box 9 (Siltavuorenpenger 20R),
FIN-00014 Helsinki, Finland, E-mail: [email protected]
Milan Kubiatko – Educational Research Centre, Faculty of Education, Masaryk
University, Poříčí 31, 603 00 Brno, Czech Republic, E-mail: [email protected]
Petr Najvar – Educational Research Centre, Faculty of Education, Masaryk
University, Poříčí 31, 603 00 Brno, Czech Republic, E-mail: [email protected]
Veronika Najvarová – Educational Research Centre, Faculty of Education, Masaryk
University, Poříčí 31, 603 00 Brno, Czech Republic, E-mail: [email protected]
Birgit Pepin – Høgskolen i Sør-Trøndelag (University College Trondheim), Avd. for
lærer- og tolkeutdanning, 7004 Trondheim, Norway, [email protected]
Pavol Prokop – Department of Biology, Faculty of Education, Trnava University,
Priemyselna 4, P.O. BOX 9, 918 43 Trnava, Slovakia, E-mail: [email protected]
Renate Seebauer – University of Education Vienna, Grenzackerstraße 18, 1100
Wien, Austria, E-mail: [email protected]
Daniela Schmeinck – Department of Social and Scientific Studies in Primary
Education, University of Education Karlsruhe, Bismarckstrasse 10, 76133 Karlsruhe,
Germany, E-mail: [email protected]
Jan Slavík – Department of Art Culture, Faculty of Education, The University of West
Bohemia, Univerzitní 22, 306 14 Pilsen, Czech Republic, E-mail: [email protected]
134
Simona Šebestová – Educational Research Centre, Faculty of Education, Masaryk
University, Poříčí 31, 603 00 Brno, Czech Republic, E-mail: [email protected]
Josef Trna – Department of Physics, Faculty of Education, Masaryk University, Poříčí
7, 603 00 Brno, Czech Republic, E-mail: [email protected]
Computers in Human Behavior 25 (2009) 743–748
Contents lists available at ScienceDirect
Computers in Human Behavior
journal homepage: www.elsevier.com/locate/comphumbeh
Slovak high school students’ attitudes to ICT using in biology lesson
Milan Kubiatko a,*, Zuzana Haláková b
a
b
Faculty of Education, Masaryk University, Educational Research Centre, Porici 31, 603 00 Brno, Czech Republic
Faculty of Natural Sciences, Comenius University, Department of Didactic in Sciences, Psychology and Pedagogy, Mlynská dolina, 842 15 Bratislava 4, Slovakia
a r t i c l e
i n f o
Article history:
Available online 6 March 2009
Keywords:
Attitudes
Information and communication
technologies
Biology
Students
Questionnaire
a b s t r a c t
The impact of information and communication technologies and computers on our daily lives has been
steadily increasing. This fact influences the change of attitudes toward information and communication
technologies. In our contribution we focused on finding the differences between gender and age according to computer attitudes. A questionnaire with 33 Likert type items was used in our research. The sample consists of 518 students from 9 high schools. Students attended the all of grades (first, second, third
and fourth). They were 15- to 19-years old. Data were evaluated with factor analysis and the ANOVA. The
results of the questionnaire were divided into five dimensions in the concrete. (1) The positive influence
of ICT; (2) the negative influence of ICT; (3) advantages of ICT; (4) ICT used in biology lesson; (5) disadvantages of ICT. Totally, boys have more positive attitudes than girls and the younger students had more
positive attitudes toward information and communication technologies using in biology lesson in comparison with the older students.
Ó 2009 Elsevier Ltd. All rights reserved.
1. Introduction
The recent time is influenced by an intensive usage of information and communication technologies. These technologies extend
into everyday life of people; they make easier a lot of things. Their
influence is obvious in educational process, for example students
can pose questions to teacher through web, but they also use internet to interact with one another. Students have used the discussion
sites to share data, collaborate on assignments, etc (Brewer, 2003).
Osborne and Hennessy (2001) reported that ICT enhances the
effectiveness of information presentation and also stimulates students’ interest. Moreover, Selinger (2004) claimed that ICT can improve the quality of education because multimedia content helps
to illustrate and explain difficult concepts in ways that were previously inaccessible through traditional teaching resources and
methodologies. Similarly, Ferrer (2002) reported that the use of
multimedia approach such as interactive CD ROM, PowerPoint presentation and graphing software had been successful in generating
conceptual understanding in students. The potential benefits of
using ICT in teaching and learning are immense. The use of ICT
has greatly transformed the outcomes of teaching and learning
experience in classrooms. It does not only supplement and/or complement teacher instructional processes but also offers unlimited
access to knowledge and information that is readily available
through the internet. Another benefit is that teachers who use
* Corresponding author. Tel.: +420 549 49 4885.
E-mail addresses: [email protected] (M. Kubiatko), [email protected]
(Z. Haláková).
0747-5632/$ - see front matter Ó 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.chb.2009.02.002
computers in teaching were found to increase their confidence level in teaching (Gilmore, 1995). Yu (1998) used a computer assisted instruction and found that it increased students’
performance and attitudes towards science.
We can assume that ICT increases student motivation, what is
seen in many arguments for why ICT should be used in schools.
There are a lot of assumptions that students are interested in using
ICT; they found it more pleasant, more appealing, and more motivating to study with computers than with traditional means. But
we always keep in mind, that ICT is just one component of the
teaching process, but it is particularly important because of the
special features brought to the learning and application of other
subjects in the school curriculum, such as: speed, capacity and
range of access to information; automatic processing of data; ease
of amendment of work carried out; immediate feedback to the
learner (Kennewell, 2001).
Cooper and Brna (2002) reported evidence that pleasure and
variety kept students engaged and motivated. Further, since students worked happily and would less easily lose motivation, the
teacher had more time to help individuals. Cooper and Brna made
conclusion that if ICT is carefully planned and pedagogically implemented, it can support relationships and motivation that in turn
support long-lasting engagement and learning. McKinnon, Nolan,
and Sinclair (2000) found that students in their experimental
group became enthusiastic computer users and performed significantly better compared to the ones in the non-experimental group.
However, during the 3 years time, their attitudes towards computers became significantly less positive, which is caused by computers becoming such a routine part of the studying (like pens, for
744
M. Kubiatko, Z. Haláková / Computers in Human Behavior 25 (2009) 743–748
example) that they lose their halo effect. The authors suggested
that ICT can be compelling, but only quality of curriculum programs in which the technology is implemented makes the real difference between students’ attitudes, motivation, and performance.
The everyday encountering and using of ICT has entail an influence on an interaction between humans and computers. The successful integration of computers in educational environments
depends, to a great extent, on teachers’ and students’ attitudes towards them (Selwyn, 1999). The attitude is defined as a positive or
negative sentiment, or mental state, that is learned and organized
through experience and that exercises a discrete influence on the
affective and conative responses of an individual toward some
other individual, object or event (Ajzen & Fishbein, 1980). The earliest research that examined attitudes toward computers was conducted by Lee (1970). He identified two dimensions of attitude: (1)
the beliefs in the computer as a beneficial tool and (2) beliefs that
the computers are autonomous entities.
Computer or ICT attitude has been defined as a person’s general
evaluation or feeling of favor or antipathy toward computer technologies and specific computer related activities. Computer attitude evaluation usually encompasses statements that examine
users’ interaction with computer hardware, computer software,
other persons relating to computers, and activities that involve
computer use (Smith, Caputi, & Rawstorne, 2000). Winter, Chudoba, and Gutek (1998) found a correlation between attitude toward
technology and number of hours spent using a computer. Winfred
(1991) quotes in his study that initial computer experiences may
play role in the formation of computer attitude.
Dorup (2004), in a study of undergraduate medical students in
Denmark, found that most students had access to computers at
home as well as used email and the internet regularly. In addition,
Dorup (2004) found that in his sample, males had more access to
computers at home, and held more favorable attitudes towards
the use of computers in their medical studies compared to females.
A small proportion of students reported that they would prefer not
to use computers in their studies. Males were also significantly
more inclined to replace traditional teaching activities with better
ICT resources. Finally, there were favorable attitudes toward the
use of ICT as a supplement, as opposed as to use ICT or distance
education as a replacement to traditional teaching activities.
Kaplan (1994) reported that while female users of office personal computers (PCs) believe computers are fun, men buy the machines. Men, on the other hand, are reportedly more interested in
mastering computer commands and they want to own computers
with voice recognition and features that extend their senses. Women want to be able to use the machines; men want to command
the machines. This difference in attitude about computer technology based on gender has been explained by some individuals as an
outcome of the socialization process. Society views computers as
highly technical and part of a male domain (Campbell & McGabe,
1984).
Haunsel and Hill (1989) found out that pupils using computers
had more positive attitude towards biology and natural sciences
than pupils who were educated by traditional styles. Several studies found gender differences in attitudes toward ICT. Brosnan
(1998) showed that 6- to 11-year-old boys had more positive attitudes towards computers than girls. Graff (2003) found that girls
were less likely to use computers and were less confident in using
ICT than boys. Pupils’ attitudes towards computer exercises were
highly positive (Ogilvie, Trusk, & Blue, 1999) and, additionally,
most of students could work their own speed and their computer
literacy will improve. The current study of Palaigeorgiou, Siozos,
Konstantakis, and Tsoukalas (2005) also confirmed that both men
and women had similar engagement with computers and held concerns for the future effects of continuous computer use, but women
were more anxious about hardware usage, and judged less posi-
tively the consequences of computers in personal and social life.
Fančovičová and Prokop (2008) found out no differences between
gender in attitudes toward ICT. The similar results are possible to
find in other studies (Mizrachi & Shoham, 2004; Teo, 2006). Shashaani (1997) found out, that boys are more interested in working
with computers than girls. Boys have better ICT and computer
skills, they use computers more in their leisure time, and their attitudes toward computers are more positive than the attitudes of
girls. They use computers more for playing and recreational purposes, they are more interested in hardware, and they take on
more independent challenges for learning computers and ICT than
girls do (Hakkarainen et al., 2000; Papastergiou & Solomonidou,
2005). All over world there is a trend, technology has a special connection with boys and males. The culture of technological knowledge is a set of socially constituted practices, and these practices
have encouraged boys and men, more than girls and women
(Clegg, 2001; Facer, Sutherland, Furlong, & Furlong, 2001). Only
few works reported that women have a positive attitude toward
ICT. Ray, Sormunen, and Harris (1999) found out that females are
more positive about computers than males. Women asserted, ICT
simplify tasks and increase productivity. ICT also presents evidence
to support the belief that women have become more comfortable
with technology, removing a stumbling block to opportunities related to technology.
There is a lack of publications, where are presented the results
about attitudes toward ICT among age of students. Younger pupils,
boys and girls have more positive attitudes toward computers than
the older (Comber, Colley, Hargreaves, & Dorn, 1997; Laguna &
Babcock, 1997). But, there are many studies, where it is reported,
that older students have more positive attitudes to computers than
the younger (Bozionelos, 2001).
The use of ICT in classrooms may change a behavior of students.
Eadie (2001) quotes in study following: the development of various
intellectual for example reasoning and problem solving, learning
how to learn and creativity; specificity of what is learned using
the new technologies is broadened and deepened; students demonstrate a greater spontaneous interest in a learning activity; the
time and attention devoted to learning activities increases when
students use ICT; the ease of access to information sources develops the research spirit; broader co-operation among individuals
within and beyond school is enabled through technologies; the
availability of simulation, virtual manipulation, graphic representation and rapid merging of data contributes to linkage in knowledge and leads to more integrated and better-assimilated
learning; teachers gain information on new instructional resources
and availability of support for their use much more readily with
ICT; teacher co-operation with others both within and beyond
the school when planning activities; the orientation of planning
is more towards students performing real work in co-operation
with other students; relationships between teachers and students
more interactive and guiding, rather than transferring information
from teacher to student; a different vision of teaching and learning;
learning seen more as continuous research than a body of facto;
assessment of learning uses more demanding methods; more
effective diagnosing of specific difficulties.
2. Methods
2.1. Purpose of study
Slovakia is a part of the developing countries in the using of
computers and ICT in the learning and teaching process. There
are a lot of enthusiastic people but also critics on the other hand
of using computers in schools – elementary and high school. In
the last few years, we can observe a great effort of some institutions and people with the help of government, regarding the intro-
M. Kubiatko, Z. Haláková / Computers in Human Behavior 25 (2009) 743–748
duction of ICT into learning process. In Slovakia there is a lack of
articles, which concern of students’ investigation attitudes toward
ICT, using of ICT. The amount of computers in Slovakian schools
rapidly increased. ICT are not used only in lessons of informatics,
how it was the only way recently, but during all subjects. The creation of students’ attitudes toward this equipment is connected
with the process of the ICT installation in schools.
The purpose of this study is to contribute to a better understanding of the current status of boys and girls attitudes toward ICT using
in biology lesson and also to augment a supply of publications, which
are relating to investigating of attitudes toward ICT in the dependence on age of students. Other aim was to find out students’ attitudes toward using of ICT in biology subject. Whether there is a
sufficient positive influence of ICT on biology teaching or not.
Our study aims to answer the following questions:
745
in the Slovak proportion. We chose schools, where, according to
government, computers as a learning and teaching component.
Conventional length of study in Slovak high school is 4 years. We
obtained results from every year of study. We obtained results
from 145 (27.99%) students in the first year of study, from 126
(24.32%) students in the second year of study, 187 (36.10%) students in the third year of study and from 60 (11.58%) students in
the fourth year of study, whose completed the questionnaire. The
age of students was between 15 and 19 years. The average age
was 16.97 (n = 518; SD = 1.00). In whole sample there were 322
(62.16%) girls. Respondents filled the questionnaire during lesson.
At first the questionnaires were sent to teachers, who distributed
instruments among students. The time of filling the measurement
tool was not longer than 20 min.
3. Results
(1) What are students’ attitudes toward ICT using in biology
lesson?
(2) Was there any difference between girls and boys in the attitudes toward using ICT in biology lesson?
(3) Was there any difference between age of students in the
attitudes toward using ICT in biology lesson?
These hypotheses were evaluated:
(1) Boys have more positive attitudes toward ICT than girls.
(2) Older students have more positive attitudes toward ICT than
younger students.
2.2. Instrument
In this study, there was used questionnaire (ICT Attitudes Questionnaire – IAQ) of authors’ own construction. The questionnaire
was anonymous and it was divided into two sections. In the first
section there was introductory text, following demographic variables namely, gender, age and the year of study. The second section
consisted of 33 items, focused on students’ views on ICT. All
schools, where the questionnaire was distributed have a sufficient
equipment of ICT technique. So, we did not ask students on access
to computers. There was a precondition of all students’ access to
computers and internet. The items of questionnaire were oriented
only on ICT activities connected with school environment. So, there
was not a reason to quote question concerning to ICT owning.
Every item in the questionnaire is 5-scale by Likert (1932). Likert
scale question comprised five points ranking following: ‘‘strongly
agree” (5 points), ‘‘slightly agree” (4 points), ‘‘neutral” (3 points),
‘‘slightly disagree” (2 points), ‘‘strongly disagree” (1 point). Several
questions were constructed negatively. The evaluation of them was
in reverse order. From all items there were 16 constructed positively and 17 negatively. A reliability of questionnaire was found
out after collecting of filled questionnaires. The value of Cronbach’s
alpha (a = 0.82) have indicated a high internal consistence of questionnaire. The factor analysis was used for statistical evaluation
and we found out five dimensions namely: (1) the positive influence of ICT; (2) the negative influence of ICT; (3) advantages of
ICT; (4) ICT used in biology lesson; (5) disadvantages of ICT. We deleted five items which factor score was smaller than 0.3 (Anastasi,
1996). In the next evaluation we used analysis of variance (ANOVA). We tried to find out whether there are some statistically significant differences between gender and year of study.
2.3. Participants
The sample consists of 518 students from 9 Slovak high schools.
The schools were chosen according to the classic style of teaching
As we reported overhead, we found out a high value of the
questionnaire reliability (a = 0.82). The factor analysis has been
used on obtained results. We found out five dimensions, names
of dimensions are shown in Table 1, together with values of Cronbach’s alpha of each dimension. In Table 1, there are shown factor
analysis values, too. We deleted five items from other analyzing;
because value of factor score was lower than 0.30.
We used Pearson correlation (Pearson’s product moment), if
there is a relationship between dimensions. The values of correlation are shown in Table 2. We can see that there is no high correlation between dimensions. The highest value of correlation is
between factor 3 (advantages of ICT) and factor 4 (ICT usage in
biology lesson). These two dimensions correlate on the medium
level.
We found out statistical significant difference in the results between gender (F(1, 516) = 4.48; p < .05). Girls achieved average
score 3.61 (n = 322, SD = 0.60) and boys achieved average score
3.68 (n = 196; SD = 0.54). It means that boys have more positive
attitudes to ICT in comparison with girls.
We found out statistical significant difference in the results between classes (F(3, 514) = 2,72; p < .05). Fishers’ LSD posttest
showed statistical significant difference between first year students and fourth year students (P = 3.68, p < .05). Students of first
year study achieved average score 3.68 (n = 145; SD = 0.03) and
students of fourth year study achieved average score 3.55
(n = 60; SD = 0.05). Similarly, Fishers’ LSD posttest showed statistical significant difference between second year study students and
fourth year study students again (P = 3.69; p < .05). Students of second year study achieved average score 3.69 (n = 126; SD = 0.04).
Third year study students achieved average score 3.60 (n = 187;
SD = 0.03). It means that younger students, in this case first and
second year students, have more positive attitudes to ICT than older students.
By the investigation of dimensions, we found out statistical significant difference in the results by the evaluation of gender and
class. In Table 3, there are shown values of ANOVA for variables
by each dimension.
In Table 3, we can see that statistical significant difference in
the results between genders was founded in the all dimension except of dimension called ‘‘Advantages of ICT”. In the first dimension
was statistical significant difference in the account of girls, but in
other dimensions (the negative influence of ICT, ICT usage in biology lesson and disadvantages of ICT) it was in the account of boys.
The highest difference was in the second dimension, where boys
achieved average score 3.63 and girls 3.15. Statistical significant
difference between classes was found only in two dimensions
(advantages and disadvantages of ICT). The highest score (3.94)
in the dimension ‘‘Advantages of ICT” achieved second year study
students. The lowest (3.71) achieved first year study students. By
746
M. Kubiatko, Z. Haláková / Computers in Human Behavior 25 (2009) 743–748
Table 1
The factor analysis score of IAQ.
a
(I) The positive influence of ICT
(1) ICT are important in the biology teaching
(2) ICT make lesson more interesting
(3) The ICT usage causes a higher interest in biology
(4) I understand in biology curriculum more, when the ICT are used
(5) I have got ideas, when the ICT are used
(7) ICT cause exhaustingly to me
(9) The work with educational disc make a cognitive process better
(19) I am bored on biology lessons, when ICT are used
(20) I do my homework quicker, when I use ICT
0.76
(II) The negative influence of ICT
(22) The ownership of PC is useless, because PC makes learning impossible
(23) The using of computers causes eyes disease
(24) It is impossible to meaningfully use ICT, because a majority of information is in other language
than Slovak
(25) The using of ICT causes a spine disease
(28) ICT do not save energy
(29) The computer is not suitable tool for teaching, because it needs a lot of space
0.67
(III) Advantages of ICT
(26) E-mail helps me to find out of information
(30) The advantage of ICT is that classes are less dusty in comparison with using of chalk and
blackboard
(31) ICT save a space, because teacher does not need teaching aids
(33) I obtain more information from internet than from textbooks
0.64
(IV) ICT usage in biology lesson
(6) I give priority to a computer before overhead projector
(10) I consider the work with internet for unimportant on teaching process
(13) We obtain new information by the using web pages, because some information in textbooks
have become outdated
(14) I have got an opportunity to cooperate with other schools with the assistance of ICT
0.41
(V) Disadvantages of ICT
(8) I am not able to concentrate on teaching process, when the computer is turned on
(11) Biology teachers should examine only by the ICT assistance
(12) I think that I achieve worse evaluation by the written examining with the ICT assistance
(15) I am not able to concentrate on teaching process, when the camera is using on teaching process
(16) My communication with teacher is worse, when the ICT is used on teaching process
0.40
Deleted items
(17) I am not satisfied with ICT using on biology lessons at our school
(18) The ICT equipment of our school is very poor
(21) I use ICT on the paper preparation
(27) Teachers should be more trained in the using of ICT
(32) I have got a fear, when I used a computer
Factor 1
Factor 2
Factor 3
Factor 4
Factor 5
0.67
0.73
0.79
0.76
0.59
0.47
0.48
0.44
0.40
0.11
0.06
0.03
0.04
0.17
0.21
0.13
0.10
0.02
0.03
0.03
0.08
0.11
0.05
0.07
0.27
0.17
0.20
0.02
0.02
0.01
0.07
0.17
0.21
0.22
0.18
0.22
0.00
0.03
0.04
0.09
0.06
0.24
0.06
0.28
0.19
0.10
0.09
0.07
0.32
0.74
0.41
0.23
0.01
0.00
0.10
0.04
0.08
0.11
0.12
0.15
0.01
0.00
0.20
0.77
0.59
0.35
0.04
0.11
0.19
0.18
0.12
0.06
0.11
0.03
0.16
0.09
0.04
0.04
0.07
0.48
0.57
0.20
0.15
0.19
0.12
0.12
0.10
0.08
0.10
0.78
0.55
0.12
0.14
0.19
0.05
0.00
0.12
0.21
0.15
0.03
0.04
0.25
0.03
0.21
0.36
0.62
0.63
0.29
0.17
0.03
0.13
0.04
0.14
0.61
0.06
0.16
0.10
0.07
0.05
0.19
0.20
0.21
0.06
0.07
0.14
0.09
0.26
0.05
0.02
0.15
0.10
0.24
0.11
0.05
0.05
0.34
0.38
0.30
0.70
0.68
0.07
0.06
0.10
0.02
0.01
0.03
0.01
0.05
0.04
0.05
0.07
0.09
0.03
0.24
0.23
0.02
0.01
0.06
0.12
0.11
0.08
0.12
0.03
0.01
0.02
a – Cronbach’s alpha. The numbers of items are identical with number in questionnaire.
Table 2
Values of correlation between dimensions.
Factor
Factor
Factor
Factor
1
2
3
4
Factor 2
Factor 3
Factor 4
Factor 5
0.01
0.22
0.11
0.28
0.13
0.40
0.21
0.35
0.30
0.31
Table 3
Values of ANOVA for each dimension and variables (statistical significant differences
are visible by bold).
Gender
(F(1, 516))
The positive
influence of ICT
The negative
influence of ICT
Advantages of ICT
ICT using in biology
subject
Disadvantages of ICT
7.31
p
Class
(F(3, 514))
p
Average
score
Standard
deviation
.007
1.42
.24
3.55
0.78
47.92
0
0.62
.60
3.33
0.82
0.73
15.93
.39
0
2.94
12.41
.03
.07
3.78
3.91
0.74
0.67
4.76
.03
11.30
0
3.41
0.62
the using of Fisher’s LSD posttest we found out that there were statistical significant difference between first year and second year
study (P = 3.71; p < .05) and between third and second year study
students (P = 3.72; p < .05). In the dimension disadvantages of ICT
the highest score (4.02) achieved second year study students and
the lowest (3.48) achieved fourth year study students. For the
other statistical analysis we used Fisher LSD posttest and we found
out statistical significant difference between first year study students and fourth year study students (P = 4.01; p < .001), between
second year study students and fourth year study students
(P = 4.03; p < .001) and between third year study students
(P = 3.90; p < .001).
There are some examples for students’ responses. In the question 2 about 82% of all students think that ICT make lessons more
interesting in comparison with situation, when the ICT are not
used on the lessons of biology. Approximately 3/4 of all students
consider educational disc for a teaching aid, which can improve
their cognitive process. Nearly the 85% of all respondents are able
to concentrate on teaching process, when a computer is turned on.
The noise of computer does not disturb these students. Only 13% of
students consider internet for useless tool for teaching and finding
information. More than 3/4 of respondents use internet for obtain-
M. Kubiatko, Z. Haláková / Computers in Human Behavior 25 (2009) 743–748
ing new information. These students think that some information
in textbooks could be outdated. Nearly the 85% of all students do
not ownership of computer for useless. They think that computers
help learning and computers are very important teaching tool and
they can improve teaching skills. Approximately a similar amount
of students do not think that computers need a lot of space. They
consider computers for a normal equipment of classes and computers are needed for a improving the learning process. The using
of ICT makes classes less dusty, with this claiming agree near 75%
of respondents. From deleted items interesting results were found
in two items of questionnaire. Approximately 3/4 of all students
use computers for paper preparation. There is possible that students only download papers and use it on biology lessons. Almost
all students have not fear from the using of computers.
4. Discussion
In our research we tried to investigate two research fields, first
is the investigation of gender attitudes toward ICT usage in biology lesson and second investigation of attitudes toward ICT with
respect to age of students. When we see close-up view, we can
see that boys have more positive attitudes toward ICT and younger students (first and second year study students) have more positive attitudes toward ICT than older students (third and fourth
year students). Fourth year students have more negative attitudes
toward ICT in the comparison with younger students. We can accept first hypothesis, because boys have got more positive attitudes toward computers than girls, but the second hypothesis
should be rejected, because older students have not got more positive attitudes than younger students. On statistic evaluation we
used a factor analysis, an analysis of variance, and a Pearson’s
correlation and for findings out of reliability we used Cronbach’s
alpha. We found out five dimensions or categories namely: (1)
the positive influence of ICT; (2) the negative influence of ICT;
(3) advantages of ICT; (4) ICT usage in biology lesson; (5) disadvantages of ICT. When we are comparing gender differences in results, we can see that only in first dimension girls have got higher
score than boys. In the comparison of classes, there was found
out, that in the all dimension have the highest score second year
study or first year study.
The similar result aimed on finding differences in results between genders in comparison with our study found out (Comber
et al., 1997; Durndell & Thomson, 1997). There is normal thing,
that public view consider boys and males for more technically
competent like girls. The similar affirmation has got Cooper
(2006). Cooper (2006) wrote that the general public believes that
men and boys are more interested in using computers, and are
more competent in the usage of computers. The negative attitudes
of girls adversely impact their computer performance. Knowing
that girls have negative attitudes towards computers and are
reluctant to use them only reinforces the stereotype that computers are for boys and not for girls. Females may have been socialized differently in today’s computer generation to become more
comfortable with computers hence removing barriers to opportunities for training. This could be due to the increased use of computers for teaching and learning at schools that might have
worked against the cultivation of gender differences as reported
in previous research (North & Noyes, 2002). Computer attitudes
and computer skills are related to gender in favor of men, that
is, men have better attitudes to computers and more computer
skills and experiences than women have (Varank, 2007). But some
studies reported no differences in attitudes in gender (Fančovičová & Prokop, 2008; Teo, 2006). There are few of empiric studies, which are aimed on age of students and attitudes toward
ICT. Comber et al. (1997) found out that the youngest students
have more positive attitudes to computers than the oldest ones.
747
There could be several reasons, why younger students have got
more positive attitudes toward ICT. Younger students use computers in the majority of cases on the not-working activities. On the
basic of this asserting, younger students do not see disadvantages,
which are connected with the using of software and hardware.
Older students use computers mostly on the working activities
and they are nervous, when the work with computer application
is not as expected.
However, there comes forth a question, how could teachers and
educational workers improve students attitudes toward ICT. In our
study we present, that in Slovakia are positive attitudes toward
ICT, but they could be higher and there are differences between
boys and girls. There are some advises: the use of ICT is generally
helpful during class suspension, most students preferred a
mixed-mode learning environment, i.e. a combination of face-toface interaction and online activities. Teachers would have to find
ways of stimulating a more face-to-face situation without being in
the same physical surroundings. One such imperfect solution is the
provision of resources such that teachers can do real-time, live, video-broadcasts of their lectures (Bodomo, 2003).
Teaching and learning of biology could be made more interesting if the lesson presentation using PowerPoint is implemented
with other activities to reinforce understanding of the concepts
learned. There are many software available which can be provided
to the students to allow them to engross the biology concepts, thus
making learning more meaningful. The impact of ICT on students’
learning outcomes will ultimately depend on the biology teachers.
They are the ones who will decide how impart the knowledge the
best. The use of ICT will undoubtedly bring new educational experiences for both the learners and the teachers.
So there is important piece of information that students prefer
use of computers. Dorup (2004) found out that between 3% and
7% of the students (significantly more females than males) who
indicated that they would prefer not to have to use computers in
their studies.
As an example, roughly 50% of males versus 25% of females responded that they would like to replace some traditional teaching
with IT-based activities. In the comparison with this study we
found out similar results in our research, our respondents like
use computers and they would like more use ICT in teaching. So
from this results are followed that ICT making the lessons more
interesting, easier, more fun for them and their pupils, more diverse, more motivating for the pupils and more enjoyable among
others.
5. Conclusion
Attitudes results toward ICT using in biology subject among
high school students were based on statistical evaluation – a factor
analysis, an analysis of variance, a Pearson’s correlation.
Using factor analysis we found out five dimensions/categories.
Using of analysis of variance we found out some statistical significant differences between boys and girls and among classes, as
well. Boys perceive ICT in biology more positive than girls and
younger students reached higher score in attitudes toward ICT.
Students, whose were respondents of our investigation showed
an interest about using ICT in the biology classes, it was obvious
from their answers.
Teaching and learning of biology could be made more interesting if the lesson presentation using PowerPoint is supplemented
with other activities to motivate students to learning and to make
more interesting, to attract more students. Because students’ interest in biology as subject decreases. There is much software (CD
ROMs) available which can be provided to the students to allow
them to engross the biology as subject, thus making learning more
meaningful.
748
M. Kubiatko, Z. Haláková / Computers in Human Behavior 25 (2009) 743–748
The impact of ICT on students’ learning outcomes will ultimately depend on the biology teachers. They are the ones who will
decide how best to influence the knowledge. The use of ICT will
bring new, exciting, actual and rewarding educational experiences
for both students and teachers. But, there is still a need to do research about using of ICT in biology, about attitudes of students
to ICT, because we need to find a right level of using in lessons.
Acknowledgement
We thank Scott Lamphear, who kindly improved the English of
the paper.
References
Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social
behavior. Englewood Cliffs, NJ: Prentice-Hall.
Anastasi, A. (1996). Psychological testing (7th ed.). New York: Macmillan.
Bodomo, A. (2003). Student attitudes towards the use of ICT during SARS-induced
class suspension – a preliminary report. Sars Bulletin. Available from http://
www.hku.hk/cgi-bin/sars/message_bulletin.pl.
Bozionelos, N. (2001). Computer anxiety: Relationship with computer experience
and prevalence. Computers in Human Behavior, 17(2), 213–224.
Brewer, C. (2003). Computers in the classroom: How information technology can
improve conservation education. Conservation Biology, 17(3), 657–660.
Brosnan, M. J. (1998). The role of psychological gender in the computer-related
attitudes and attainments of primary school children (aged 6–11). Computers &
Education, 30(3–4), 203–208.
Campbell, P., & McGabe, G. (1984). Predicting the success of freshman in a computer
science major. Communications of the ACM, 27(11), 1108–1113.
Clegg, S. (2001). Theorising the machine: Gender, education and computing. Gender
and Education, 13(3), 307–324.
Comber, C., Colley, A., Hargreaves, D. J., & Dorn, L. (1997). The effects of age, gender
computer experience upon computer attitudes. Educational Research, 39(2),
123–133.
Cooper, J. (2006). The digital divide: The special case of gender. Journal of Computer
Assisted Learning, 22(5), 320–334.
Cooper, B., & Brna, P. (2002). Supporting high quality interaction and motivation in
the classroom using ICT: The social and emotional learning and engagement in
the NIMIS project. Education Communication & Information, 2(2–3), 113–138.
Dorup, J. (2004). Experience and attitudes towards information technology among
first year medical students in Denmark: Longitudinal questionnaire survey.
Journal of Medical Internet Research, 6(1), e10.
Durndell, A., & Thomson, K. (1997). Gender and computing: A decade of change?
Computers & Education, 28(1), 1–9.
Eadie, G. M. (2001). The Impact of ICT on schools: Classroom design and curriculum
delivery. A study of schools in Australia, USA, England and Hong Kong, 2000.
Available from www.tki.org.nz/r/ict/pedagogy/churchillreport.pdf.
Facer, K., Sutherland, R., Furlong, R., & Furlong, J. (2001). What is the point of using
computers? The development of computer expertise in the home. New Media &
Society, 3(2), 199–219.
Fančovičová, J., & Prokop, P. (2008). Students’ attitudes toward computer use in
Slovakia. Eurasia Journal of Mathematics Science & Technology Education, 4(3),
255–262.
Ferrer, L. M. (2002). Computer integration in science and mathematics teaching. In
H. S. Dhindsa, I. P. A. Cheong, C. P. Tendencia, & M. A. Clements (Eds.), Realities in
science, mathematics and technical education (pp. 87–93). Gadong: Universiti
Brunei Darussalam.
Gilmore, A. M. (1995). Turning teachers on to computers: Evaluation of a teacher
development program. Journal of Research on Computing in Education, 27(3),
251–269.
Graff, M. (2003). Cognitive style and attitudes towards using online learning and
assessment methods. Electronic Journal of e-Learning, 1(1), 21–28.
Hakkarainen, K., Ilomäki, L., Lipponen, L., Muukkonen, H., Rahikainen, M., &
Tuominen, T. (2000). Students skills and practices of using ICT: Results of a
national assessment in Finland. Computers & Education, 34(2), 103–117.
Haunsel, P. B., & Hill, R. S. (1989). The microcomputer and achievement and
attitudes in high school biology. Journal of Research in Science Teaching, 26(6),
543–549.
Kaplan, R. (1994). The gender gap at the PC keyboard. American Demographics, 16(1),
18.
Kennewell, S. (2001). Using affordances and constraints to evaluate the use of
information and communications technology in teaching and learning. Journal
of Information Technology for Teacher Education, 10(1–2), 101–116.
Laguna, K., & Babcock, R. L. (1997). Computer anxiety in young and older adults:
Implications for human–computer interactions in older populations. Computers
in Human Behavior, 13(3), 317–326.
Lee, R. (1970). Social attitudes and the computer revolution. Public Opinion
Quarterly, 34(1), 53–59.
Likert, R. (1932). A technique for the measurement of attitudes. Archives of
Psychology, 27(140), 44–55.
McKinnon, D. H., Nolan, C. J. P., & Sinclair, K. E. (2000). A longitudinal study of
student attitudes toward computers: Resolving an attitude decay paradox.
Journal of Research on Computing in Education, 32(3), 325–335.
Mizrachi, D., & Shoham, D. (2004). Computer attitudes and library anxiety among
undergraduates: A study of Israeli B.Ed students. The International Information &
Library Review, 36(1), 29–38.
North, A. S., & Noyes, J. M. (2002). Gender influences on children computer attitudes
and cognitions. Computers in Human Behavior, 18(2), 135–150.
Ogilvie, R. W., Trusk, T. C., & Blue, A. V. (1999). Students’ attitudes towards
computer testing in a basic science course. Medical Education, 33(11), 828–831.
Osborne, J., & Hennessy, S. (2001). Literature review in science education and the role
of ICT: Promise, problems and future directions: A report for NESTA Futurelab.
Available from http://www.nestafuturelab.org/research/reviews/se01.htm.
Palaigeorgiou, G. E., Siozos, P. D., Konstantakis, N. I., & Tsoukalas, I. A. (2005). A
computer attitude scale for computer science freshmen and its educational
implications. Journal of Computer Assisted Learning, 21(5), 330–342.
Papastergiou, M., & Solomonidou, C. (2005). Gender issues in Internet access and
favourite Internet activities among Greek high school pupils inside and outside
school. Computers & Education, 44(4), 377–393.
Ray, C. M., Sormunen, C., & Harris, T. M. (1999). Men’s and women’s attitudes
toward computer technology: A comparison. Office Systems Research Journal,
17(1), 1–8.
Selinger, M. (2004). Developing and using content in technology enhanced learning
environments. In I. P. A. Cheong, H. S. Dhindsa, I. J. Kyeleve, & O. Chukwu (Eds.),
Globalisation trends in science, mathematics and technical education (pp. 24–37).
Gadong: Universiti Brunei Darussalam.
Selwyn, N. (1999). Students’ attitudes towards computers in sixteen to nineteen
education. Education and Information Technologies, 4(2), 129–141.
Shashaani, L. (1997). Gender differences in computer attitudes and use among
college students. Journal of Educational Computing Research, 16(1), 37–51.
Smith, B., Caputi, P., & Rawstorne, P. (2000). Differentiating computer experience
and attitudes toward computers: An empirical investigation. Computers in
Human Behavior, 16(1), 59–81.
Teo, T. (2006). Attitudes toward computers: A study of post-secondary students in
Singapore. Interactive Learning Environments, 14(1), 17–24.
Varank, I. (2007). Effectiveness of quantitative skills, qualitative skills, and gender in
determining computer skills and attitudes: A causal analysis. Clearing House: A
Journal of Educational Strategies, 81(2), 71–80.
Winfred, A. (1991). Computer attitudes, computer experience, and their correlates:
An investigation of path linkages. Teaching of Psychology, 18(1), 51–54.
Winter, S. J., Chudoba, K., & Gutek, B. A. (1998). Attitudes toward computers: When
do they predict computer use? Information and Management, 34(5), 275–284.
Yu, F. Y. (1998). The effects of cooperation with inter-group competition on
performance and attitudes in a computer-assisted science instruction. Journal of
Computers in Mathematics and Science Teaching, 17(4), 381–395.
AZ VOL. 22(1).qxp:Layout 1
ANTHROZOÖS
1/5/09
4:26 PM
VOLUME 22, ISSUE 1
PP. 19–30
Page 19
REPRINTS AVAILABLE
DIRECTLY FROM
THE PUBLISHERS
PHOTOCOPYING
PERMITTED
BY LICENSE ONLY
© ISAZ 2009
PRINTED IN THE UK
Vampires Are Still Alive:
Slovakian Students’Attitudes
toward Bats
Pavol Prokop*†, Jana Fanc̆ovic̆ová* and
Milan Kubiatko*
ABSTRACT Animals that pose a threat of disease are often in conflict with
human appreciation of them, despite that they may be endangered in nature.
This study examined undergraduate students’ knowledge of, attitudes toward, and belief in myths about, bats, controversial animals well known both
from mythology and movies. Factor analysis was applied to 46 Likert-type
items (Bat Attitude Questionnaire) and five dimensions with high reliability
(␣ = 0.93) were derived. It was found that the level of knowledge significantly
influenced attitudes to, and belief in myths about, bats. Students more aware
of the biology of bats showed more positive attitudes to them and less belief
in myths about them than students with less knowledge of the biology of the
bat. Males showed greater knowledge of bats than females, but even after
controlling for the effect of knowledge, females had slightly more negative
attitudes toward bats and greater belief in myths about them than did males.
A substantial number of students reported a serious fear of bats. Myths about
bats were very pervasive in all subgroups, being similarly distributed amongst
biology majors and non-majors. These results suggest that greater public
awareness could balance human avoidance of bats, something that is
promoted by an evolutionary predisposition to avoid potential disease threats.
Effective interventions and public awareness should therefore result in more
positive attitudes toward these controversial animals.
Keywords: animals, attitudes, bats, myths
❖
Fear of animals has traditionally been viewed as a biological
predisposition that associates humans with potentially dangerous
animals with fearful consequences (Seligman 1971). Some animals still agitate fear and initiate defensive responses (Öhman 1986)
because they might have been dangerous to humans in prehistoric times
(Morris and Morris 1965; Shepard 1997). Nevertheless, there are many fears
19
Address for correspondence:
P. Prokop, Department of
Biology, Faculty of Education,
Trnava University,
Priemyselná 4, PO Box 9,
918 43 Trnava, Slovakia.
E-mail:
[email protected]
Anthrozoös DOI: 10.2752/175303708X390446
* Department of Biology, Faculty of Education, Trnava University,
Trnava, Slovakia
† Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
AZ VOL. 22(1).qxp:Layout 1
1/5/09
4:26 PM
Page 20
20
Anthrozoös
Vampires Are Still Alive: Slovakian Students’ Attitudes toward Bats
of non-predatory, “disgusting animals” such as cockroaches, spiders, rats, and bats (Matchett
and Davey 1991). This phenomenon is currently explained by the “disease-avoidance”
hypothesis (Matchett and Davey 1991; Davey 1994; Davey et al. 1998; Curtis, Aunger and Rabie
2004). This hypothesis comprises three subcategories. The first subcategory deals with fears of
animals that are directly or indirectly associated with the spread of disease and infection (e.g.,
bats, rats, mice). The second subcategory refers to those animals that possess features which
resemble primary disgust-evoking stimuli such as mucus or feces (e.g., snakes, snails, worms).
The third subcategory relates to those animals that are either contingently associated with dirt,
disease, or infection, or act as signal for dirt, disease, and infection (e.g., spiders). Davey et al.
(1998) argue that although disgust evolved to prevent oral ingestion of potentially noxious
materials, it also operates to prevent infection from the above-mentioned animals.
This brief description of fear of animals implies that human views of animals are influenced
by direct and indirect selection pressures (Herzog and Burghardt 1988). Predators are less
appreciated because they possess predation risk to humans (Røskaft et al. 2003) and some
other animals are directly or indirectly associated with risk from infection and disease (Davey
et al. 1998). Bats are, together with bugs, mice, and snakes, the most frequently cited category
of phobic fears (Robins and Regier 1991). Fear of bats can be explained both by direct pressures characterized by association with disease, especially parasites and rabies (e.g., Whitaker
and Douglas 2006; Wong et al. 2007), and media representation of bats as animals to be
feared. Both of these pressures are, however, highly exaggerated. For example, Whitaker and
Douglas (2006) tested 8,262 bats for rabies and found that only 5.4% of them were positive
for the disease. Moreover, only a minority of bat species transmit diseases that constitute a
serious health risk (Olnhausen and Gannon 2004). Horror films that present bats as vampires
are also far from the truth—only three of about 1000 bat species in the world suck blood and
these pose no serious threat to humans (Mayen 2003).
Low sympathy with bats probably did not evolve just through direct evolutionary pressures,
considering that the incidence of being infected from bats is low for humans and infected bats
are not clustered in small areas (unlike what occurs in terrestrial forms of rabies) (Williams and
Barker 2001). More probably, there might be an interaction between evolutionary pressures
and the unusual habits of bats. Bats are the only flying mammals (and therefore frequently
misclassified as birds, see Prokop, Kubiatko and Fanc̆ovic̆ová 2007), they sleep during the
daytime in not very accessible places (e.g., caves), and usually hang upside down from a high
and secluded spot. Bats have backward feet, thumb hooks, and enormous ears. In addition,
unlike humans or birds, bats do not use audible acoustic signals for communication. We know
that similarity between animals and humans affects peoples’ evaluation of animals. For
example, Plous (1993) found that the level of human-to-animal similarity is linked to an individual’s judgment about the capacity for an animal to feel pain. Knight et al. (2003) showed that
humans prefer animals that are perceived as more similar physically to humans, while animals
that look different to us are viewed more negatively. Allen et al. (2002) showed that there is a
positive, linear relationship between the fines recommended for animal abuse and the similarity
of the animal to humans. Taking bat morphology and natural history into account, there is very
little overlap in the coexistence between humans and bats, which makes bats less familiar to
humans than other mammals and even birds.
Gaining an understanding of the biology of bats was difficult not just for the general public
(Strohm 1982); it was also difficult for scientists. Lazzaro Spallanzani (1729–1799), an Italian
priest and physiologist, tried to explain the ability of bats to navigate in darkness and found that
AZ VOL. 22(1).qxp:Layout 1
1/5/09
4:26 PM
Page 21
21
blindfolded bats could navigate but that they bumped against obstacles when their mouths
were covered. At this time, he did not discover the echolocation navigation system of bats;
instead “Spallanzani’s bat problem,” as it was termed, remained a scientific mystery until 1938,
when Harvard students Donald R. Griffin and Robert Galambos (1941) used a sonic detector
to record directional ultrasound noises being emitted by bats when navigating flight.
Considering our lack of understanding of these animals, it is not surprising that bats evoke
little sympathy (Davey et al. 1998; Bjerke and Østdahl 2004). By the late 1970s and early
1980s, leading newspapers and magazines published stories that bore no resemblance to
reality (Okie 1979; Cox 1980), and frightened people into extreme intolerance of bats. Today,
bat numbers are declining all over the world (e.g., Lane, Kingston and Lee 2006). This is
disturbing, as these animals are major insect-controllers and pollinators in ecosystems worldwide. Many species are becoming endangered, and others are declining due to destruction
of their nesting caves, direct persecution from ignorance, closure of mines which many bats
had colonized, and indiscriminate use of pesticides (Fujita 1991). An alarming decline in the
number of bats in Slovakia has resulted in protection of all species.
Fear of something traditionally generates various myths that are more or less appreciated
by humans (Isbister 2002). Myths are identical to alternative conceptions: peoples’ concepts
of natural phenomena that often differ from those of scientists (e.g., Mintzes and Wandersee
1998). To date, there have been several papers investigating peoples’ alternative conceptions
of animals (Prokop, Kubiatko and Fanc̆ovic̆ová 2007; Prokop, Prokop and Tunnicliffe 2008).
Mintzes and Wandersee (1998) characterize alternative conceptions as follows: Alternative
conceptions are robust with respect to age, ability, gender, and cultural boundaries. They
typically serve a useful function in the everyday lives of students, their families, and their
teachers. Alternative conceptions are often tenacious and resistant to change by conventional
teaching strategies. They successfully interact with knowledge presented in formal instruction
and often resemble those of previous generations of scientists and natural philosophers.
Alternative conceptions are products of personal experiences or the mass media, as well as
formal instructional interventions (Mintzes and Wandersee 1998).
Teachers are known to be responsible for various misunderstandings in their pupils (Yip
1998). Thus, future teachers’ knowledge of, and attitudes toward, animals needs to be
improved. To date, however, it is not known whether peoples’ belief in common myths about
animals influences attitudes toward animals (Prokop and Tunnicliffe 2008). Additionally, there
are no studies that have seriously investigated attitudes toward bats, with the exception of
studies of fear of bats (e.g., Davey et al. 1998). Measurements of human sympathies with
animals, indicating how much some selected animal species are liked or disliked (e.g., Davey
et al. 1998; Bjerke, Østdahl and Kleiven 2003; Bjerke and Østdahl 2004), do not tell us if
greater sympathy is linked with the role of particular animals in nature (ecologistic attitudes, cf.
Kellert 1996), information which could be used in nature protection programs. Moreover, few
research studies have addressed the question of whether the level of knowledge of controversial animals is linked with attitudes toward them (Thompson and Mintzes 2002). Bjerke,
Østdahl and Kleiven (2003) showed that pet owners (i.e., probably more knowledgeable participants, see Prokop, Prokop and Tunnicliffe 2008) ranked popular animals more positively
than non-pet owners, but no effect of owning a pet on the preference of less popular animals
like bats or rats was found. This suggests that there is a conflict between the human evolutionary predisposition to avoid animals that present a disease risk (e.g., mice, bats) and animal
protection attitudes which are required to save biodiversity. Bats are excellent model animals
Anthrozoös
Prokop et al.
AZ VOL. 22(1).qxp:Layout 1
1/5/09
4:26 PM
Page 22
Vampires Are Still Alive: Slovakian Students’ Attitudes toward Bats
to use in the study of this conflict: their population is declining all over the world and they can
transmit rabies to humans.
We also chose to focus on bats in our study because, through horror films, they have a
very bad reputation, and because they are characteristic of a wide group of animals that might
benefit substantially from effective conservation education programs. We believe that the general public can aid in the preservation of bats by protecting old buildings or trees, or by building bat boxes.
Current Study
The present study aimed to examine relationships between attitudes toward, knowledge of, and
belief in myths about, bats in undergraduate students who were studying to become primary or
secondary school teachers. We thought the information would be useful in designing environmental programs to promote bat conservation. Attitudes were examined in biology majors, while
non-majors served as a “control group” for comparison, to see if they have better knowledge of,
and more positive attitudes toward, bats. We also compared whether the proportion of students
who believed in myths was different among biology majors and non-majors. The link between
attitudes, knowledge, and belief in myths will be of interest to environmental educators and may
help them to improve interventions focused on less popular animals.
The aim of our research was to answer the following research questions: 1) What knowledge
of, attitudes toward, and beliefs in myths about, bats do Slovakian students have? 2) Is knowledge
of bats related to attitudes toward bats? 3) Are there any differences in knowledge of, and attitudes
toward, bats with respect to gender? and 4) Are there any differences in attitudes toward,
knowledge of, and belief in myths about, bats between biology majors and non-majors?
We developed three hypotheses:
Hypothesis 1: Belief in myths about bats and poor knowledge of bats will result in negative
attitudes toward bats.
Hypothesis 2: Females will have more negative attitudes toward bats compared with males.
This is because females show greater investment in future offspring, thus their concern about
potential disease threats should be higher.
Hypothesis 3: Considering the nature of myths (or alternative conceptions), we do not
predict any differences in belief in myths about bats between biology majors and non-majors,
despite that knowledge of bats will be higher among the former group of students. This is
because myths are tenacious and resistant to change by conventional teaching strategies
(Mintzes and Wandersee 1998).
22
Anthrozoös
Methods
Construction of the Bat Attitude Questionnaire (BAQ)
Students’ attitudes toward, belief in myths about, and knowledge of, bats were measured
using 5-point Likert-type items, developed in a similar way to Kellert’s (1996) attitudes toward
animals scale. Most of the negativistic items that measured dislike and fear of bats were derived
and modified from the Spider Phobia Questionnaire (Kindt, Brosschot and Murit 1996). Items
from this questionnaire were made appropriate by simply changing the term “spider” to “bat.”
Knowledge of bats was measured by items that represent basic facts about the biology of
bats. Myths about bats were derived from accessible online web pages, publications (Strohm
1982), and our own experience with peoples’ beliefs. Other attitude items were taken from
Kellert (1996) and similar research (e.g., Thompson and Mintzes 2002; Barney, Mintzes and
AZ VOL. 22(1).qxp:Layout 1
1/5/09
4:26 PM
Page 23
Prokop et al.
Yen 2005)—we aimed to measure Negativistic, Scientistic, and Ecologistic attitudes. The
Negativistic questions were designed specifically to measure an active avoidance of bats as
a result of dislike or fear. The Scientistic questions were designed to measure interest in the
biology of, and the gathering of information on, bats. Ecologistic questions were designed to
investigate participants’ concern for the role of bats in nature and for inter-relationships between bats and humans. The original questionnaire consisted of 57 items which were scored
by participants from 1 (strongly disagree) to 5 (strongly agree). Items were formulated either
negatively or positively (Oppenheim 1999). Negative items were scored in reverse order, and
summed scores provided a composite index of attitudes toward bats. Low scores reflected
relatively negative attitudes and high scores reflected positive attitudes toward bats.
The validity of the questionnaire was established through review by two professors in the
field of zoology from two different universities and two experts in biology education. All were
asked whether the items were relevant to the goal of the questionnaire. Revisions were based
on their comments and suggestions. The results of a pilot study, in which 60 university students
participated, were carefully reviewed. Eleven items that did not correlate with other items
(Pearson’s r ≥ 0.2 ) were excluded, according to Salta and Tzougraki (2004).
The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy is an index for comparing
the magnitudes of the observed correlation coefficients to the magnitudes of the partial
correlation coefficients. Large values for the KMO measure indicate that a factor analysis is
appropriate. In our research, the Kaiser-Meyer-Olkin measure of sampling adequacy was
greater than 0.90. Another indicator of the strength of the relationship among variables is
Bartlett’s Test of Sphericity. This is used to test the null hypothesis that the variables in the
population correlation matrix are uncorrelated. The observed significance level was p < 0.001.
It was therefore concluded that the strength of the relationship among the variables was strong.
This meant we could use factor analysis to analyze the data.
Factor analysis was conducted on data from the final study (Principal Components Analysis
with Varimax rotation) and seven factors with eigenvalues greater than 1.0 were derived. After
examination of the scree-plot, we decided to use five of the seven factors, accounting for 46%
of the variance, following the procedure of Salta and Tzougraki (2004). The five factors were
subjected to a Varimax rotation, resulting in five independent factors1. These were labeled
Negativistic, Scientistic, Ecologistic, Knowledge, and Myths. Finally, we measured the reliability of all items and also the reliability of each dimension separately. The Cronbach’s ␣ coefficient for the whole instrument was 0.93, which indicates high reliability (Nunnaly 1978). All
dimensions showed acceptable reliability (alphas ranged from 0.63 to 0.92) (Nunnaly 1978),
but the alpha for the Knowledge dimension was somewhat lower (␣ = 0.56). Thus, some caution must be made when interpreting these data.
23
A total of 236 first-year students (159 females, 77 males) aged 18–24 years (mean = 19.5,
SE = 0.06), and attending two different universities in Slovakia, participated in the study.
Because this research was conducted in educational faculties where a strong female bias historically exists, it was impossible to balance the female to male ratio. Students were studying
to become primary or secondary school teachers. They studied various disciplines, with a significant proportion of the group (41%) enrolled in a biology course. To minimize the effect of
age, only first-year students were selected for this study. Students had experience mainly with
general biology courses, and not with general zoology or vertebrate zoology courses. The
Anthrozoös
Participants
AZ VOL. 22(1).qxp:Layout 1
1/5/09
4:26 PM
Page 24
Vampires Are Still Alive: Slovakian Students’ Attitudes toward Bats
remaining 139 students were enrolled mostly in humanities disciplines. This allowed us to compare potentially more (biology majors) and less (students enrolled in humanities) interested/
educated students in terms of their attitudes toward, knowledge of, and beliefs in myths about,
bats. Effect sizes were estimated by Cohen’s d, following the suggestion of Herzog (2007).
Procedure
The questionnaires were administered during October and December 2006 in lecture theatres,
and students completed them there on their own. It was explained to the students that the
questionnaire was not a test, but rather research examining attitudes toward bats. It took
about 20 minutes for the students to complete the questionnaire. A total of 250 questionnaires were distributed; out of these, 236 (94%) were returned.
Results
An Analysis of Students’ Knowledge of, and Belief in Myths about, Bats
Overall, students showed some incorrect knowledge of, and belief in myths about, bats. The
mean overall success was 42.3% (SE = 4.33, range = 17–68%). Only 27% of students gave
correct responses, with a mean score of 4 or 5, in the Knowledge dimension. The Myths
dimension was somewhat better answered (43% positive responses) than the Knowledge
dimension (Chi-square test with “don’t know” responses omitted, ␹2 = 114.95, df = 1,
p < 0.001). Importantly, a majority of respondents in the Knowledge (73%) and Myths dimensions (56%) were undecided. Only 17% of all students knew that bats in Slovakia overwinter
without feeding. Less that 30% knew the size of bat wings and only 42% knew that the body
length of bats in Slovakia does not exceed 8 cm. Only 39% of students knew that some tropical bats feed on fruit. Perhaps surprisingly, only 41% of students knew that the protection of
old buildings and trees contributes to bat conservation.
Just over half (55%) of all the students believed that a bat can get tangled in human hair.
Other myths were focused mainly on vampirism. About 20% of all students believed that most
bats feed on blood. This is not true—only three species of bat exclusively suck blood from
animals (but not from humans). Feeding habits of bats were not well understood: less than half
(41%) of the students knew that all bats in Slovakia are insectivorous. About one-third (36%)
of students believed that even small bats can bite a hand. Only 11% believed that bats can
suck blood from humans. Seven percent of students agreed that the prey of a bat can lose all
its blood after the bat has preyed upon it. This is untrue—bats suck only a small amount of
blood very cautiously from sleeping animals that usually do not notice the sucking bat. A
majority of the students (68%) did not believe that bats bite their victim’s neck. This is also a
myth—bats need a less sensitive part of the animal body, to suck blood unobtrusively.
24
Anthrozoös
An Analysis of Students’ Attitudes toward Bats
The distribution of positive and negative attitudes significantly differed between the three remaining dimensions (␹2 = 29.9, df = 2, p < 0.001; see Figure 1). Most positive responses
(pooled data from “agree” and “strongly agree”) were found in the Ecologistic dimension (80%),
followed by the Scientistic dimension (52%), and finally the Negativistic dimension (42%). This
means that there was greatest concern for the role of bats in nature and human–bat
relationships. Interest in the biology of bats and avoidance of bats was somewhat lower.
The Negativistic Dimension: The distribution of means shows that 24% of students had
negative attitudes toward bats and 34% were undecided (Figure 1). The items with low mean
AZ VOL. 22(1).qxp:Layout 1
1/5/09
4:26 PM
Page 25
Prokop et al.
Negativistic
Number of Responses
120
Scientistic
Ecologistic
100
80
60
40
20
0
1
2
3
4
5
Mean Likert Scale Scores
Figure 1. Distribution of overall mean scores of the Negatavistic, Scientistic,
and Ecologistic attitude dimensions.
scores (indicating negative attitudes) are described as follows: Only 9% of all students agreed
that they wanted to have bats in the loft of their homes; about one-third (39%) of all students
considered bats to be popular animals; a majority (65%) of students did not want to camp near
places inhabited by bats (only 22% agreed); 57% did not want to catch a bat in their hands;
34% of students said that even the thought of touching a bat scared them; 15% reported
having greater fear of bats than of other animals, and 25% felt tense if they saw a bat.
The Scientistic Dimension: Only 33 students showed negative attitudes toward bats in the
Scientistic dimension (Figure 1). The best responses were found for the item “Bats could be
quite interesting animals” (81% agreed). Similarly, 72% of students agreed that greater attention should be dedicated to bat protection, and only 16% said that they couldn’t understand
how anyone could be interested in bat research. In contrast, just 35% of students would have
liked to have participated in an expedition focused on bat research.
A Nested-Design-MANOVA (gender differences nested in study course were defined as factors) with the Scientistic, Ecologistic, Negativistic, Myths, and Knowledge dimensions defined
as dependent variables, showed that both gender (F(10,456) = 8.02, p < 0.0001, ␩2 = 0.15) and
study course (F(5,228) = 3.39, p = 0.006, ␩2 = 0.07) significantly influenced the mean score on
the BAQ dimensions. Inspection of univariate results revealed that males had significantly
25
Effects of Gender and Attending a Biology Course on Students’ Knowledge of,
and Attitudes toward, Bats
Anthrozoös
The Ecologistic Dimension: Students showed highest mean scores in the Ecologistic dimension,
relative to the other dimensions (Figure 1). Only 3% of all students agreed with the statement
that bats are not important in nature. The majority of students (80%) knew that bats overwinter
in abandoned caves and tunnels and that bats are of great importance in nature (58%). Only
21% of students were not interested in whether bats were endangered in Slovakia.
AZ VOL. 22(1).qxp:Layout 1
1/5/09
4:26 PM
Page 26
Vampires Are Still Alive: Slovakian Students’ Attitudes toward Bats
higher scores than females in four dimensions (the Negativistic dimension: F(2,232) = 26.58,
p < 0.0001, d = 0.99, the Ecologistic dimension: F(2,232) = 3.40, p = 0.03, d = 0.30, the
Knowledge dimension: F(2,232) = 16.49, p < 0.0001, d = 0.72, and the Myths dimension:
F(2,232) = 6.27, p = 0.003, d = 0.48), with the exception of the Scientistic dimension
(F(2,232) = 2.50, p = 0.08, d = 0.18) (Figure 2). These results support our second hypothesis,
that females will have more negative attitudes toward bats than males.
5
***
*
ns
**
4
Mean Score ± SE
Males
Females
***
3
2
1
0
Negativistic Scientistic
Ecologistic
Myths
Knowledge
Figure 2. Differences between male and female students on the five
dimensions derived from the Bat Attitude Questionnaire. * p < 0.05,
** p < 0.01, *** p < 0.001, ns = non-significant.
5
***
Mean Score ± SE
4
Biology Majors
Non Majors
***
ns
**
*
3
2
26
Anthrozoös
1
0
Negativistic Scientistic
Ecologistic
Myths
Knowledge
Figure 3. Differences between biology and non-biology major students
on the five dimensions derived from the Bat Attitude Questionnaire.
* p < 0.05, ** p < 0.01, *** p < 0.001, ns = non-significant.
AZ VOL. 22(1).qxp:Layout 1
1/5/09
4:26 PM
Page 27
Prokop et al.
Students attending biology courses scored higher in the majority of BAQ dimensions
(the Negativistic dimension: F(1,232) = 7.64, p = 0.006, d = 0.32, the Scientistic dimension
F(1,232) = 13.57, p = 0.0003, d = 0.43, the Ecologistic dimension, F(1,232) = 10.43, p = 0.001,
d = 0.38, and the Knowledge dimension: F(1,232) = 3.88, p = 0.04, d = 0.21). Only the Myths
dimension did not show a statistically significant difference (F(1,232) = 2.48, p = 0.12, d = 0.20)
(Figure 3). The latter result supports our third hypothesis, that there will be no differences in beliefs in myths about bats between biology majors and non-majors.
Relationships between the Knowledge, Myths and Attitude Dimensions
After controlling for the effect of gender and attendance of biology course, statistically significant, positive relationships between all measured dimensions were found (Table 1). The strongest
correlation was found between the Negativistic and Scientistic attitudes, which suggests that fear
of bats influences interest in the biology of bats. Importantly, belief in myths about bats was correlated with the Negativistic dimension, which suggests that there is an association between
belief in myths and fear and avoidance of bats. Knowledge of bats correlated strongly with the
Negativistic and Ecologistic dimensions, which suggests that greater awareness of the biology
of bats is associated with other dimensions of attitudes toward them. Associations between
knowledge, myths and attitudes support our first hypothesis, that belief in myths about bats and
poor knowledge of bats will result in negative attitudes toward them.
Table 1. Relationships between the dimensions derived from the Bat
Attitude Questionnaire. Numbers are partial correlation coefficients
(p < 0.0001 for all dimensions) controlled for the effect of gender and
attendance of biology course.
Negativistic
Scientistic
Ecologistic
Knowledge
Scientistic
Ecologistic
Knowledge
Myths
0.61
0.35
0.34
0.43
–
0.43
0.30
0.25
–
0.36
0.33
–
0.30
27
This study shows the importance of factual knowledge, myths, study specialization and gender
in students’ attitudes toward bats. We have demonstrated that there is a relationship between
knowledge, belief in myths, and attitudes, which corroborates the results of some other research
(for links between attitudes and knowledge, see Kellert 1993; Thompson and Mintzes 2002;
Barney Mintzes and Yen 2005; Prokop, Kubiatko and Fanc̆ovic̆ová 2008). This finding is very important because it shows that greater knowledge of bats and less belief in myths is linked with
positive attitudes toward controversial animals like bats, which are considered “disgusting,” due
to the human evolutionary predisposition toward potential disease threats (Davey et al. 1998;
Curtis, Aunger and Rabie 2004). Biology majors had better knowledge of, and more positive attitudes toward, bats than the non-biology major students, even though they had not studied
zoology. This suggests that students’ attitudes are influenced by well-developed individual interest
(sensu Renninger 2000), not by the effect of study course per se. Well-developed individual
interest is a relatively enduring predisposition to re-engage with particular classes of subject
matter over time. A student with a well-developed individual interest in a subject has more stored
knowledge and stored value for that subject than he or she has for other subjects.
Anthrozoös
Discussion
AZ VOL. 22(1).qxp:Layout 1
1/5/09
4:26 PM
Page 28
28
Anthrozoös
Vampires Are Still Alive: Slovakian Students’ Attitudes toward Bats
Both attitudes and knowledge were heavily influenced by gender differences. In general,
research has shown that females exhibit greater interest in rearing pets (Prokop, Prokop and
Tunnicliffe 2008) and have more positive attitudes toward animal protection than males (Herzog
2007). However, females also show greater fear of carnivores (Røskaft et al. 2003), spiders
(Davey 1994), and prefer “popular” species of animals, whilst males like less popular animals
such as snails, bats, and rats (Bjerke and Østdahl 2004). These patterns are consistent with
our findings—females showed less knowledge of, and more negative attitudes toward, bats.
However, no differences in the Scientistic dimension with respect to gender were found.
Negative attitudes toward bats in females are consistent with women’s enhanced evolutionary
role in protecting the next generation (Røskaft et al. 2003, Curtis, Aunger and Rabie 2004). This
means that females might fear not only for their own safety from a disease threat, but for the
safety of their children, as well. Further research with a more diverse sample (both with mothers
and childless females) would shed more light on this topic.
Although biology majors showed more positive attitudes toward, and knowledge of,
bats than non-biology majors, it should be noted that belief in myths about bats were
similarly distributed amongst both groups. This finding is intriguing and tells us something
of the pervasive power of myths, which have been found to be often resistant to conventional teaching approaches (Mintzes and Wandersee 1998)—the attention of biology/
science teachers and environmental protectors is therefore required. We suggest that the
main problem in human perceptions of bats is poor understanding of feeding habits and
the size of bats. These suggestions are supported by the fact that a significant proportion
of the students were not aware that an overwhelming majority of bats do not feed on blood
(Kubiatko and Prokop 2007). Vampire bats generally drink from cattle and other large
herbivores and present no danger to humans. Naive ideas about the real size of bats, which
are usually magnified in horror films, would also contribute to fears of bats and their potential
danger to humans. That more than half of the students in our study still believed that bats
can get tangled in human hair clearly indicates that myths still influence the beliefs of people
in modern societies.
From an environmental, educational perspective, bats are unique animals that are virtually
never kept as pets by school-age children (Prokop, Prokop and Tunnicliffe 2008). The
problem is that they fly at night, and, as found in the present study, a substantial number of
students suffer serious fear of them. Thus, observing or keeping bats is much harder than,
for example, bird watching, and planning environmental activities focused on bat conservation should take these facts into account. A strong correlation between the Scientistic and
the Negativistic dimensions in our study suggests that chiropterology (the study of bats)
should be made available to people, particularly students. This should result in an increased
appreciation of bats.
Informal biology settings can encompass discussions with professional chiropterologists,
members of protection communities, and field trips. An important issue is students’ physical
contact with bats. This is because physical contact with particular, even disgusting, animals
influences students’ interest more strongly than non-contact interventions (Morgan and
Gramman 1989). Field trips need be designed to consider the nocturnal activity of bats. At
best, special capture nets (like ornithological ones) can be attached to the entrance of caves
inhabited by bats. After catching a bat, ultrasonic bat detectors that convert the ultrasonic
calls of bats into sounds that are clearly audible to humans can be used. Other activities can
be focused on observations of overwintering bats in selected caves.
AZ VOL. 22(1).qxp:Layout 1
1/5/09
4:26 PM
Page 29
Prokop et al.
Our own experience tells us that all the activities described above can have a strong influence
on motivating students of various ages. The effect of knowledge on attitudes toward bats and
belief in common myths about bats shown in this study has direct implications for teaching
biology/science and bat protection. We hope that this paper will encourage both nature protectors and researchers from different countries to conduct comparative research in this area. This
will contribute to a deeper understanding of relationships between humans and animals.
Acknowledgements
We would like to thank Anthony Podberscek and two anonymous referees for their insightful
comments on an earlier draft of the manuscript. Scott Lamphear kindly improved the English
in this paper.
Note
1. The full version of the Bat Attitude Questionnaire (BAQ), along with detailed information about the reliability of
each dimension, can be found on the first author’s web page (www.zoo.sav.sk/prokop).
29
Allen, M. W., Hunstone, M., Waerstad, J., Foy, E., Hobbins, T., Wikner, B. and Wirrel, J. 2002. Human-toanimal similarity and participant mood influence punishment recommendations for animal abusers. Society
& Animals 10: 267–284.
Barney, E. C., Mintzes, J. J. and Yen, C-F. 2005. Assessing knowledge, attitudes and behavior toward charismatic megafauna: The case of dolphins. Journal of Environmental Education 36: 41–55.
Bjerke, T. and Østdahl, T. 2004. Animal-related attitudes and activities in an urban population. Anthrozoös 17:
109–129.
Bjerke, T., Østdahl, T. and Kleiven, J. 2003. Attitudes and activities related to urban wildlife: Pet owners and nonowners. Anthrozoös 16: 252–262.
Cox, C. 1980. The nightmare house. Family Circle 93: 64–94, 1 April.
Curtis, V., Aunger, R. and Rabie T. 2004. Evidence that disgust evolved to protect from risk of disease.
Proceedings of the Royal Society of London, Ser. B 271: S131–S133 Suppl. 4.
Davey, G. C. L. 1994. The ‘disgusting’ spider: The role of disease and illness in the perpetuation of fear of
spiders. Society & Animals 2: 17–24.
Davey, G. C .L., McDonald, A. S., Hirisave, U., Prabhu, G. G., Iwawaki, S., Jim, C. I., Merckelbach, H., de Jong,
P. J., Lejny, P. W. L. and Reimann, L. 1998. A cross-national study of animal fears. Behaviour Research and
Therapy 36: 735–750.
Fujita, M. S. 1991. Flying Fox (Chiroptera: Pteropodidae) pollination, seed dispersal, and economic importance:
A tabular summary of current knowledge. Resource Publication No. 2, Bat Conservation International.
Griffin, D. R. and Galambos, R. 1941. The sensory basis of obstacle avoidance by flying bats. Journal of
Experimental Zoology 86: 481–506.
Herzog, H. 2007. Gender differences in human–animal interactions: A review. Anthrozoös 20: 7–21.
Herzog, H. and Burghardt, G. M. 1988. Attitudes toward animals: Origins and diversity. Anthrozoös 1: 214–222.
Isbister, G. K. 2002. Data collection in clinical toxicology: Debunking myths and developing diagnostic algorithms.
Journal of Toxicology–Clinical Toxicology 40: 231–237.
Kellert, S. R. 1993. Values and perceptions of invertebrates. Conservation Biology 7: 845–855.
Kellert, S. R. 1996. The Value of Life; Biodiversity and Human Society. Washington DC: Island Press.
Kindt, M., Brosschot J. F. and Murit, P. 1996. Spider phobia questionnaire for children (SPQ-C): A psychometric study and normative data. Behaviour Research and Therapy 34: 277–282.
Knight, S., Nunkoosing, K., Vrij, A. and Cherryman, J. 2003. Using grounded theory to examine people’s attitudes toward how animals are used. Society & Animals 11: 307–327.
Kubiatko, M. and Prokop, P. 2007. Pupils’ misconceptions about mammals. Journal of Baltic Science Education
6: 5–14.
Lane, D. J. W., Kingston, T. and Lee, B. P. Y. H. 2006. Dramatic decline in bat species richness in Singapore,
with implications for Southeast Asia. Biological Conservation 131: 584–593.
Anthrozoös
References
AZ VOL. 22(1).qxp:Layout 1
1/5/09
4:26 PM
Page 30
30
Anthrozoös
Vampires Are Still Alive: Slovakian Students’ Attitudes toward Bats
Matchett, G. and Davey, G. C. L. 1991. A test of a disease-avoidance model of animal phobias. Behaviour
Research and Therapy 29: 91–94.
Mayen, F. 2003. Haematophagous bats in Brazil, their role in rabies transmission, impact on public health,
livestock industry and alternatives to an indiscriminate reduction of bat population. Journal of Veterinary
Medicine, Ser. B—Infectious Diseases and Veterinary Public Health 50: 469–472.
Mintzes, J. J. and Wandersee, J. H. 1998. Research in science teaching and learning: A human constructivistic
view. In Teaching Science for Understanding, 60–94, ed. J. J. Mintzes, J. H. Wandersee and J. D. Novak.
Orlando, FL: Academic Press.
Morgan, J. M. and Gramann, J. H. 1989. Predicting effectiveness of wildlife education programs—A study of
students’ attitudes and knowledge toward snakes. Wildlife Society Bulletin 17: 501–509.
Morris, R. and Morris, D. 1965. Men and Snakes. London: Hutchinson & Co.
Nunnaly, J. 1978. Psychometric Theory. New York: McGraw-Hill.
Öhman, A. 1986. Face the beast and fear the face: Animal and social fears as prototypes for evolutionary
analyses of emotion. Psychophysiology 23: 123–145.
Okie, S. 1979. Warning: Sick bird may be a rabid bat. Washington Post, 20 Sept.
Olnhausen, L. R. and Gannon, M. R. 2004. An evaluation of bat rabies prevention in the United States, based
on an analysis from Pennsylvania. Acta Chiropterologica 6: 163–168.
Oppenheim, A. N. 1999. Questionnaire Design, Interviewing and Attitude Measurement. New edn. London:
Continuum International Publishing Group.
Plous, S. 1993. The role of animals in human society. Journal of Social Issues 49: 11–52.
Prokop, P., Kubiatko, M. and Fanc̆ovic̆ová, J. 2007. Why do cocks crow? Children’s concepts about birds.
Research in Science Education 37: 393–405.
Prokop, P., Kubiatko, M. and Fanc̆ovic̆ová, J. 2008. Slovakian pupils’ knowledge of, and attitudes toward, birds.
Anthrozoös 21:221–235.
Prokop, P., Prokop, M. and Tunnicliffe, S. D. 2008. Effects of keeping animals as pets on children’s concepts of
vertebrates and invertebrates. International Journal of Science Education 30: 431–449.
Prokop, P. and Tunnicliffe, S. D. 2008. “Disgusting” animals: Primary school children’s attitudes and myths of
bats and spiders. Eurasia Journal of Mathematics, Science and Technology Education 4: 87–97.
Renninger, K. A. 2000. Individual interest and its implications for understanding intrinsic motivation. In Intrinsic
and Extrinsic Motivation: The Search for Optimal Motivation and Performance, 373–404, C. Sansone and J.
M. Harackiewicz. San Diego, CA: Academic Press.
Robins, L. N. and Regier, D. A. 1991. Psychiatric Disorders in America. New York: The Free Press.
Røskaft, E., Bjerke, T., Kaltenborn, B. P., Linnell, J. D. C. and Andersen, R. 2003. Patterns of self-reported fear
towards large carnivores among the Norwegian public. Evolution and Human Behavior 24: 184–198.
Salta, K. and Tzougraki, C. 2004. Attitudes toward chemistry among 11th grade students in high schools in
Greece. Science Education 88: 535–547.
Seligman M. E. P. 1971. Phobias and preparedness. Behavior Therapy 2: 307–320.
Shepard, P. 1997. The Others. Washington, DC: Island Press.
Strohm, B. 1982. Most facts about bats are myths. National Wildlife 20: 35–39.
Thompson, T. L. and Mintzes, J. J. 2002. Cognitive structure and the affective domain: on knowing and feeling
in biology. International Journal of Science Education 24: 645–660.
Whitaker, J. O. and Douglas, L. R. 2006. Bat rabies in Indiana. Journal of Wildlife Management 70: 1569–1573.
Williams, E. S. and Barker, I. K. eds. 2001. Infectious Diseases of Wild Mammals. 3rd edn. Ames, Iowa: ISU
Press.
Wong, S., Lau, S., Woo, P. and Yuen, K.Y. 2007. Bats as a continuing source of emerging infections in humans.
Reviews in Medical Virology 17: 67–91.
Yip, D. Y. 1998. Identification of misconceptions in novice biology teachers and remedial strategies for improving
biology learning. International Journal of Science Education 20: 461–477.