pdf

Transkript

pdf
MEFANET 2010
KOMPLEXNÍ MODELY INTEGROVANÝCH
COMPLEX MODEL OF INTEGRATED PHYSIOLOGICAL
SYSTEMS – A THEORETICAL BASIS FOR MEDICAL
!"#
Abstrakt
"$%%&##'()$$((*$%(%'#%)()
)$#$#%
(+))#)(*),#%&(%'
-'$((.((
)
&$#(.#
/( 0 & (' .1 2(% 3 '
) (%' % 445 %) - $) &$# (%'+ 6#788999((: -$( #(
$%$# (%'+ (% $ ) .. ;+- )( $ ..( &' /% 2/ (%' /%% & ) /( 6#788999(8: ;<0=
6#788999((8:>$%$-)
)%$##(%'+&,
' % %. (+- ' (%# ( )+),( '& (%$#
( ?'( $%$# (%'+ ) (* ( $# % # (%
)$#9$((%'(?#
'%%6%%-$#&%,#
(+:
&)@'''.#'$(#$(9A#9<*%)
%($#$#(+?(#)'#$(3(
B%((6#788#%((:(($((&&C;%
+D,(((%
);&(#(+.),&),($#$##+#
)(#
+((%()((/,&)(
('
#(' & D, (( (% B%(( 6#788#(8#%((: %
%-$(($%(%'"&))#((
%(%-,#
9
$#(%'+
(;$%$-
Abstract
##(((#(%%
(%#%
(
%#((#9#;
(%#
(#%#A((((*(#1
2(%3(%%E#(%445%#((
(%6#788999((: (%)%(%=
(%A(2#(%9#%((*(
6#788999(:;<0=6#788999((8:(#(%
((%
(9####(%
#
9%(%0#((%(*
(#%##%(
9##9(%=%%
6#(F%#(%:%%%
#
(%
#9A#90#%(#(#(
(3(B%((6#788#%((:((
(##%
C;/%((#(#;%#
%#(%#
#(%(*###C;((G%
(#(#(9#(/*%(A
#(%(((B%((6#788#(8#%((:9#
(%=((99%%9
(%#
(;(%
1
MEFANET 2010
1. Schola ludus pro 21. století
H3 ,( (% &( (%) '( (% %((I A % %
.% (% %) ( ( %. $ ) HA
AI ()%(%.#2(%.#%)(-
#'(%#
)% J & % &' %'( ( & &$# (%'+ .
%'#.#')$#$#%
(+
2) % # (%('# & (%.( ( &',
(- )( ' - '$# #+ .'$#&'$#>)(%('#
$%$##$%#'(%?1(!(#H2#
%%IJ)H,#%IKLM$)-N
2(%. # $%% ( )% (( & (.# /(>
(.# (%'+ % ) YROQČ GRVWXSQp $% VLPXOiWRU\ MHGQRWOLYêFK
I\]LRORJLFNêFK VXEV\VWpPĤ 0 & (%' <3O( 6#788999(8: %(-@%)
%
%,&#'%('#%(#(%%<!O
+$#KNPM0
#&('#&+$##%(-@%)
(%' 3%(
6#788999%(
%88#8(8#(: KQM
2(%' $# &)+ %(-@%) ' %'(%
6#788(%E%8: "& # + ( )% ((
(%'%216*2%1#(:%.#$%%%*KNRM6#788999
A: S %% %$# %(-@%) % (%. (
D< TD U 6#788999%%: KPLNM >$%$ (%'1=V1 6#788
999L8: (%) %'# # %(-@%) ''
+$# %#+ %% & ( &)(% %W$ (
(% KPNXQM ?( $+,#Y
)$$WODVI\]LRORJLHDSDWRI\]LRORJLH$)
%' (%(' $%' (+ ' '% % &( =% %-((%.#(+%)%)$#$#(+&.)
))#%#J#788#(8KQLQ5QZM
!"#$%&!'(!)*+,-,/"0345#'
T#($%$#(%'+(%
$)
..6
:"#
##('
'%'&%&%(%'+%.%'
#%$# # KPPPP4XNM T) # &$# (%'+ %.$# .'
# ' $# $# Y+ 6%(' % %
:/%2',
)%)
&
#9$#-+%.$#'@.'&##'KL5PZMD&'
/( 6#788999(8: '
% $# (%'+ . (%'%
2([
Y,%-#)&$-.)KXZM0-
.)$%&+$%KXMV,(Y,$($
()
('/(;<0=6#788999((:))-
-)%(6-
'%: $%% (+ $ + $# $(+ )( (%#+KXX4M
&-%(-@%)
)-$+
$%
%
.(+-%'.%
Y>-)
)%$##(%'+&,'
% %. (+- ' (%# ( )+),( '& (%$#
(>, %+ )% (' (%' %) ),
6
/:#%#%%%+KZM
?',
%@%)&%+$%(%'(,,
' %.%)# - ' $% "& '( %- (%'% ) , $
2
MEFANET 2010
!"
#
$
%&'((
)
"#
*+,.%&'((///)01 &!
2302 245 &!
212"!
6
($$',$#
#)#'#'(+-
&(%#+K55L45RXXXNZM
))$('(#(%'%('(&$#
$%$# (%'+ ) . $ ( $# (+ # (% ?#
' %% 6% # (+: % (.# -+
&)@'''.#'$(#$(9A#9
6#7"8!$73*#59':3);)83"
;)%$((&$#-+#%)PDWHPDWLFNpPRGHO\
QHMHQMHGQRWOLYêFKI\]LRORJLFNêFKVXEV\VWpPĤDOHLMHMLFKSURSRMHQtGRNRPSOH[QČMãtKRFHONX
# $%(% $) %( )$# $# %
(+ (%
$'$'ÄLQWHJUDWLYQtI\]LRORJLH³KRM
)'('(&
- ' % $ *('# $%(% H
I-&($)$#$#%))#
%%#.&))+),#(
?( # '#$# (($# + $# % )$#
%
(+ (% ($ % #% '( , %
( $4NL%
13 O% (%%K4M S' )-
#(
$#.'+
?#%.'
& '# #( & ' &() ' )# #
& 1, ( $# %.' ) $. 6'
. . %(' ' %. : (
(( 3
MEFANET 2010
'$(.(;'%(($#.'%
%- / ' (($# #+ 3 #( & ($
$##+(/)'&#((#(%6
L:
1%& ( # $( +
( ( / )'&$# (($#
(
+ % %.# (% )# ,, %
' %
( (% !('& + (% (($#
#+
(%.")4N5),4NP,(/KLRM
&%-$#&%+
)
O%%/%(#%$##+'#&)
%&J&=KLZM?%
$%('%1(!)KLMO/$'
((#(%&()$#
+
#%%#$(
$('(JO%+()#,(/6))(,#%+
&O%%)&&):
(('%))3\\
O%)#%-'(&-')KX5NMO%+(
(&-$#(*#(+$#%%-#
%'#&+(%)+),#)
+$#$#+;/$O%+((())('+
'#$($#%(%HV1%ID121KN4M
<):=>?;&/)0";'(!)*+,-)*&=3/,;>7)!'
O% )- .'% ('$# %( (- %-' (+
) %.
$% (+ '( #),# (- $. # -
(%$%"&$%%-/#('##+(
)$( $( %
( " ' ))# #' & # )+),
%
-%-'((($)
.(..")4ZLO%+%0#(3(&(
Ä+XPDQ³%.$&,($%$(Y.+(K4M;%(-(%&%$#
+6''#'#(#$,):$#%$#'#+6Y
$#+Y%(%$%:>
;
V#((?+3(+$%$(B%(&%9
%KXLM
> %
' O% (% ('$# %
..$# (+ $% ( $% ) % ' &,( #(
%(%+&%,$#%D!%
$(
$$( ,( [
# Y% % ,
#
& ! " '( % ( '( )( (+
$(%.#
+))#(%KZRZM
2%((($($#..#;<V1)-
#
,('#.$#..+KZLM
>('$##)(%$)#'##(%)$#
$#%(&#&,(('%##('&#&
; '# &% # + K5M )( ,& (* (
#(' &# & KZ54QPQXQNM >&$ ( (( ) %.' ,,#
)%%-(($#(+#(%'(#(#$%(%
KNNM
#((%)%D121HV1%IKN4MD%
((%
, %- $. $# A$# % &(
/(%(&''KQQM
D'( &$ (* ( &# & )( ('$# %,%-$%!(%((
-('(#9%&
%($ (' = % -'' $% % .
% '& $# # /$ $% "$ 4
MEFANET 2010
NON-MUSCLE OXYGEN DELIVERY
VASCULAR
STRESS
RELAXATION
MUSCLE BLOOD FLOW CONTROL AND PO2
260
57.14
02M
268
RDO
512
u^3
230
lower limit 50
238
198.7
263
BFM
5
DOB
264
POT^3
P1O
223
0.08
PDO
195
0.3
188
1
220
189
AHM
upper limit 15.0
lower limit 0.4
RFN
0.1005
213
214
CNA
142
182
0.14
AH
222
184
lower limit 3
CNR
139
RBF
0.001
0.025
2.5
CNX
1.211
PRA
0
177
178
179
REK
PPC
1
s
AH7
AHM
1
1.211
CNE
0.0007
2
AM
1
1
AHY
180
AHZ
RFN
28
0.3333
CN8
10
1
183
176
1
175
NOD
1.2
RBF
100
AOM
0.9899
1
s
158A
6
CNY
AM
AHM
207
RFN
AMM
AH1
u
CNZ
1.2
201
lower limit 0.35
AUM
1
1
10
AHC
185
0.0785
187
AH2
6
AHM
NOD
221
1
PVO
6
1
0.1
215
lower limit 0
40
186
AH4
216
1
GP3
1
249
EXC
40
TVD
0.001003
0.009
AM
211
1.5
ARF
191
210
APD
202
AAR
243
512
HM
0.0125
0
190
219
1
1
POM
TVD
lower limit 0
Z11
AHM
0.01
GF3
1
s xo
VIM
196
0.5
250
1
u^3
122
8
VPF
GF3
197
VVE
PM5
PMO
0.5
2.86
7.999
5
GF4
203
algebraic
loop
breaking
VIM
0.01095
1
244
P3O^3
233
2.8
POT
VV7
4
Z10
1
0.301
P3O
194
STH
8.25
1.002
217
1
GLP
31.67
VV7
VV1
62
1
60
242
193
1
STH
0.001008
1000
209
PPC
51.66
63
VV6
VV2
lower limit .005
251
248
AAR
198
18
POE
1
7.987
200
8
0
VUD
0.001
TRR
212
8.0001
OVA
40
0.00333
P2O
241
PVO
QO2
lower limit 0.0003
0.8
33
AOM
1
8
upper limit 8
RMO
57.14
1
BFN
272
POT
P2O
2400
Xo
235
DVS
234
255
HM
xo
271
1
s
upper limit 8
1 xo
s
232
OSA
192
POT
8
VUD
PFL
EVR
AAR
SRK
252
247
THIRST AND DRINKING
218
GFR
208
0.00781
61
224
271
206
0.125
1
s
0.25
-1
0.7
231
200
5
2400
u^3
GFN
205
200
65
VV7
256
MO2
265
KIDNEY DYNAMICS AND EXCRETION
RR
1
1
253
199
PM4
1
s xo
OVA
225
P40^3
8.0001
236
QOM
257
40
AMM
1
s xo
1
64
5
OVA
2688
254
02A
0.15
u^2
246
P4O
266
AU
237
PK3
PM1^2
2500
40
POV
267
245
1
lower limit .001
239
PK1
258
226
262
POT
PM3
PMO
800
229
5
RMO
5
240
PK2
227
POV
270
228
BFM
1
259
0.7
261
AOM
1
1
s xo
OSV
168
269
181
AU
AH8
1
lower_limit_0
1
NON-MUSCLE LOCAL BLOOD FLOW CONTROL
40
POV
277
278
1
s xo
POB
276
274
275
POD
273
ARM
AK1
1
POK
lower limit 0.2
1
40
A2K
1
lower limit 0.5
AR3
20
AR2
ARM
1.6
VIM
1
VVE
1
POC
283
286
POJ
99.96
0.495
2.86
0.00355
11520
0.3
1
289
1
33
0.33
lower limit 0.3
A3K
VAS
RSN
1
PA
VAE
xo
0.85
POZ
AR3
1
xo s
32
1
s
if (POD<0) {POJ=PODx3.3}
VBD
5
VVR
6
2.95
DVS
1
s
BFN
PGS
QVO
298
0
1
295
8
CPA
54
25
0
QLO
VLA
RPA
20
-4
AUC
AUB CALCULATION
when PA1<40: AUB=1.85718
AUB
when 40>PA1<170: AUB=0.014286*(170-PA1)
when PA1>=170: AUB=0
304
0
23
6
PLA
RPT
22
PGL
QPO
AUJ
QPO
18
VPE
316
0.21
0.85
314
1.001
312 AUL
AUV
IFP
VIF
1
xo s
12
3.454e-006
110
AUD
AUY
0.5
319
VVR
2.949
1
AUH
1
1
0
8
VVR
70
PPA
AUH
150
0.4667
1.001
AVE
1
0.55
146
151
0.375
32
327
PLF 145
0.0003
152
2
PRA
RCD
332
0.5
1
2-(0.15/u)
DFP
0.0125
11.4
142 VPF
PPI = 2 - (0.15/VPF)
351
0.01252
333
DHM
HPR
347
342
1
352
HM
57600
343
40
96
0.1
u^2
REK
93
94
PGC
PGR
CHY^2
99
VG
1
334
344
VB
1
349
5
VRC
1
1
xo s
1
1
HPL
1
xo s
119
1
xo s
2130
0.1
CNA
118
NED
0.25
NAE
HMD
HPR
57
HYL
90
142.1
142
NID
PGH
PTS
89
CNA
116
PGP
PTC
2
117
PG2
95
PIF
upper limit 1
HMD
RKC
VRC
0.00042
NOD
1
s
57600
348
126
120
V2D
xo
1
1600
335
124
CKE
125
100
0.4
RC2
5
123
KOD
1
336b
100
VPF
0.00014
KE
98
40
-4.842e-010
1
xo s
1
xo s
75
140
AM
122
KED
0.013332
PP3^0.1
HM
DFP
PLF
0
u^0.625
xo
2
2
0.0000058
143
1
346
PA4^0.625
HPL
VRC
PPI
141
1
HEART RATE AND STROKE VOLUME
u^0.625
1
s
xo
11
PFI
1
CKE
5
121
KID
VGD
0.0025
1
s
144
0.0003
140
40
AU
336
336c
PPO
CPF
0
321
HMD
127
0.013
1
KCD
0.0028
(u/12)^2
HM2
40
331
2850
97
PP3
KIR
KE1
GPR
xo
PTT = (VTS/12)^2
6
PTT
PPA4
128
129
KIE
KCD
113
1
s
350
345
130
3550
VG
101
85
POT
15
1
341
RC1
PLF
PPI
322
323
324
325
11.99
VTS
HSR PPA
100
340
POS
PPC
HR
10
VG
8
15
PA
HSL
1
0.00092
0
POS
100
1.5
337
xo
1
s
88
0
86
VTS
338
VIC
1
xo s
1
s
PTS = f(VIF)
VIM
VIE
135
25
KI
171
112
12
339
464e-7
330
7.866e-008
PPD
PCP
SVO
-6.3
131
xo
1
lower limit 0.2375
POY
148
PPN
139
VIM
POT
329
0.333
0.4
xo
147
AUTONOMIC CONTROL
5
PTS
0
0
VID
0.01
CNA
GPD
xo
0.9897
PO2
VPF
1
s
0.000225
138
AVE
PPD
QLO
VIF
12
CCD
132
VIC
PIF
8.25
PPR
149
137
AUM
PO1
CPN
CPP
28
136
15
PPC
320
133
CKI
GP2
111
0.0005
20
1
s
2.95
0.7
1
318
VID
134
GPD
87
VID
VTD
84
PLA
1
326
DPL
83
VTC
313
1
ALDOSTERONE CONTROL
VTL
0.002
VV9
AU
315
0.07039
103
DPI
0.1
0
CIRCULATORY DYNAMICS
3.159
0.3
0.15
328
0.005
PRA
0.09925
1
s
170
AMC xo
lower limit 6
9
102
PRA
0.38
166
KN1
CNA
GP1
14
VPA
0.0048
165
CKE
5
104
0.30625
15
1
169
60
109
PTT
20
DPC
0.04
VRA
15
0.00352
7.8
CPI
0.25
lower limit 4
20
-4
QRN = f(PRA)
AMT
AMR
200
0.04
-6.328
1
s
VPA
PTC
PIF
0
AU9
171
-0.017
168
AM1
AMP = f(PA)
106
PIF
20.15
CPI
142
105
xo
1
s
AUJ^AUZ
1
SVO
5
0.1
13
QRO
20
21
PPA
1
1
s xo
uv
u
AM2
AM3
00
PLD
0.004
lower limit 5
108
DPL
0.002
PTC
xo
311
VTL
5.038
12
DRA
VRA
19
15.22
AUZ
310
1
AU
172
19.8
167
AMP
DPL
PRA
PR1
AU8
AUN
AUN
173
AM5
PA
107
HMD
0
Z8
0.03826
0.001899
VTL
15
QRN
PPA
AUN calculation
317
QVO
1
AUH
xo
AM
10
HSR
QRO
16
50
AUH 51
0.026
1
AUB calculation
AUM
1
ANM
100
HMD
0
RVM = f(PP2)
1
s
20.039
174
AM
164
PPA
AUN CALCULATION
when PA1<50: AUN=6
when 20>PA1<50: AUN=0.2*(50-PA1)
when PA1>=50: AUC=0
PA1
0.002
1.002
RVM
0
PP2
RPT
309
ANGIOTENSIN CONTROL
DPC
1
1
52
PL1
308
0.0005
0.0384
20
3
11
AUH
55
0.0357
20
57
PLA
AU2
AUB
PA1
ANT
DPC
0.04
VP
3.004
VP
HPR
RPV
0.4
DLA
24
DAU
AUK
AUB^3
305
15
PR1
lower limit 0
307
1
303
AU6
301
u^3
1
158
0.1
CPI
71
1
xo s
3
1
56
1
xo
302
A1B
152
RVG
50
1.4
PP1
QLN = f(PLA)
AUC
AUC calculation
1
s xo
157
AN1
74
49
48
sqrt
1
s
156
155
CNE
ANM
2.738
1
RVM
53
QLN
VLA
1
AUC CALCULATION
when PA1<40: AUC=1.2
when 40>PA1<80: AUC=0.03*(80-PA1)
when PA1>=80: AUC=0
PA1
PLA
159
10
4
1
0.4
EXC
142
PVS
0.6
QRF
15
26
Z12
CPP
(1.2/RFN)^3
CNE
154
CNA
CP1
VTL
10
QLO
QLN
47
28
VLE
0.1
1.24
PA1
0
260
LVM = f(PA2)
10
44
27
P2O
296
297
EXE
45
46
0.02244
PLA
0
8
293
3
74
VPD
VUD
DFP
0.042
ANC
(1.2/u)^3
69.77
PC^3
0
PVS
160
AN2
RFN
1.2
75
70
0.001
5
VRA
PLA
5.085
QLO
100
POQ
PPC
u
10
153b
TVD
0.001
VVS
VPA
PA2
LVM
8
upper limit 8PA
lower limit 4
294
0.001902
VTC
3.3
161
AN3
4.0
REK
153a
u^3
VB
VLA
58
1.4
1
HMD
HPL
POT
POQ
0.002
3.7
AN5
lower limit 0.7
ANM
210
0.4
60
VAS
59
HSL
LVM
QLN
QAO
QLO
291
73
5
PA
29
5
30
8
28
1.6283e-007
CPK
DAS
292
PPC
69
16.81
PTC
PVS
VVS
1.004
1
s xo
VTC
lower limit 0.0001
0.0825
CV
VVE
0.3
CFC
0.007
PVS
VAS3
PRP
CPP
9
xo
3.25
2.8
100
8
VV8
QVO
61
VP
-6.3
3.781
7
VVS
162
163
1
ANM
80
70
CPP
72
PIF
PVS
2
16.81
62
VP
QAO
BFN
31
288
0
4
284b
VV7
0.04
DPP
0.00047
PC
68
2
0.3229
RBF
DLP
LPK
CPR
17
5.004
VB
VRC
1.2
BFM
100
DPL
78
77
85
PC
VB
5
PC
RVS
0.007
0
67
PVS
3.7
79
PPD
PVG
BFN
2.8
17
17
PA
DP0
1.6379
0
39
17
284
287
41
2.782
34
AUM
66
0.2
0.0212
CN2
RV1
1.014
ANTIDIURECTIC HORMONE CONTROL
RVS
2.9
BFM
PAM
AUM
RV1
43
1
3
PGS
CAPILLARY MEMBRANE DYNAMICS
2.9
1
s xo
CN7
1.79
RVS
RSM
37
RAR
AUM
PAM
30.5
RAR
0.1
1
35
ANU
VIM
PON
41A
38
36
ANU
AMM
VIM
RAM
96.3
AUM
RAM
1
279
280
AR1
1
s xo
42
1
1
290
POA
281
282
285
algebraic
loop
breaking
40
1
AVE
lower limit 0.95
ARM
POR
0.06
1
AR1
ANM
1
0.9457
91
PIF
92
STH
0.1
1
VIC
0.0125
VPF
114
115
VEC
CHY
39.99
VTW
PRM
-5.9
3
VP
VTW
24.2
1
12
VTS
0.0125
PULMONARY DYNAMICS AND FLUIDS
LIST OF VARIABLES
AAR-afferent arteriolar resistance [torr/l/min]
AHM-antidiuretic hormone multiplier, ratio of normal effect
AM-aldosterone multiplier, ratio of normal effect
AMC-aldosterone concentration
AMM-muscle vascular constriction caused by local tissue control, ratio to resting state
AMP-effect of arterial pressure on rate of aldosterone secretion
AMR-effect of sodium to potassium ratio on aldosterone secretion rate
AMT-time constant of aldosterone accumulation and destruction
ANC-angiotensin concentration
ANM-angiotensin multiplier effect on vascular resistance, ratio to normal
ANN-effect of sodium concentration on rate of angiotensin formation
ANP-effect of renal blood flow on angiotensin formation
ANT-time constant of angiotensin accumulation and destruction
ANU-nonrenal effect of angiotensin
AOM-autonomic effect on tissue oxygen utilization
APD-afferent arteriolar pressure drop [torr]
ARF-intensity of sympathetic effects on renal function
ARM-vasoconstrictor effect of all types of autoregulation
AR1-vasoconstrictor effect of rapid autoregulation
AR2-vasoconstrictor effects of intermediate autoregulation
AR3-vasoconstrictor effect of long-term autoregulation
AU-overall activity of autonomic system, ratio to normal
AUB-effect of baroreceptors on autoregulation
AUC-effect of chemoreceptors on autonomic stimulation
AUH-autonomic stimulation of heart, ratio to normal
AUK-time constant of baroreceptor adaptation
AUL-sensitivity of sympathetic control of vascular capacitance
AUM-sympathetic vasoconstrictor effect on arteries
AUN-effect of CNS ischemic reflex on auto-regulation
AUV-sensitivity control of autonomies on heart function
AUY-sensitivity of sympathetic control of veins
AUZ-overall sensitivity of autonomic control
AVE-sympathetic vasoconstrictor effect on veins
AlK-time constant of rapid autoregulation
A2K-time constant of intermediate autoregulation
A3K-time constant of long-term autoregulation
A4K-time constant for muscle local vascular response to metabolic activity
BFM-muscle blood flow [l/min]
BFN-blood flow in non-muscle, non-renal tissues [l/min]
CA-capacitance of systemic arteries [l/torr]
CCD-concentration gradient across cell membrane [mmol/l]
CHY-concentration of hyaluronic acid in tissue fluids [g/l]
CKE-extracellular potassium concentration [mmol/l]
CKI-intracellular potassium concentration [mmol/l]
CNA-extracellular sodium concentration [mmol/l]
CNE-sodium concentration abnormality causing third factor effect [mmo/l]
CPG-concentration of protein in tissue gel [g/l]
CPI-concentration of protein in free interstitial fluid [g/l]
CPN-concentration of protein in pulmonary fluids [g/l]
CPP-plasma protein concentration [g/l]
CV-venous capacitance [l/torr]
DAS-rate of volume increase of systemic arteries [l/min]
DFP-rate of increase in pulmonary free fluid [l/min]
DHM-rate of cardiac deterioration caused by hypoxia
DLA-rate of volume increase in pulmonary veins and left atrium [l/min]
HEART HYPERTROPHY OR DETERIORATION
RED CELLS AND VISCOSITY
DLP-rate of formation of plasma protein by liver [g/min]
DOB-rate of oxygen delivery to non-muscle cells [ml O2/min]
DPA-rate of increase in pulmonary volume [l/min]
DPC-rate of loss of plasma proteins through systemic capillaries [g/min]
DPI-rate of change of protein in free interstitial fluid [g/min]
DPL-rate of systemic lymphatic return of protein [g/min]
DPO -rate of loss of plasma protein [g/min]
DRA-rate of increase in right atrial volume [l/min]
DVS-rate of increase in venous vascular volume [l/min]
EVR-postglomerular resistance [torr/l]
EXC-exercise activity, ratio to activity at rest
EXE-exercise effect on autonomic stimulation
GFN-glomerular filtration rate of undamaged kidney [l/min]
GFR-glomerular filtration rate [l/min]
GLP-glomerular pressure [torr]
GPD-rate of increase of protein in gel [l/min]
GPR-total protein in gel [g]
HM-hematocrit [%]
HMD-cardiac depressant effect of hypoxia
HPL-hypertrophy effect on left ventricle
HPR-hypertrophy effect on heart, ratio to normal
HR-heart rate [beats/min]
HSL-basic left ventricular strength
HSR-basic strength of right ventricle
HYL-quantity of hyaluronic acid in tissues [g]
IFP-interstitial fluid protein [g]
KCD-rate of change of potassium concentration [mmol/min]
KE-total extracellular fluid potassium [mmol]
KED-rate of change of extracellular fluid potassium concentration [mmol/min]
KI-total intracellular potassium concentration [mmol/l]
KID-rate of potassium intake [mmol/min]
KOD-rate of renal loss of potassium [mmol/min]
LVM-effect of aortic pressure on left ventricular output
MMO-rate of oxygen utilization by muscle cells [ml/min]
M02--rate of oxygen utilization by non-muscle cells [ml/min]
NAE-total extracellular sodium [mmol]
NED-rate of change of sodium in intracellular fluids [mmol/min]
NID-rate of sodium intake [mmol/min]
NOD-rate of renal excretion of sodium [mmol/min]
OMM-muscle oxygen utilization at rest [ml/min]
OSA-aortic oxygen saturation
OSV-non-muscle venous oxygen saturation
OVA-oxygen volume in aortic blood [ml O2/l blood]
OVS-muscle venous oxygen saturation
O2M-basic oxygen utilization in non-muscle body tissues [ml/min]
PA-aortic pressure [torr]
PAM-effect of arterial pressure in distending arteries, ratio to normal
PC-capillary pressure [torr]
PCD-net pressure gradient across capillary membrane [torr]
POP-pulmonary capillary pressure [torr]
PDO-difference between muscle venous oxygen PO2 and normal venous oxygen PO2 [torr]
PFI-rate of transfer of fluid across pulmonary capillaries [l/min]
PFL-renal filtration pressure [torr]
PGC-colloid osmotic pressure of tissue gel [torr]
PGH-absorbency effect of gel caused by recoil of gel reticulum [torr]
PGL-pressure gradient in lungs [torr]
PGP-colloid osmotic pressure of tissue gel caused by entrapped protein [torr]
PGR-colloid osmotic pressure of interstitial gel caused by Donnan equilibrium [torr]
PIF-interstitial fluid pressure [torr]
PLA-left atrial pressure [torr]
TISSUE FLUIDS, PRESSURES AND GEL
PLD-pressure gradient to cause lymphatic flow [torr]
PLF-pulmonary lymphatic flow [torr]
PMO-muscle cell PO2 [torr]
POD-non-muscle venous PO2 minus normal value [torr]
POK-sensitivity of rapid system of autoregulation
PON-sensitivity of intermediate autoregulation
POS-pulmonary interstitial fluid colloid osmotic pressure [torr]
POT-non-muscle cell PO2 [torr]
POV-non-muscle venous PO2 [torr]
POY-sensitivity of red cell production
POZ-sensitivity of long-term autoregulation
PO2-oxygen deficit factor causing red cell production
PPA-pulmonary arterial pressure [torr]
PPC-plasma colloid osmotic pressure [torr]
PPD-rate of change of protein in pulmonary fluids
PPI-pulmonary interstitial fluid pressure [torr]
PPN-rate of pulmonary capillary protein loss [g/min]
PPO-pulmonary lymph protein flow [g/min]
PPR-total protein in pulmonary fluids [g]
PRA-right atrial pressure [torr]
PRM-pressure caused by compression of interstitial fluid gel reticulum [torr]
PRP-total plasma protein [g]
PTC-interstitial fluid colloid osmotic pressure [torr]
PTS-solid tissue pressure [torr]
PTT-total tissue pressure [torr]
PGV-pressure from veins to right atrium [torr]
PVG-venous pressure gradient [torr]
PVO-muscle venous PO2 [torr]
PVS-average venous pressure [torr]
QAO-blood flow in the systemic arterial system [l/min]
QLN-basic left ventricular output [l/min]
QLO-output of left ventricle [l/min]
QOM-total volume of oxygen in muscle cells [ml]
QO2-non-muscle total cellular oxygen [ml]
QPO-rate of blood flow into pulmonary veins and left atrium [l/min]
QRF-feedback effect of left ventricular function on right ventricular function
QRN-basic right ventricular output [l/min]
QRO-actual right ventricular output [l/min]
QVO-rate of blood flow from veins into right atrium [l/min]
RAM-basic vascular resistance of muscles [torr/l/min]
RAR-basic resistance of non-muscular and non-renal arteries [torr/l/min]
RBF-renal blood flow [l/min]
RC1-red cell production rate [l/min]
RC2-red cell destruction rate [l/min]
RCD-rate of change of red cell mass [l/min]
REK-percent of normal renal function
RFN-renal blood flow if kidney is not damaged [l/min]
RKC-rate factor for red cell destruction
RM0-rate of oxygen transport to muscle cells [ml/min]
RPA-pulmonary arterial resistance [torr/l/min]
RPT-pulmonary vascular resistance [torr/l/min]
RPV-pulmonary venous resistance [torr/l/min]
RR-renal resistance [torr/l/min]
RSM-vascular resistance in muscles [torr/l]
RSN-vascular resistance in non-muscle, n/minon-renal tissues [torr/l/min]
RVG-resistance from veins to right atrium [torr/l/min]
RVM-depressing effect on right ventricle of pulmonary arterial pressure
RVS-venous resistance [torr/l/min]
SR-intensity factor for stress relaxation
SRK-time constant for stress relaxation
ELECTROLYTES AND CELL WATER
STH-effect of tissue hypoxia on salt and water intake
SVO-stroke volume output [l]
TRR-tubular reabsorption rate [l/min]
TVD-rate of drinking [l/min]
VAS-volume in systemic arteries [l]
VB-blood volume [l]
VEC-extracellular fluid volume [l]
VG-volume of interstitial fluid gel [l]
VGD-rate of change of tissue gel volumes [l/min]
VIB-blood viscosity, ratio to that of water
VIC-cell volume [l]
VID-rate of fluid transfer between interstitial fluid and cells [l/min]
VIE-portion of blood viscosity caused by red blood cells
VIF-volume of free interstitial fluid [l]
VIM-blood viscosity (ratio to normal blood)
VLA-volume in left atrium [l]
VP-plasma volume [l]
VPA-volume in pulmonary arteries [l]
VPD-rate of change of plasma volume [l]
VPF-pulmonary free fluid volume [l]
VRA-right atrial volume [l]
VTC-rate of fluid transfer across systemic capillary membranes [l/min]
VTD-rate of volume change in total interstitial fluid [l/min]
VTL-rate of systemic lymph flow [l/min]
VTW-total body water [l]
VUD-rate of urinary output [l/min]
VV7-increased vascular volume caused by stress relaxation [l]
VVR-diminished vascular volume caused by sympathetic stimulation [l]
VVS-venous vascular volume [l]
Z8-time constant of autonomic response
786
#36
6
& &1
9:7%&)4.6
%);
1&
15
6
#"!&"
Y )( )# (( ! $%$# (%'+
)('-%#'$#(.###%(-
5
MEFANET 2010
?'”$•
?'”$•
ˆ
ˆ‰Š
ˆŠ‰
6666
ˆ‰6
ˆ
ˆ<
ˆ‰<
‹
ˆ
ˆ‰Š
ˆŠ‰
ˆ‰6
ˆ
(!$*"#)
ˆ<
6666
7 0
ˆ‰<
‹
0
(!$*"#)
?'”$•
Š
“
Š
?'”$•
‹

Œ
“
6ŠŽ
ˆŠ
66Ž
Š
ˆŒŒ
66
?'”$•
<Œ
“
Š
6ŠŽ
ˆ
66ˆ
‹
Œ
66
(!$*"#)
ˆŠ
66Ž
‹
ˆŒŒ
66
ˆ
66ˆ
<Œ
‹
Œ
66
‹

Œ
“
Œ
<Œ
(!$*"#)
<Œ
‹
(!$*"#)
<
&8 6
6
MEFANET 2010
'&$%(%'%-$%(
Š)0";'$–=3/,;$—#5—3('˜*=3/,;3#-)*+4?=5754?
>'& (%.# (+ %@%) ' 9' & ?(
# ) ;
82(% /( ;#9 ?# %.' ) /$ (%. ) 2(%
(- ( .. (, %)( (%. ( )$# ( J )$#
9$#(%.#%.')%)((%.#2(%
)%
(
+(()'&$##+%-O%T
))))#/(%
0
'(()(%
#(&(2(%%&
$$O%+(&#
%.#(%.#(%K5LM>),
#(%#(%)(-#)$)+(/(#(%
J-(.+'..
+)%)
2(%. % # #(% Y ' J '( '(
#(%(%)%-#
6
5:]>(
'%%(A#-
2(%%(#
%))"
$#
))#)K55Q4M
?)(-O%+(
)-$
'(#'&')+),#
%
J
)&KNLLNXMD&'(#
%
'#
>
'#(),*
(J
')-$$J%.&'-#$%
;-)-(%&(%#
&,#J'$%
(% H&I # # ) % ( (+% ! + %&)*(+#(%(()J
-%#%#'(%(%(D'(&'
(%' 6#: O% (% ) ')(+( - #788999#(8%D),(%'(#(-),
(%O%),#^'@)(
$,#%-$#
(($##++(
O%+ ( ) &' (%' _ )% , # &# " $, &# ) # $ (% %.
6'
..'%(':)$#%
(+)%
2(%%')%-
&%,$(%$%3$(''
)$# + )$# %
(+ &# ( $# ($#
)% ) %
( '' ( (% # (%.# $.% ) % (%%&
+
[)(-%'#)%-(/%
("&
(+
) (- # )( ) ) & ) % + ,,
##Y
?(%%
(&%))H(%..I$)&%-(
%%%(%.
)$.%$'&%-())$#
+,#$#+ -(+-)(%#'.%(%
& %%% (% $.% "( H(%.# .+I ) #'(%)(&#))'&')('(($((#
(%3$-$((+-(
))(%..%%))#
)))))$(+
((%%-%)
0 ) ( $# (
% %' J )( #.# # ) )
& (' ($# (+ <*(' (% %(
)((#)%%H%&I(%.#.%))$#(%.#
.+(
%,#%%%(%)##'(+-&&%,((%.(
7
MEFANET 2010
Simulation time
SIMTIME
ZUR
XURE
YURU
ZMNE
XMNE
YMNU
VA
GFR
ALD
ADH
THDF
STPG
YTA
YTA1
PHU
YNH4
YCO3
YCO3R
PICO
XPIF
ZPIF
ZPP
XPP
PPCO
ZPO4E
XPO4
YPO4
ZSO4E
XSO4
YSO4
ZORGE
XORGE
YORG
OSMP
UCO2V
UO2V
PCO2A
FCO2A
PO2A
FO2A
YNU
YNH
YND
XNE
ZNE
YNHI
YKHI
ZKI
ZKE
YKU
YKD
XKE
PIF
QLF
QWD
QWU
OSMU
ZCLE
XCLE
YCLU
QCO
PAP
PAS
PC
PVS
PVP
ZCAE
XCAE
YCA
ZMGE
XMGE
YMG
HB
HT
VB
VP
VEC
VIF
VTW
VIC
YINT
YGLS
YKGLI
ZGLE
XGLE
YGLU
A
STBC
BE
AH
PHA
SO2A
XCO3
UCO2A
UO2A
BEOX
BEEC
TBEOX
YCO3IN
YHIN
MRH
ZBEEC0
BEOX0
TYINT
XGL0
CGL1
CGL2
YINS
CGL3
YGLI
YINT0
ZGLE0
QIN
QVIN
QIWL
QMWP
CFC
CSM
VRBC
XHBER
VIN0
VP0
VIF0
VIC0
YCAI
YMGI
ZCAE0
ZMGE0
RTOT
RTOP
KL
KR
DEN
KRAN
YCLI
ZCLE0
QLF0
CPR
YNIN
CBFI
CHEI
ZKI0
CKEI
YKIN
ZNE0
ZKE0
ZHI0
MRCO2
MRO2
PBA
FCO2I
VAL
FO2I
UCO2V0
UO2V0
FCO2A0
FO2A0
YPO4I
YSO4I
YORGI
ZPO4E0
ZSO4E0
ZORGE0
YPLIN
ZPG0
ZPIF0
ZPP0
ZPLG0
TPHA1
YTA0
TPHU2
TPHU1
YNH40
PHA0
PHU20
PHU10
VA0
YURI
YMNI
ZUR0
ZMNE0
1
SIMTIME
<ZUR>
TBEOX
1
TBEOX
2
(=8.0)
YCO3IN
<XURE>
3
YHIN
<YURU>
YHIN
(=0)
<ZMNE>
4
MRH
<XMNE>
MRH (=0.0405)
ZBEEC0
6
(=0)
<YMNU>
BEOX0
7
TYINT
8
XGL0
9
CGL1
10
CGL2
<VA>
TYINT
11
YINS
12
CGL3
7
YMNU
8
VA
<GFR>
(=15)
XGL0
(=108)
<ALD>
CGL1
9
GFR
10
ALD
(=1)
<ADH>
CGL2
11
ADH
(=1)
<THDF>
5
ZMNE
6
(=0)
BEOX0
3
4
YURU
XMNE
ZBEEC0
5
2
ZUR
XURE
YCO3IN (=0)
YINS
12
THDF
(=0)
CGL3
<STPG>
(=0.03)
13
STPG
<YTA>
13
YGLI
14
YINT0
15
YGLI
(=0)
YINT0
17
QVIN
18
<PHU>
(=0)
ZGLE0
<YNH4>
(=66)
ZGLE0
<YTA1>
<YCO3>
QVIN
(=0.01)
<YCO3R>
QIWL
QIWL (=5e-4)
19
20
CFC
<PICO>
15
YTA1
16
PHU
17
YNH4
18
YCO3
19
YCO3R
20
PICO
QMWP
(=5e-4)
QMWP
14
YTA
<XPIF>
CFC
<ZPIF>
(=0.007)
21
XPIF
22
ZPIF
21
CSM
CSM
<ZPP>
(=3e-4)
23
ZPP
22
VRBC
VRBC
<XPP>
(=1.8)
<PPCO>
23
XHBER
XHBER
<ZPO4E>
(=33.34)
24
XPP
25
PPCO
26
ZPO4E
24
VIN0
<XPO4>
VIN0
(=0.01)
<YPO4>
25
VP0
26
VIF0
27
VIC0
28
YCAI
29
YMGI
VP0
<ZSO4E>
<XSO4>
(=8.8)
VIC0
<YSO4>
(=20)
30
(=0.007)
YMGI
ZORGE
33
<YORG>
<UCO2V>
ZMGE0
32
RTOT
<UO2V>
RTOT
34
KL
35
KR
UO2V
38
36
<YNU>
KR
<YNH>
(=0.3)
<YND>
KRAN
<XNE>
37
KRAN (=5.93)
38
YCLI
39
ZCLE0
40
QLF0
41
CPR
42
YNIN
43
CBFI
44
CHEI
45
ZKI0
46
CKEI
<ZNE>
YCLI
(=0.1531)
<YNHI>
ZCLE0
<YKHI>
(=1144)
QLF0
<ZKI>
(=0.002)
CPR
<ZKE>
(=0.2)
<YKU>
YNIN
<YKD>
(=0.106)
CBFI
(=1e-9)
CHEI
<XKE>
<PIF>
(=5)
ZKI0
<QLF>
(=2800)
<QWD>
CKEI
<QWU>
(=0.001)
<OSMU>
47
YKIN
48
ZNE0
49
ZKE0
YKIN
(=0.047)
ZNE0
<ZCLE>
<XCLE>
(=1540)
41
FO2A
42
YNU
43
44
YND
45
XNE
46
ZNE
47
YNHI
48
YKHI
49
ZKI
50
ZKE
51
YKU
52
YKD
53
XKE
54
PIF
55
QLF
56
QWD
57
QWU
58
OSMU
59
ZCLE
60
<YCLU>
XCLE
61
<QCO>
YCLU
62
ZKE0
(=49.5)
FCO2A
40
PO2A
YNH
DEN(=1)
DEN
36
UCO2V
37
PCO2A
39
<PO2A>
KL
(=0.2)
35
OSMP
<FCO2A>
<FO2A>
XORGE
34
YORG
<PCO2A>
(=20)
RTOP
33
RTOP (=3)
31
<XORGE>
(=0.008)
31
ZMGE0 (=33)
30
XSO4
YSO4
32
ZCAE0
(=55)
29
ZSO4E
<ZORGE>
YCAI
ZCAE0
28
YPO4
(=2.2)
VIF0
<OSMP>
27
XPO4
QCO
50
ZHI0
ZHI0
<PAP>
(=100)
<PAS>
MRCO2
51
MRCO2 (=0.2318)
<PC>
<PVS>
52
MRO2
53
PBA
MRO2
(=0.2591)
PBA
<ZCAE>
(=760)
55
VAL
56
FO2I
FCO2I
<YCA>
(=3)
<ZMGE>
XMGE
73
YMG
UO2V0
(=0.155)
<HT>
FCO2A0
59
FCO2A0 (=0.0561)
60
FO2A0
FO2A0
<VB>
<VP>
(=0.1473)
<VEC>
61
YPO4I
62
YSO4I
63
YORGI
64
ZPO4E0
65
ZSO4E0
66
ZORGE0
67
YPLIN
68
ZPG0
YPO4I
(=0.05)
YSO4I
<VIF>
<VTW>
(=0.04)
YORGI
<VIC>
(=0.01)
<YINT>
ZPO4E0
(=24.2)
ZSO4E0
<ZGLE>
69
ZPIF0
70
ZPP0
(=0)
71
ZPLG0
72
TPHA1
73
YTA0
74
TPHU2
(=154)
(=70)
<AH>
<PHA>
<SO2A>
TPHA1
(=200)
YTA0
<XCO3>
<UCO2A>
(=0.0068)
TPHU2
<UO2A>
(=20)
<BEOX>
75
TPHU1
76
YNH40
77
PHA0
78
PHU20
79
PHU10
80
VA0
TPHU1
YGLU
88
A
89
STBC
90
BE
91
AH
92
PHA
93
SO2A
94
XCO3
95
UCO2A
96
UO2A
97
BEOX
(=300)
<BEEC>
YNH40
81
VIC
82
83
YGLS
84
YKGLI
85
XGLE
87
<A>
<BE>
ZPP0
ZPLG0
79
VIF
<XGLE>
(=20)
ZPIF0
(=176)
VB
77
VP
78
VEC
80
VTW
<YGLU>
YPLIN
ZPG0
HT
76
ZGLE
86
(=66.0)
<STBC>
74
HB
75
YINT
<YGLS>
<YKGLI>
(=22)
ZORGE0
71
<YMG>
(=0.21)
<HB>
58
UO2V0
69
ZMGE
72
57
(=0.52)
UCO2V0
68
70
YCA
<XMGE>
UCO2V0
PC
66
67
PVP
XCAE
(=0.0003)
VAL
FO2I
64
PAS
65
ZCAE
<XCAE>
54
FCO2I
63
PAP
PVS
<PVP>
98
BEEC
(=0.024)
PHA0
(=7.4)
PHU20
(=6)
PHU10
(=6)
VA0
(=5)
YURI
81
YURI (=0.15)
YMNI
82
(=0)
YMNI
ZUR0
83
(=77.5)
ZUR0
GOLEM
ZMNE0
84
ZMNE0 (=0)
16
QIN
QIN
(=0.001)
=*3 ; 3 2 !
8 2 !; &
&!3!3;
32!>!2 !"&?&!
%&'((///
&!1(!&!)2!
3>
%.(&KQRM
"((%$#
+)(&NQLKRYQXI\]LRORJLFNêFKPRGHOĤ3K\VLROLEUDU\'
)7#788999#(8(#2%.'#)'#$
$($#%$
(,#YêXNRYpKRVLPXOiWRUX*ROHP
; (' ##% %%% -% )$# &$# )$# (%$#
+K5NM6
QA
X:
);"//5=7)($43"#7$
0
$%#(%'%*ROHP-((%),,(('
Y .) & %-# # )# ) /$( ((
(($((%'%K5XM
2(%'HO(I$)(&('$#)%
(&
&,($%%%#&#&K5Q5PPRAPQM (-@(%
)((,%#(
'#%#%#
+ . #' %# % (-@ )+), Y
2(%'%-,#$##.#&$#%'#.)(
& $% 2(%' (* (% $#
(+)#%(-'(MDNMHGQRWOLYpI\]LRORJLFNpV\EV\VWpP\VSROX
QDY]iMHPVRXYLVHMtMDNVHW\WRVRXYLVORVWLSURMHYXMtYMHGQRWOLYêFKSDWRI\]LRORJLFNêFKVWDYHFK
8
MEFANET 2010
XHB
TBEox
<TBEOX>
<BEOX>
BEOX
STBC
INPUTS:
BEOX - Base Excess in fully oxygenated blood [mmol/l]
HB - Hemoglobin concentration [g/dl]
PCO2A - CO2 tension in arterial blood [torr]
PO2A - Oxygen tension in arterial blood [torr]
HB
<HB>
ACID BASE METABOLIC BALANCE
A
<A>
BEox
VEC
<VEC>
yTA
<YTA>
yNH4
<YNH4>
yCO3
<YCO3>
yKHi
<YKHI>
yNHi
<YNHI>
yHin
<YHIN>
BE
U(E)
U
A
<TYINT>
OUTPUTS:
PHA
XHB - Vector of coefficients derived from hemoglobin concentration
STBC - Standard bicarbonate concentration [mmol/l]
SO2A
BE - Base Excess concentration in arterial blood
<PCO2A>
AH - Hydrogen ions concentration [nmol/l]
PHA - arterial plasma pH
XCO3A
SO2A - Oxygen hemoglobin saturation in arterial blood (expressed as ratio from 0 to 1)
XCO3 - Actual bicarbonate concentration in arterial blood
UCO2A
UCO2A - Content of CO2 in arterial blood [l STPD/l]
UO2A-Content of O2 in arterial blood [l STPD/l]
PO2A
yINT
<XGL0>
BE
<CGL2>
<YINS>
CGL2
yINS
SO2A
<CGL3>
XCO3
UCO2A
<YGLI>
CGL3
yGLI
<PO2A>
UO2A
UO2A
<VEC>
vEC
Blood Acid Base Balance
<GFR>
BEEC
BEEC
yGLS
yKGLI
OUTPUTS:
yINT - insulin secretion [unit/min]
yGLS - glucose flow rate from ECF into cells [mEq/min]
yKGLI - K flow rate from ECF to ICF accompanying secretion of insulin [mEq/min]
zGLE - ECF glucose content [mEq]
xGLE - ECF glucose concentration [mEq]
yGLU - renal excretion rate of glucose [mEq/min]
zGLE
xGLE
GFR
21.8.2001
yGLU
<ZGLE0>
YGLS
YKGLI
ZGLE
XGLE
YINT 0
Scope2
ZBEEC 0
ZGLE 0
YGLU
Blood Glucose Control
BEOX 0
<BEOX0>
YINT
BLOOD GLUCOSE CONTROL
INPUTS:
TYINT - time constant of insulin secretion
xGL0 - reference value of ECF glucose concentration
CGL1 - parameter of glucose metabolism
CGL2 - parameter of glucose metabolism
yINS - intake rate of insulin[unit/min]
CGL3 - parameter of glucose metabolism
yGLI - intake rate of glucose [g/min]
vEC - ECF volume [l]
GFR - glomerular filtration rate [l/min]
CGL1
PHA
<YINT0>
<ZBEEC0>
xGL0
AH
MRH
<MRH>
TYINT
Selector
STBC
<CGL1>
AH
PCO2A
OUTPUTS:
BEox (** Base excess in fully oxygenated blood [mEq/l]*)
BEEC (*ECF Base excess concentration
yCO3in
<YCO3IN>
BEOX
INPUTS:
TBEOX - (*Time constant*)
VB (*Blood Volume [l]*)
HB (fore XHB) (*Blood hemoglobin concentration [g/100 ml]*)
A [11] - (* vector of coeficients, see "Blood Acid Base Balance" *)
pCO2A (*CO2 tension in arterial blood [Torr]*)
VEC (*Extracelular fluid volume [l]*)
yTA (*Renal excretion rate of titratable acid [mEq/min]*)
yNH4 (*Renal excretion rate of ammonium [mEq/min]*)
yCO3 (*Renal excretion rate of bicarbonate [mEq/min]*)
yKHi (*Potassium ions flow rate from ECF into ICF
exchanged with hydrogen ions [mEq/min]*)
yNHi (*Hydrogen ions flow rate from ECF into ICF
exchanged with sodium ions [mEq/min]*)
pCO2A
<PCO2A>
HB
<HB>
XHB
BLOOD ACID BASE BALANCE
VB
<VB>
Scope
Acid Base Metabolic Balance1
Acid base metabolic balance
Scope1
Blood acid base balance
Scope3
Blood glucose control
qIN
<QIN>
HB
qVIN
<QVIN>
HB
<VEC>
vEC
zCaE
ZCAE
VB
<VB>
QCO
QCO
qIWL
<QIWL>
CALCIUM AND MAGNESIUM BALANCE
BODY FLUID VOLUME BALANCE
qMWP
<QMWP>
qWU
<QWU>
qLF
<QLF>
CFC
<CFC>
pICO
<PICO>
pPCO
<PPCO>
pC
<PC>
pIF
<PIF>
CSM
<CSM>
xNE
<XNE>
INPUTS:
qIN - drinking rate [l/min]
qVIN - intravenous water input [l/min]
qIWL - insensible water loss [l/min]
qMWP - metabolic water production [l/min]
qWU - urine output [l/min]
qLF - lymph flow rate [l/min]
CFC - capillary filtration coefficient [l/min/torr]
pICO - interstitial colloid osmotic pressure [torr]
pPCO - plasma colloid osmotic pressure [torr]
pC - capillary pressure [torr]
pIF - interstitial pressure [torr]
CSM - transfer coeff. of water from ECF to ICF
xNE - ECF Na concentration [mEq/l]
xKE - ECF K concentration [mEq/l]
xGLE - ECF glucose conc. [mEq/l]
zKI - ICF K content [mEq]
vRBC - volume of red blood cells [l]
xHBER - hemoglobin concentration in the red blood cells [g/100 ml]
xKE
<XKE>
zKI
<ZKI>
vRBC
<VRBC>
xHBER
<XHBER>
<GFR>
yCaI
<YMGI>
GFR
yMgI
<ZCAE0>
<ZMGE0>
KL
yMg
VIF
vTW
pC
PVS
YMG
<KRAN>
vIF
PAS
OUTPUTS:
QCO - Cardiac output [l/min]
PAP - Pulmonary arterial pressure [torr]
PAS - Systemic arterial pressure [torr]
pC - Capillary pressure [Torr]
PVS - Central venous pressure [torr]
PVP - Pulmonary venous pressure [torr]
KR
<DEN>
zMgE0
RTOP
XMGE
30.7.2001
VEC
PAP
INPUTS:
VB - Blood volume [l]
RTOT - Total resistance in systemic circulation [Torr * Min / l] (norm.=20)
RTOP - Total resistance in pulmonary circulation [Torr * Min /l] (norm. =3)
KL - Parameter of the left heart performance [l/min/torr] (norm.=0.2)
KR - Parameter of the right heart performance [l/min/torr] (norm.=0.3)
DEN - Proportional constant between QCO AND VB [1/min] (norm.=1)
KRAN - Parameter of capillary pressure (norm.=5.93)
ZMGE
<KR>
xMgE
CARDIOVASCULAR BLOCK
RTOT
YCA
<KL>
zMgE
INITIAL CONDITIONS:
zCaE0 - ECF calcium content [mEq]
zMgE0 - ECF magnesium content [mEq]
zCaE0
<RTOT>
XCAE
<RTOP>
yCa
OUTPUTS:
zCaE - ECF calcium content [mEq]
xCaE - ECF calcium contentration [mEq/l]
yCa - calcium renal excretion rate [mEq/min]
zMgE - ECF magnesium content [mEq]
xMgE - ECF magnesium contentration [mEq/l]
yMg - magnesium renal excretion rate [mEq/min]
VP
vEC
xCaE
INPUTS:
vEC - ECF volume [l]
yCaI - calcium intake [mEq/min]
yMgI -magnesium intake [mEq/min]
GFR - glomerular filtration rate [l/min]
VB
vP
24.8.2001
VIN 0
<VIN0>
<YCAI>
HT
vB
OUTPUTS:
HB - blood hemoglobin concentration [g/100 ml]
HT - hematocrit
vB - blood volume [l]
vP -plasma volume [l]
vEC - ECF volume [l]
vIF - interstitial fluid volume [l]
vTW - total body fluid volume [l]
vIC - ICF volume [l]
xGLE
<XGLE>
HT
DEN
24.8.2001 edited by Tom Kripner
KRAN
PVP
Calcium and Magnesium Balance
PAP
PAS
PC
PVS
PVP
Cardiovascular Block
VTW
VP 0
<VP0>
VIF 0
<VIF0>
Scope5
vIC
Scope4
VIC
VIC 0
<VIC0>
Body Fluid Volume Balance
Scope6
Body fluid volume balance
Calcium and magnesium balance
Cardiovascular block
<VEC>
vEC
ADH
<ADH>
DIURESIS AND URINE OSMOLARITY
<YCLI>
yCLI
zCLE
CHLORIDE BALANCE
<YNU>
<YKU>
<YNH4>
<YCA>
<YMG>
<YSO4>
<YCO3>
INPUTS:
vEC - ECF volume [l]
yCLI - chloride intake [mEq/min]
yKU
yNU - Na renal excretion rate [mEq/min]
yKU - K renal excretion rate [mEq/min]
yNH4 - ammonium renal excretion rate [mEq/min]
yNH4
yCa - calcium renal excretion rate [mEq/min]
yMg - magnesium renal excretion rate [mEq/min]
xCLE
yCa
ySO4 - sulphate renal excretion rate [mEq/min]
yCO3 - bicarbonate excretion rate [mEq/min]
STPG - summary renal excretion rate of phosphates and org. acids
yMg
related to arterial pH [mEq/min]
<ZCLE0>
yKD
<YKD>
yGLU
<YGLU>
<VIF0>
<VIF>
qWU
VIF0
QWD
VIF
PIF
yURU
<YURU>
QWU
OUTPUTS:
qWD - rate of urinary excretion in distal tubule [l/min]
qWU - urine output [l/min]
OSMU - urine osmolality [mOsm/l]
yMNU
<QLF0>
<YNU>
QLF
OSMU
yKU
<YKU>
YCLU
Scope7
STPG
16.8.2001
QLF0
Interstitial Pressure and Lymph Flow Rate
OSMU
yNU
yCO3
PIF
OUTPUTS:
pIF - interstitial pressure [torr]
qLF - lymph flow rate [l/min]
17.8.2001
yCLU
INTERSTITIAL PRESSURE
AND
LYMPH FLOW RATE
INPUTS:
vIF0 - normal interstitial fluid volume [l]
vIF - interstitial fluid volume [l]
qLF - normal lymph flow rate [l/min]
QLF
XCLE
OUTPUTS:
zCLE - ECF chloride content [mEq]
xCLE - ECF chloride concentration [mEq/l]
yCLU - chloride renal excretion rate [mEq/min]
30.7.2001
<STPG>
INPUTS:
ADH - effect of antidiuretic hormone [x normal]
OSMP - plasma osmolality [mOsm/l]
yND - sodium excretion rate in distal tubule [mEq/min]
yKD - potassium excretion rate in distal tubule [mEq/min]
yGLU - renal excretion rate of glucose [mEq/min]
yURU - renal excretion rate of urea [mEq/min]
yMNU - renal excretion rate of mannitol [mEq/min]
yNU - sodium renal excretion rate [mEq/min]
yKU - potassium renal excretion rate [mEq/min]
yND
<YND>
<YMNU>
ySO4
qWD
OSMP
<OSMP>
ZCLE
yNU
Diuresis and Urine Osmolarity
ZCLE 0
Chloride Balance
Scope8
Scope9
Diuresis and urine osmolarity
Interstitial pressure and lymph flow rate
mrCO2
<MRCO2>
<YTA1>
<YNH4>
<YCO3>
<ALD>
<GFR>
<CPR>
<THDF>
<YNIN>
<PHA>
<CBFI>
<CHEI>
<YKGLI>
<ZKI0>
<CKEI>
<YKIN>
<VEC>
<ZNE0>
<ZKE0>
<ZHI0>
yNU
ALD
GFR
CPR
THDF
yNIN
PHA
CBFI
yNH
xNE
zNE
CKEI
yKIN
vEC
ZNE 0
ZKE 0
QCO
<QCO>
PBA
<PBA>
XNE
fCO2i
ZNE
VAL
<VAL>
YNHI
<UCO2V0>
YKHI
<UO2V0>
zKI
zKE
yKU
yKD
ZKI
<FCO2A0>
<FO2A0>
ZKE
OUTPUTS:
(** Content of CO2 in venous blood [l STPD/l]*)
(** Content of O2 in venous blood [l STPD / l*)
pCO2A (*CO2 tension alveoli [Torr]*)
fCO2A (*Volume fraction of CO2 in dry alveoli gas*)
pO2A (*O2 tension in alveoli [Torr]*)
fO2A (*Volume fraction of O2 in dry alveoli gas*)
UO2V
PLASMA OSMOLARITY
xURE
xGLE
<XGLE>
pCO2A
xMNE
xNE
<XNE>
PCO2A
INPUTS :
XMNE - ECF mannitol concentration [mmol/l]
XURE - ECF urea concentration [mmol/l
XGLE - ECF glucose concentration [mmol/l]
XNE - ECF sodium concentration [mmol/l]
XKE - ECF potassium concentration [mmol/l]
OSMP
OSMP
OUTPUT :
OSMP - plasma osmolarity
xKE
<XKE>
Plasma osmolarity calculation
FCO2A
uCO2V uO2V -
fO2i
<FO2I>
yKHI
<XMNE>
<XURE>
uO2V
fCO2A
VA
<VA>
yNHI
OUTPUTS:
yNU - Na renal excretion rate [mEq/min]
yNH - Na excretion in Henle loop [mEq/min]
yND - Na excretion rate in distal tubule [mEq/min]
xNE - ECF Na concentration [mEq/l]
zNE - ECF Na content[mEq]
yNHI - H ions flow rate from ECF to ICF (exchanged w. Na) [mEq/min]
yKHI - K flow rate from ECF to ICF (exchanged w. H) [mEq/min]
zKI - ICF K content [mEq]
zKE - ECF K content [mEq]
yKU - K renal excretion rate [mEq/min]
yKD - K excretion rate in distal tubule [mEq/min]
xKE - ECF K concentration [mEq/l]
zKI0
YND
<FCO2I>
CHEI
yKGLI
uO2A
<UO2A>
yND
INPUTS:
mrCO2 - (*Metabolic production rate of CO2 [l STPD/min]*)
uCO2A (*Content of CO2 in arterial blood [l STPD/l]*)
VTW (*Total body fluid volume [l]*)
mrO2 - (*Metabolic consumption rate of O2 [l STPD/min]*)
uO2A (*Content of CO2 in arterial blood [l STPD/l]*)
QCO (*Cardiac output [l/min]*)
PBA - (*Barometric pressure*)
fCO2i - (*Volume fraction of CO2 in dry inspired gas*)
VAL - (*Total alveolar volume (BTPS)*)
VA (*Alveolar ventilation [l BTPS/min]*)
fO2i - (*Volume fraction of O2 in dry inspired gas*)
mrO2
<MRO2>
YNH
UCO2V
VTW
<VTW>
INPUTS:
yTA1 - Arterial pH dependent portion of titrable acid excretion rate
yNH4 - ammonium renal excretion rate [mEq/min]
yCO3R - bicarbonate reabsorption rate [mEq/min]
ALD - aldostrone effect [x normal]
GFR - glomerular filtration rate [l/min]
CPR - excretion ratio of filterd load after proximal tubule
THDF - effect of 3rd factor (natriuretic horm.) [x normal]
yNIN - sodium intake [mEq/min]
PHA - Arterial blood pH
CBFI - Parameter of intracellular buffer capacity
CHEI - Transfer coeff. of H ions from ECF to ICF
yKGLI - K flow rate from ECF to ICF accompanying secretion of insulin [mEq/min]
zKI0 - normal ICF K content [mEq]
CKEI - Transfer coeff. of K ions from ECF into ICF (exchanged with H ions)
yKIN - K intake [mEq/min]
vEC - ECF volume [l]
uCO2V
O2 and CO2 EXCHANGE
YNU
SODIUM AND POTASSIUM BALANCE
yNH4
yCO3
uCO2A
<UCO2A>
yTA1
UCO2V 0
pO2A
PO2A
UO2V 0
8.10.2001
FCO2A 0
fO2A
FO2A
FO2A 0
O2 and CO2 Exchange
YKU
YKD
27.7.2001
xKE
ZHI 0
XKE
Scope12
Na & K Balance
Scope11
Sodium and potassium balance
Scope10
O2 and CO2 exchange
Plasma osmolarity
<VEC>
zPO4E
vEC
ZPO4E
<VIF>
pICO
vIF
<TPHA1>
<YSO4I>
<YORGI>
<GFR>
<ZPO4E0>
<ZSO4E0>
xPO4
yPO4I
INPUTS:
vEC - ECF volume [l]
yPO4I - phosphate intake [mEq/min]
ySO4I - sulphate intake [mEq/min]
yORGI - organic acids intake [mEq/min]
GFR - Glomerular filtration rate [l/min]
ySO4I
yORGI
GFR
ZPO4E 0
yPO4
XPO4
<QLF>
<PC>
STPG
<YPLIN>
zSO4E
xSO4
ySO4
pC
YPLIN
INPUTS:
vIF interstitial fluid volume [l]
qLF - lymph flow rate [l/min]
pC - capillary pressure [torr]
YPLIN - rate of intravenous plasma protein input [g/min]
vP -plasma volume [l]
xPIF
XPIF
<YORG>
<YPO4>
zPIF
ZPIF
<YTA0>
ZSO4E
XSO4
<ZPG0>
<ZPIF0>
vP
ZPG 0
ZPIF 0
YSO4
<ZPP0>
zORGE
<PHA>
OUTPUTS:
pICO - interstitial colloid osmotic pressure [torr]
xPIF - interstitial protein concentration [g/l]
zPIF - interstitial protein content[g]
zPP - plasma protein content [g]
xPP - plasma protein concentration [g/l]
pPCO - plasma colloid osmotic pressure [torr]
zPP
<ALD>
ZPP
<TPHU2>
xPP
XPP
<TPHU1>
ZPP 0
10.7.2001
<YNH40>
ZORGE
<ZPLG0>
ZPLG 0
pPCO
PPCO
<QWU>
ZSO4E 0
30.7.2001
xORGE
Protein Balance
XORGE
<PCO2A>
<ZORGE0>
ZORGE 0
yORG
STPG
PHA
qLF
YPO4
<VP>
OUTPUTS:
zPO4E - ECF phosphate content [mEq]
xPO4 - ECF phosphate contentration [mEq/l]
yPO4 - Phosphate renal excretion rate [mEq/min]
zSO4E - ECF sulphate content [mEq]
xSO4 - ECF sulphate contentration [mEq/l]
ySO4 - sulphate renal excretion rate [mEq/min]
zORGE - ECF organic acids content [mEq]
xORGE - ECF organic acids contentration [mEq/l]
yORG - organic acids renal excretion rate [mEq/min]
TPHA1
PICO
PROTEIN BALANCE
PHOSPHATE, SULPHATE AND ORGANIC ACIDS BALANCE
<YPO4I>
YORG
<GFR>
Phosphate, Sulphate and Organic Acids Balance
ano XCO3
<XCO3>
yORG
RENAL ACID BASE CONTROL
yPO4
INPUTS:
TPHA1 - Time constant of titratable acid [1/min]
PHA - arterial pH
yTA0
yORG - Renal excretion rate of organic acid [mEq/min]
yPO4 - Renal excretion rate of phosphate [mEq/min]
ALD
yTA0 - Normal value of renal excretion rate of titratable acid [mmol/min]
ALD - Aldosterone effect [x normal]
TPHU1 - Time constant of ammonium secretion [1/min]
TPHU2
TPHU2 - Time constant of titratable acids secretion [1/min]
yNH40 - Normal value of ammonium renal excretion rate [mmol/min]
TPHU1
qWU - Urine output [l/min]
pCO2A - Alveolar pCO2 [torr]
GFR - Glomerular filtration rate [l/min]
yNH40
xCO3 - Actual bicarbonate concentration [mmol/l]
yTA
yTA1
PHU
YTA
YTA1
PHU
qWU
OUTPUT VARIABLES:
STPG - summary renal excretion rate of titratable acids, phosphate and org. acids [mmol/mi
yNH4
yTA - renal excretion rate of titratable acids [mmol/min]
pCO2A
YNH4
yTA1 - on arterial pH dependent portion of titratable acid secretion rate [mmol/min]
PHU - urine pH
GFR
YNH4 - Ammonium renal excretion rate [mmol/min]
YCO3 - Bicarbonate excretion rate [mmol/min]
YCO3R
Bicarbonate
reabsorption rate [mmol/min]
xCO3
yCO3
YCO3
24.7.2001
<PHA0>
<PHU20>
PHA 0
PHU2 0
yCO3R
Phosphate sulphate and organic acids balance
Protein balance
<VEC>
<VA0>
vEC
CONTROLLER OF RENAL FUNCTION
GFR
<XKE>
<YNH>
<PVP>
<OSMP>
pAS
xKE
yNH
pVP
INPUTS:
vEC - ECF volume [l]
pAS - systemic arterial pressure [torr]
xKE - ECF K concentration [mEq/l]
yNH - Na excretion in Henle loop [mEq/min]
pVP - pulmonary venous pressure [torr]
OSMP - plasma osmolality [mOsm/l]
pPCO - plasma colloid osmotic pressure [torr]
<PCO2A>
ALD
<PHA>
OUTPUTS:
GFR - glomerular filtration rate [l/min]
ALD - aldosterone effect [x normal]
ADH - effect of antidiuretic hormone [x normal]
THDF - effect of 3rd factor (natriuretic horm.) [x normal]
<AH>
VA0
pO2A
pCO2A
pHA
RESPIRATION CONTROL
INPUTS:
VA0 - normal value of alveolar ventilation [l BTPS/min]
pO2A - O2 partial pressure in alveoli [Torr]
pCO2A - CO2 partial pressure in alveoli Torr]
pHA - arterial blood pH
AH - concentration of hydrogen ions in arterial blood [nM/l]
<VTW>
<YURI>
VA
vTW
yURI
VA
OUTPUTS:
VA - alveolar ventilation [l BTPS/min]
<GFR>
GFR
AH
<YMNI>
yMNI
Respiration Control
ADH
HIDDEN CONSTANTS:
vEC0 - normal ECF volume [l]
GFR0 - normal glomerular filtration rate [l/min]
___
Scope15
YCO3R
PHU1 0
zUR
<VEC>
ADH
vEC
ZUR
UREA AND MANNITOL BALANCE
INPUTS:
vTW - total body fluid volume [l]
yURI - intake rate of urea [mEq/min]
GFR - glomerular filtration rate [l/min]
yMNI - intake rate of mannitol [mEq/min]
vEC - ECF volume [l]
xURE
yURU
4.10.2001
OUTPUTS:
zUR - total body-fluid urea content [mEq]
xURE - ECF urea concentration [mEq/l]
yURU - renal excretion rate of urea [mEq/min]
zMNE - ECF mannitol content [mEq]
xMNE - ECF mannitol concentration [mEq]
yMNU - renal excretion rate of mannitol [mEq/min]
XURE
YURU
Urea and mannitol balance
zMNE
ZMNE
21.8.2001
xMNE
<ZUR0>
OSMP
ZUR 0
XMNE
17.8.2001
THDF
<PPCO>
ALD
<PHU10>
Renal Acid Base Control
GFR
<PO2A>
<PAS>
Scope14
Scope13
THDF
<ZMNE0>
pPCO
ZMNE 0
yMNU
YMNU
Urea and Mannitol Balance
Controller of Renal Function
Scope16
Scope17
Scope18
Respiration control
Controller of renal function
Renal acid base control
Chloride balance
INPUTS
@A!
!"&;
12&!>8;!!1B23&163&!!!";22&5!3!2!
2!!>! 9
MEFANET 2010
XHB
<BEOX>
BEOX
XHB
BLOOD ACID BASE BALANCE
STBC
<HB>
INPUTS:
BEOX - Base Excess in fully oxygenated blood [mmol/l]
HB - Hemoglobin concentration [g/dl]
PCO2A - CO2 tension in arterial blood [torr]
PO2A - Oxygen tension in arterial blood [torr]
HB
A
U(E)
U
Selector
STBC
BE
BE
AH
AH
OUTPUTS:
PHA
XHB - Vector of coefficients derived from hemoglobin concentration
STBC - Standard bicarbonate concentration [mmol/l]
BE - Base Excess concentration in arterial blood
SO2A
PCO2A
<PCO2A>
AH - Hydrogen ions concentration [nmol/l]
PHA - arterial plasma pH
XCO3A
SO2A - Oxygen hemoglobin saturation in arterial blood (expressed as ratio from 0 to 1)
XCO3 - Actual bicarbonate concentration in arterial blood
UCO2A - Content of CO2 in arterial blood [l STPD/l]
UCO2A
UO2A-Content of O2 in arterial blood [l STPD/l]
PO2A
PHA
SO2A
XCO3
UCO2A
<PO2A>
UO2A
UO2A
Blood Acid Base Balance
1
XHB
Hemoglobin Coefficients
ABCNST
2
HB
Blood
hemoglobin
concentration
Hb
Standard Bicarbonate Concentration
STBCB
XHb
INPUT :
Hb - blood hemoglobin
concentration [g/dl]
INPUTS :
STBC
XHb - coefficients derived from
hemoglobin concentration
BE -blood Base Excess [mmol/l]
XHb
OUTPUTS :
XHb - coefficients derived from
hemoglobin concentration
2
STBC
HCO3st
BE
OUTPUT :
HCO3st - standard bicarbonate concentration [mmol/l]
c[1]..c[10]
a[1]..a[11]
5
PHA
ST BCB
pH From Base Excess
BEINV
XHb
ABCNST
pH37
INPUTS :
XHb - coefficients derived from
concentration of hemoglobin in blood
BEox - Base Excess in fully oxygenated blood [mmol/l]
SO237 - oxyhemoglobin saturation
[expressed as ratio form 0 to 1]
SO237
PCO237 - pCO2 [torr] in blood at 37 °C
PHA
PHA
Actual Bicarbonate Concentration
ACBCB
pHt
BEox
1
BEOX
SO2A
Memory
PCO2A
PCO237
PCO2A
INPUTS :
pHt - plasma pH at patient temperature
PCO2t - PCO2 [torr] at body temperature
temp - body temperature [°C]
PCO2t
37
Fcn
4
AH
7
XCO3A
XCO3A
OUTPUT :
HCO3 - actual bicarbonate concentration
at body temperature
BE
OUTPUTS :
pH37 - plasma pH at standard temperature (37 °C)
BE- current value of blood Base Excess [mmol/l]
10^(9-u);
HCO3
temp
Constant
AC BCB
pH From BE
SO2A
3
BE
CO2 Blood Content
CARB
XHb
PCO2A
INPUTS :
XHb - coefficients derived from
conentration of hemoglobin in blood
PCO237 - pCO2 [torr] in blood at 37 °C
SO237 - oxyhemoglobin saturation
[expressed as ratio form 0 to 1]
pH37 - pH of plasma at 37 °C
PCO237
PHA
SO2A
PO2A
4
PO2A
PO2A
PO237
pH37
3
PCO2A
PCO2A
pCO237
Oxyhemoglobin Saturation
SATUR
INPUTS :
PO237 - pO2 [torr] in blood at 37 °C
PCO237 - pCO2 [torr] in blood at 37 °C
pH37 - pH of plasma at 37 °C
PHA
SO237
SO2A
SO237
CO2
8
UCO2A
OUTPUT :
CO2 - blood CO2 content
[expressed in l CO2 STPD/l ]
pH37
SO2A
CARB
PCO2A
OUTPUT :
SO237 - oxyhemoglobin saturation
(expressed as ratio form 0 to 1)
SO2A
SO2A
SO2A
6
SO2A
SATUR
XHb
SO2A
SO2A
PO2A
SO237
PO237
O2 Blood Content
OXY
INPUTS :
XHb - coefficient derived from
concentration of hemoglobin in blood
SO237 - oxyhemoglobin saturation 37 °C
(expressed as ratio form 0 to 1)
PO237 - pO2 (torr) in blood at 37 °C
O2
9
UO2A
OUTPUT :
O2 - blood O2 content
[expressed in l CO2 STPD)/l ]
OXY
SIMULATION CHIP: BLOOD ACID BASE BALANCE
u[1]
CO2 - part1
( u[2]*u[26] + u[3] ) / (u[26]*u[26])
1
CO2 - part2
XHb
u[4]*u[25]/u[26]
2
CO2 - part3
PCO237
u[5]* ( 1-u[24] ) / ( (u[26]/u[25])^2 + u[26]*u[6] / u[25] + u[7] * u[23] )
[7.0388002E-3 3.6447450E-4 7.9099077 -2.0113444E-1 -1.4790526 ]
CO2 - part4
X0 ... X4
u[8]* u[24] / ( (u[26]/u[25])^2 + u[26]*u[9] / u[25] + u[10] * u[23] )
CO2 - part5
3
SO237
4
SO2 >= 10^ -13
f(u)
1
CO2
D
0.02226
X0=7.0388002E-3 ;
X1=3.6447450E-4 ;
X2=7.9099077 ;
X3=-2.0113444E-1 ;
X4=-1.4790526 ;
% if SO237==0
% SO237=1E-13;
% end;
D=X0*(SO237^X1)*(pH37^X2)
*exp(X3*SO237+X4*pH37);
pH37
10^( 9 - u )
AH
AH=10^(9-pH37);
CO2=
Const
D=X0*(SO237^X1)*(pH37^X2)*exp(X3*SO237+X4*pH37);
AH=10^(9-pH37);
SIMULATION CHIP: CARB
CO2 = 0.02226*PCO237*(XHb(1)+(XHb(2)*AH+XHb(3))/(AH*AH)+XHb(4)*D/AH ...
+XHb(5)*(1-SO237)/((AH/D)^2+AH*XHb(6)/D+XHb(7)*PCO237) ...
+XHb(8)*SO237 /((AH/D)^2+AH*XHb(9)/D+XHb(10)*PCO237));
CD3!
821&
&!3&;12
23&!3&2&
21
12!4"1!!1123163!!!"
!">! ;22"1&;!22
254&
&"
E
,F$GHD.GFH+FH$H0D+21
23&I%DHJF);
>2
K&>"&
;25!&2!>
10
MEFANET 2010
^ # # %' ) $# )@ $ $(
)$#%.#%#+(UR]SRMRYiQtDRSČWRYQpKR]DSRMRYiQtMHGQRWOLYêFKUHJXODþQtFK
YD]HE T) %.# (%'% %(- ORNiOQČ VOHGRYDW RGH]YX MHGQRWOLYêFK
I\]LRORJLFNêFKVXEV\VWpPĤ(%#$#($#)%((%
%'
V(%'%O()(PRåQRVWÄRGSRMHQtUHJXODFH³$#%$#
:H!16162
3!13>
!>&
>!"%! 6")
1 !3
"
!///
&!1(!
11
MEFANET 2010
$#($#))#H&%''$%IK5ZMT)%.#
(.%(-(&(%)$$%
(%()##'
'$#%.##%&#(%#')$#
$# %.# #+ - & ,(% # $#
%
D,%,%,)$#,_((*#(+$%
%%)--(()##.%$#%-(''
KQPXQZM > (- %# ($# -%) %- +), %(
%%(%.#(%#))&
&(%#%.$#
$#+
"'*%'-(%.#)%#$($((6(-
' % ($#: ) #),( ')( -$#
+-'#$-$$%$(%'"&$%)#%)%,,#
-),(%))%-()%#$#(+'(
-),(+(%-(%.#-),((
?#-)%('$())#%-J)(#
$%$#%0VSRMHQtYêNODGXVHVLPXODþQtKURX''(-%-,#
$#%'-$#$#+
"%
(-#(%((%.#(+&%$%%)(
)#..#$WODVXI\]LRORJLHDSDWRI\]LRORJLH6#788#(
8: $ (
%) $ (%. # ( $#
(+6
N: -#&('(
',#1%KNM
1%KNLMD,$#%)%
'&%-
#(%('#(%'+ÄåLYp³LQWHUDNWLYQtJ(SURPČQQêFKVLPXODþQtKRPRGHOX
)]PČQRXREUi]NX"($##%)(-
(%. # - $ ' ' ( (#% (
%$#(#(&,(#&.$#%
))+),##
"&
%)(#''(#
9
$#$%$#(%'+KQM
Ž03/,;3#-,-)0";34"
2(% & EORNRYČ RULHQWRYDQêP VLPXODþQtP MD]\NĤP %(-@%) ..()$#
+/$(%$%)
.#
. % + ,, ## Y [ (%.
')()$#%(-%(-@%)&#%%()$###
%&'$#(^%%
#%)&)()$(+
(
(%.)#)$#($#J))$)(%$.%B&(
NDX]iOQtPPRGHORYiQt")'
+#+
#%-(+-
$
> )$# # () '& (. J ) %% )'
% # &'' ) % $.# % )( .( % ' 6&
&+:$%##
%")
+'-,SRVWXSYêSRþWX
-%%%(
> , $) $# ÄDNDX]iOQtFK³ ')+ % (%.#
(+^'%%'(')&',))(-)
.'(%&(MDNRVRXVWDYXURYQLFDQLNROLMDNRDOJRULWPXVĜHãHQtWČFKWRURYQLF^'(+
)6%)(%%%((#(%$.%:J')
%'
1%'(')%))$(((&%)
& #- )% &( /' !( (#% ) ( '#
%'#+J&%'))%))(#
12
MEFANET 2010
&%,$#())#)(/%)%(%
<('(%(#%((''#+(.(
'.'(.))##%6%-
&&('%:)%#'$(&(6
Z:2-),($.
- (' %( ) J & ))# ')(( )
)(>2(%%$(%))#%(&,(%
$'
6 & -), HT3 (I % . (( , (%
#"#
:>%'#(%.#')#,+
&,(%(
(%&,%'($%'')
;( (%.( )( $ ) &( %'( '% (+ )
0RGHOLFDKNNQMD
#(%.#&2(%%%(+
;(#(
%)'%(6(%&,$
% '# ' &%,$ (': ; ; )%
'(2(%%&#),(%(%)
Ɖ͘ǀ
Ɖ͘ŝ
Ŷ͘ǀ
Ŷ͘ŝ
ZΎŝсǀ
Ɖ͘ǀ
ǀсƉ͘ǀͲŶ͘ǀ
Ɖ͘ŝ
ǀ
Ŷ͘ŝ
ŝсƉ͘ŝ сŶ͘ŝ
Ŷ͘ǀ
Ŷ͘ŝ
Ɖ͘ǀ
Ɖ͘ŝ
Ŷ͘ǀ
Ɖ͘ǀ
Ɖ͘ŝ
Ŷ͘ǀ
Ŷ͘ŝ
ŝсΎĚĞƌ;ǀͿ
Ɖ͘ǀ
Ɖ͘ŝ
ǀсƉ͘ǀͲŶ͘ǀ
ǀ
>ΎĚĞƌ;ŝͿсǀ
Ŷ͘ǀ
Ɖ͘ǀ
Ŷ͘ŝ
Ɖ͘ŝ
ǀсƉ͘ǀͲŶ͘ǀ
ǀ
Ŷ͘ǀ
Ŷ͘ŝ
ŝсƉ͘ŝ сŶ͘ŝ
ŝсƉ͘ŝ сŶ͘ŝ
BL
"
"
&121
13&";24!23
!H6
"& %)2&
"" ;6
"&
%)2&
"" %"" )?
&
3
%J);!2 2
3
&1%1!
1
"& 236
!
"&
2
)
L
6
"&1
2
53;
1&3
1 H6
"1
%D)22!! 5"&M52I&
"
!!"24 ;!;
&2
236
N
&
;2
%);2
0/1E "6
%)E &! 1"& ! 1 %$) A " " >! 53
&
">
""
2
;
3""
3
3
%;;);>5;5!
"2%)
1
%2OO)N
P
2
&
2! " >%;);
!6
"& 6
%)
13
MEFANET 2010
hǎŝǀĂƚĞůĞŵĚĞĨŝŶŽǀĂŶĄŝŬŽŶĂ
ŝŵƉůĞŵĞŶƚĂĐĞĐĠǀŶşŚŽĞůĂƐƚŝĐŬĠŚŽ
ŬŽŵƉĂƌƚŵĞŶƚƵ ǀDŽĚĞůŝĐĞ
V0
Akaauzální kone
ektor:
ReferencePo
R
oint
Vol
Pressure
P
e
sƐƚƵƉŶşŬŽŶĞŬƚŽƌLJ
ExternalPressure
Compliance
V0
V0
<V0
V0
<V0
StressedVolume
V0
Pressure
sljƐƚƵƉŶşŬŽŶĞŬƚŽƌLJ
Vol
ExternalPressure
StressedVolume = max(Vol-V0,0);
(
, );
Pressure = (StressedVolume/Compliance) + ExternalPressure;
V0
ReferencePoint.Flow = der(Vol)
ReferencePoint Pressure = Pressure
ReferencePoint.Pressure
StressedVolume
9!"&"&
!2&*
-( )%#( & (' #(( " ('
%&(&%-,(#('!-&(+-(&&
%-(/%%J(&&
6
:"%(-
) ( % &% ( ( % # & % '@/%)(
%#%'
1%')%)(%+.7)'&%)
J)--%.+),#&)$#%#%$6-
%+ -'' ' %(%%): %# ))- # +'' ,# )$# %# )'
0%6E9:(%&((%)
%+%
6E9: (% > & )$# ( (#% $ ) )$#
$#$#($#)6&'$)E9(''
)E9(':
"&('(.%-'$((6
4:!
# ((% ) - `& - A - %.#
%'#
)(%6„V0“:)%.'%),((%6R+K
?
!!
S:
.%'''%'Y(%
)(%
6RAS:%'#
)(%6„V0“:
<$ (( (+-( & ) % )( %'(
)( ( 6( # &
RJ
?S: & $ %( ((
)0'(&%)#
a
RJ
?T/S;
a
RJ
??
!!
S
V((%
%%%),%&'%7
a
''@„V0“J#
)(%)#--
%&%
14
MEFANET 2010
a
),*),#%R+K
?
!!
S
)#((%RDSJ)##(()'
$#'
^((%
%%%6%':'$%7
a
((('(
)(%((%RAS;
a
(#%%&((%H?
!!
I
>((&(+-(#%%
#((A
%
> ( (% %) #' # ((% ' ;
'7
A!
+FD
U
c
HTXDWLRQ
!!AOK%AIAW;W)U
?
!!
O%
!!A(D)X+K
?
!!
U
%A)OJ
?T/U
J
??
!!
O?
!!
U
HQGA!
+FD
;
"%)-##
)(%R
!!AS
%.'
)(
)((((%RAS#%)#''„V0“6')%(:
'&'-#
)(%((%(+-%'$(#'(
V%#'%)#((((%R?
!!
S#%#
)(%
R
!!AS; ) RDS *( ( R+K
?
!!
S ?, )%
&('(-)'&&T
(-;
7
?
!!
I+K
?
!!
O%
!!A(D)U
0& ) ' J )(% R
%A)S ' &% RT/S
%RJ
?S")%)#%%((%R?
!!
S
#%%)%RJ
?
!!
S%'(((
BH?
!!
I)'@'$($%(((%J)')(+-(
&',(
+(J)%'$%6'':('))#(+-
$ ( .(% ) &)( ) %'# % ) ) !-
# ((% )( %'( ( ,( .&
((% %.' % $# &%,$( )( #
($##((%
%%'&,%
;)(%-'&'-+(%"$(+
(%#.%)('
)('#$#(*#(+(-&
((")(
) $ ((. & % (+ $% (%' ;%
%%$)(+
(&2(%8;
>$#% (%) & ' (( # O% (% K4M 2(%%6
R:;6
:
3' .' O% (% 63% (: &%) (' #% .#%%.(%2(%$(&%)-%#
&#%._;'(('
%)%(
J)&(%.6(:($#((+
+)$#.'#&.,)$#%'(6)%)+
)$#.'##&.,:1%'$#-)),)&%
15
MEFANET 2010
WD
>I!
>!!"8
1
12
6
63>!
>&!!">!!
2
%(%%(%)
'+&%
)(%('
%%
‰,//)0™);"/"0373)#/)0";(!)=3/,;>7)!");"/
>$# %'# &%% )( %- & (( '## (%
$# % $ ) ( &# (%'% H*ROHP 2%% (%
#' &,( %% (% ($# %+ 4XDQWLWDWLYH +XPDQ 3K\VLRORJ\ 4+3
'&)(#+XPPRGKLQALXM
"&#+(#(%)'#$$%$(%'4XDQWLWDWLYH&LUFXODWRU\3K\VLRORJ\
4&3 [M $ ,( '( 3( (% +XPDQ K4M '#$# (+
O%%"%)#%-')$%(+&$%#
%&((&%9
% ;6#788#
%(%8#(9#8:2(%'4&3)(-'#%..&
G9"($#)((#6:
2(%' %(-@%) ( # NPR (+ (/%)# %
B #(+)(-%' *# %
% *#%
% .
- %(-@%) & &% '&+ + '& ($# $# + 1%&
$%&
&%#'&+6(%#%
+:&%&%,$(
('&( %(- ))# #' &%, 9
' > $% * (%'
.KXPM
2(%'+XPPRG
#%)-QRRR($#%.
&)(&%)
)'#),$($#%;('((%%(-@%)
16
MEFANET 2010
2>!2
17;*A2!
2!>
%
""
!
);!"
"
?
!
<;
5 !
!4 6
3>; 1 !
* 1
12!!
"
(%&%$#+.%&%,
D &## (%'% d3" )#- (( ) %- )(W%(%'%(3\\)(%'4+3+XPPRG)%%?#%&
#(((%'%(%
%%(%(#
$
&)(',,%(%%
B # # (% 0#( 3( )- 4ZP '
)'%%(%/+%-##(%'%?)-
%C;;)'(C;%
+2'&.6V<2:
&-C;%
%#W%(%'%6
L:
; +XPPRG ) ,& ) ( ) % 6( (%' ) &)
&%$9
%#788#%((:?#%%)''(C;)%5L5P
%
# %($# 5XN -'# V (% )% (% ))# ' -
%( & &,$# $(+ & $) &$# (%'+ ) ) $#
, ,& ) #' ,# (# (*# $# % A &
17
MEFANET 2010
&.%,.
(%'%B%((
)
*(%'%
B%((
(%'B%((
()#
*%(%'%B%(A
(
7A4
""!
3"&!
YL?ZL
2
>
!!"[/!;5214!;!>1
1R11"S!
2"&
!?
>G6LK>51
23K!53!&
!
5!&!
!!!!
.521
23K!
33
2&11!12R!
S%5!
5#);2
3&11&
&5!12 13&\*$!
5
(#O%%%4NLK4M(#=%4N4KLZM0%%&
('$%($$()%21"B=T62(1#"#=
T:-)*(%dB"Y.+()%
' ( , . - %( KN5M ' ;%' KXRM
((2(%%),O%+(%44LKNM-6,
.%:(%dB"8B%(($(%O%$#%+-'+
; )( # ($( % )( ' %' >& )(
'9$')4+39LHZKQM$%
+)$#*+(%&
&#
%-$#(($##+6
5:0(()(##
#
(%+XPPRG
18
MEFANET 2010
r
“3"š
cV
ei
ns
cula
Vas
nts
tme
r
a
p
Co m
Sp
l
an
ch
ni
›,$73)#=
<0311>!
2YL?A/51&!
YL?(G6L; 1!"& 5 !& \*$ !
1&13& ! !; &5
2"1!
&1"
2%($(%%(-)*(+)%(&$#
(%'+
)$#%$#%(
$&)%
A &. ) ( ( ' 2%%% ,#
(%$)(Ä+XPPRG*ROHPHGLWLRQ³&)@%)(9
$#''#)%
6#788#(8B%((: ) ( / ,# ($# ,# D
($#+(+)(((%)();$%(-@%)(
&#)'&%%%(%
;+XPPRG)(&,&&,(
('&%#+
#(' &# & )( '# A - %# ' #
%
(+)%.'%#(%)'',(%'$%
(%. # "& (/ )( (( ) #' ,# +# (*# (%
$#%$
)'($%#(%'%*ROHPK5NM
'%##%%(%B%((AO(<
%)
'QALR
; %(-@%) (% % &% $# $# )+ A #''
)$#'+'$#(+'.(%
%'-(%(%$#),(6&
(:
=$($#(++XPPRG*ROHPHGLWLRQ)$((
&#$%#(%'%H*ROHP
?#,)/)%(%#(
(+$)&
&,V%#$(
(()('#(%'%)$%(+D,(()&%
19
MEFANET 2010
=
LI8 +* ! !! 1 !
%DA);
35!;!"&!1;
;
&1"&!1;
"&!1;
"
6;
&
6;&"&!!
>>&!3&!"A4&2!
2!! "
(%' ) $%% (+% -% ( % "& )) %-)( ,
#
9
$#(%'+
)%KQM
0–,/œ#5˜-–(!/'=;,˜
?- ' . ) %%+ & &(% ('$# , $(
(-(
#..+'&$%(
0
# $%# 9% $ ' %- ' $ )
(.#(%.##&),)+
? '.$( ($( ( +.# $(% + +$# 7
%,$# %.+ ))#- '& ) '( $% ($# +
& %' '# % )% & (%.# (+
$%(%.#$+&'&)),%'
%(%'%.
(+6('+:&%H,)I$
K5XM
1
(
'%'
Y.')&
-%%$)(
&%$)$#')+(')$#.+$(%%(#%)(
&(
!&'%#')+)&
.
Y
0
$%$#(+'''+-$%.'
20
MEFANET 2010
@A!
!
%DA1&1&
1)
CA!
!!""
%!D
1&1&
1)
21
MEFANET 2010
:A!
!!""
%?
&
1&1&
1)
BA!
!&"
%&D
1&1&
1)
22
MEFANET 2010
9
19'A!
6!
!"
1!%8.,
1&1&
1
7W
1W'A!
>2!
6!
!
!
1!%H&J
!1&1&
1)
23
MEFANET 2010
ˆŒ37"!$7,!$
[1] !
"##$
%&%'()'&*'
&*#$)#%+))#%+
)()'&*'+&%%#
$%,)'&*'-%#./((
0/
23 $4
5
,%
*($
-6$7
7
8%)-
,%6&
9:
/;!
<#=6&$&+'>&*&=6&%)&<
?&$@46$A6
2.3 &-
B
B)&
4-
6$C
?
6
A
D!
%0
()&$&%&#%#%&%+*%'&%&&
+-*%'5&%&E;((
E;F0FE
2E3 6)GA
A&%6&5
.!
))&
2H&3)(@IIJJJ
%&
I
&%I)I&%I)&
2F3 $4
&5
D!
)46
&*@&*K&$&',0
2D3 ?*0-*
>>5
)A
5%&&5
-
;!
7$#&
&%&+((%#+))%($&@7($&*%(%&%&(0
'%&#)*)+0&%&*
C+4&GA$(F((
-/0-/.
23 %5
/!
A%&(#+'/;;L%&$%%&%#
2H&3)(@II
%
*IM(I%/.%DGDEEE/EDE+N.N.I'O5O/0
%I
$&J
2N3 '
"
,-
#5
$C
!
A&P*&)&&$
%&@+%6+%&&&%)&*
&#%5&%&.F((
.N0FE
2;3 C
-
/;N.!
K54
%()&$()'&*&%
),)'0
&*&D((
/F0/
2/3 /;;!
K&*)#%&0
*#$()'&*'
C+,)'&*'&%)&'F.((
EFQED
[11] /!
$&/
F
2H&3
)(@IJJJ
)
*
2/3 &C
/DFD!
%)%'%($&$
(6
2/.3 A'
D!
)*+&*&%&$&#&&#0&%
%#
#P%&7&*%&5&%&.N((
E0DD
2/E3 L&
7
D!
K&**&#+((#*&*
&*5&
%)*'./((
.E.Q.FN
2/F3 A6&
(*?
5&*C
A
!
*&%&#@%
$&J
*&%%('/((
.F0.DD
2/D3 -J'
?
%)(?
((A
;!
,%#%%#@%#*
%&&*&#&#+&*%)&*&*
5&%
%)./((
F0./
2/3 L&>,
.!
,&%&(+8%0&&*&#J&)5&%
/
B&0
'07--,
2/N3 R&9$&&C
?+S6C
,6TU
&>U
/;N!
5<#=68<&$&
&<&$#'%)(%$(&>&='%)$&8%)$<9<8'
V<&66<&&
5&%&6&%)46((
N/0N
2/;3 '
C
/;!
&%#@H$*#
$
,)'&
E/((
/.0E/
23 '
C
-
/;.!
&%'()'&*'@%&%(7
*#
,)&()&@B('
2/3 '
'
-
C
/;F!
&%'()'&*'77
A'&%%0
+)'W&
,)&()&@B
23 C
-
E!
)(&&*+''&'%&%(*#
C
24
MEFANET 2010
,)'&
*
7*
(
,)'&
N((
/;0///
2.3 C
5
)
?)&
!
7%(#+%(&>)0
(#&&%&#%%&&*@(&&'(
)C+780
'7+%#&#%F.((
/DE0/D
2E3 ?
7%
-C
;!
A&*&A!@
&*#$)#%+)()'&*'
,%&*+5HA75B+0
%4I,0/0/DF((
/;0/.E!
4
2F3 N!
#$(%+)
()'&*'
)L-C
FD
2D3 7%
/!
'&*'&*#$
()'&*&%&*
C+,)'&*'(&))+(&A%D/
&@/
///.I8()'&
/
/FFN((
/0/
23 &5
$4
/!
4-KH4@+%&#
)4%&#
((
/.0/.F
2N3 764
5L
)&65
/;;!
5+$*#+'W&
&
-*
((
/.F0/DD
2;3 C
&
N!
)(#&&()'&)('%#0
X)7C+&)%&%,%#%F((
/0F
2.3 ?')&
?
,5
A
H$'L
)(&5
C
B&&?
C'
A
N!
-%#%)&(&%#+()(#&#&%%&0
%&
%&%-*%'5&%&/F((
//DD0//E
2./3 ?+S6C
/;N!
5$S:%&>&%6Y$$S)'6$
A&=:(S%
,)@K&$>&
?$$,>L6$9%Y)Y6Z$:
2.3 ?+S6C
>C
!
HS>6$T%)%)Y6\($T6
^6$6S
+'>&*&FD((
D;0N
2..3 ?+S6C
>C
/!
#+'&*+*#+)%&%#
&+_##$()'&*&%$(
,)'&*&%%)F;((
N;/0
;N/
2.E3 ?+S6C
:65
?&(
F!
&&%%#J&)
VV
5Z:6,
C%$6&H
`<(S6$SC
?Y-&!7&%&(&'(%+05%)&0M&0
%0(#
((
/E0/F/!
,)@>%)%)&%K&$&'&,*
2.F3 ?+S6C
:65
?&(
.!
V&(#)&)%&*%(
&H-5
VA
A
L*-
-&!,%&*$+)F)7L
'(&5.
((
E;0ENF!
2.D3 ?+S6C
:65
?&(
596C
!
L&'&&*+&0
&%&
-M(&%+)&(8%
V5
B)'6B
-&!)D)B5#%+%'&%'#%7+#%
H0
L&K
,%&*
Va777
%(((&%#+'&%'#%
7+#%777
((
E;0FD!
2.3 ?+S6C
:65
?&(
596C
!
&#%)&(+H-5Q#0
&&+()'&*&%+%#
VC
5
?(>-&!&#&)
)5&%%&%
((
/F;0/D.!
A&*@%&'+(&#
7#&#%&
2.N3 ?+S6C
)V
A
S9$S
?69
V
/!
H-5Q5#&
&+&%%#
V
,
*
M-&!5-A74LH/,%0
&*+)/)B*5&%7+#%
/E0/ED
@7H,
2.;3 ?+S6C
&>U
R&9$&&C
/;NE!
5<&$&&&6&*>&8*
&>($&&%&'%)6(&$-V5
VV('&*&=68&&%&68
%)&6&
((
;0/!
&&&@5%&
2E3 ?+S6C
5,
:65
6,
?&(
Bb%)U
9:
E!
)
&*$(+&%#$#&&%#cJJ&)&#*0
25
MEFANET 2010
,%&*+)$)7-A7#+%(()&%
7*&*
((
/DE0/!
)&*'U&%)@)7###+%&%
%)*'+A$(
2E/3 ?+S6C
58S65
,&$&>,
/!
B&%#%)*'
5+0
(.((
.0;
2E3 ?+S6C
58S65
596
,&$&>,
&5
V%6H
N!
%)
#&&#!('@+#&((&%#&%)&*+()*&%()'0
&*'
5-L4-N
AH5,%&*74;N0N0.;0DF0E6+6
(+@((
/0D!
@5'6$K&$>&
2E.3 ?+S6C
596
:65
6,
Bb%)U
,&$&>,
9:
!
+()'&*'0&&#('*
V
U(&%
?
R&=-&!,%0
&*+)D)-KH75*5&*&#V
L,(AH5!
5H00,0F@((
/0;!
88@K&$&'+88
2EE3 ?+S6C
5%&*5
L65
R&9$&&C
&>U
`+
9:
/;NN!
-$0
#+%&(&'+%#&*)%)&#)*)&#
$#
V-
,
?((,
?6$%&&&%((
.//0./;!
4Jd6@,,
2EF3 ?+S6C
,6TU
Bb%)U
&>U
R&9$&&C
V&*V
/;N!
?&0
09==8*8%&8$8'*&>
V5
?$-&!,%&*+)'0
(&&#+'&&*'5&%&,*/;N
((
/.0E!
,)@A\
%)&6'^V
2ED3 ?+S6C
,6TU
Bb%)U
&>U
R&9$&&C
V&*V
/;N!
5<#0
=68<*><$$8%)&6e%)66=f9=8<&$<8'*0
&>
V5
?$-&!,%&*+)'(&&#+'&&*'
5&%&,*/;N
((
//0A!
,)@A\%)&6'^V
2E3 ?+S6C
,6TU
Bb%)U
&>U
R&9$&&C
V&*V
/;N!
5<
$$*#=6*&6&9==**>&$<8'
V5
?$
-&!,%&*+)'(&&#+'&&*'5&%&,*
/;N
((
//0A!
,)@A\%)&6'^V
2EN3 ?+S6C
,&$&>,
596
V%6H
&5
;!
%)&
*@+J#&&#&&&%%)&*
,%&*+))7L
'(&5&*&&&%'*A6*/0/E
;((
EF0E.!
2E;3 ?+S6C
>C
596
!
'&**)&+0+*()&%%)
&#+%)&*()'&*'
V,
'-&!%)&%(#*,*
L((A0H5(%&*
((
/0/.!
,)@c
7#+)&%
%)*'
2F3 ?+S6C
S9$S
)V
A
$=&`
/!
5#&&#*&
&%%#
V-
C
?%6)G5
`6-&!,%&*+-(&#
5#%+%,*/
((
;;F0;;;!
-*@,&)&*
2F/3 ?+S6C
V
C&%&,
!
Q(&+'W&
%&0&g#%#
,%&*+7L'(&?*
&+J.
.
0/
E
((
..0E!
HM+@,*-$&%&%
2F3 ?+S6C
V
?69
/;;!
@%(&+()'&*&%+%0
#g%&%)&*
Vd
5
)B
B*
C
H6-&!*%'+/
'
,%&*+)B*'&#
((
E0E//!
&*(@7--
&*(%#
2F.3 ?+S6C
V
C&%&,
?69
/!
A&*#%+$&
(#J&)Q#&&+()'&*&%+%#
VC
5
?(>-&!&#&))5&%%&%/
((
/F0/DE!
A&*@
%&'+(&#7#&#%&
2FE3 ?+S6C
VS
V
C&%&,
/!
V&(#)Q5#&
26
MEFANET 2010
&
V
-
H&&-&!,%&*+)-(0
+%0&*&&+*&*,(%#$
((
N0.N!
@K&$&'
2FF3 ?h&C
&5
;!
V&&'(%(&%&&&*&%&0
%#J'M(&%
N((
EN0FE
2FD3 C
/!
&#&&%%#@$&J
&#&*.((
;0
./E
2F3 )-
A
&
&C
+-
A%)
!
7%(#**&%0
+%&&(#&)7A$E&&
C+A&
%&%%)*'/((
N0;.
2FN3 &*))
?
!
)+%&&%&#'&%&#%%()'&%&
C0
+7&$5&%&((
F0D;
2F;3 &
&%6L
'?
?+
.!
$'+*&%&#@((&%#
%)*'%#
,%/((
FF;0D/.
2D3 5*$V
&*JC
VV&
/!
()&%&#$&+0
&*&#+&*#$()'&*'
(5),*&&&%&0
((
#%&(&@/
//DI8
%(
/
F
//((
2D/3 5%*)&B
&V
C
5>&,
-
5'C
;!
+%#&*0
&%%#+&#%)&**&%%#
)/DF((
DF0DNF
2D3 5'
A
A)'
N!
B0()'&*'%)&*&#,)'&*'&
))&&*)('!
2H&3)(@II(%&
6&
I)I&M
()(
2D.3 5&C
,
&
'
/;N;!
&#
(('+$&**()'&*&%&%%(
7
C
7
0
(
E((
E/0FE
2DE3 ?
)-
A
F!
A&J&$&J@JJJ
&
*
A&%)0
*')(#%((
E/0FE
2DF3 &*>0
(>04$C
5
;!
%)&*&*#$()'&*'&*)
_##$%&%'()'&*'%&%&)@$#+)0
&*M(&%
$%&,)'&*'-%#.((
.E0.//
2DD3 ?
N!
))&'+&%&#
C+&#%.((
/F0/DD
2D3 $
5
N!
&&%$&J+*&%&#i(((%#$
B
C+*'.((
/E/0/EN
2DN3 J'
?
)(5
B
)A
*
;!
5&P%#+)
&'7%7*K&&%#6&
&#&)%
E((
/E0/N
2D;3 )&
,&B
C
5)&d
,
;!
V&#+4$V&
&'#%&
C+-*'.((
F.0FN
23 &**05
&**0H
/;;F!
HM'**&)$&.J&)
((&%#
%)%.;((/((
/.0
2/3 &*
A((
.=6Y$'S:E!
),)'&*&j=6Y
$'S:@+'>&*&=$<6D
$'
!
*@*)&V*=6Y$'S:,)@
23 &*
*L
/;;N=6Y$'S:/!
%),)()'&*&
*@
*)&V*=6Y$'S:,)@
2.3 )
%&,
L%$C
L%&C
&L
,
9:
N!
,7@()'&%+'W&)&(*#
,)&0
()&%%#+)'%&'.DD((
./F0./;
2E3 &5
/!
7%#()'&%&*J&)5&%
4J5%)K@
?J%&%,&)
2F3 VH
H(
L
E!
-75@&%#$+'&*)*0
27
MEFANET 2010
&+"J$+
;((
/DF0/DN
2D3 VV&
4
5&C
,
F!
&%#W&$%
V7*#$,)'0
&*'&),&%,&%*
((
E.0DD!
,
23 V&*V
V
/;N!
'<''6'$6&=68&%&&&*&&
4%)0
&%#40;/@')&(%&*'&%&!
,'
6&=68&*&&FF((
/0/D
2N3 B'A
A&J&
L&*C
L5
C
6C
5%*)&B
N!
&0
#0%#&($_&'+%&*%&%(
%&%%)&*)(&
)/..((
FD0D/
2;3 B)&
C
,)C
D!
)A&*&@&*&*
'+(%&&%%)(#
%#%D((
.0N
2N3 Bb%)U
/;E!
&6'#6$$T%+'>&*&
^6$6S+'>&*&((
FD;0F.
2N/3 Bb%)U
/;D;!
5&&Y6Z6Y6'#6'US6:6%(%&6'>(\'(&0
6%:!
,)@K=:M'$'6T%)96K?L6$9%Y)Y6Z$:,4
2N3 Bb%)U
8
/;ND!
?%(%$T6'&6'#6'$6>+'>&*&
^6$0
6S+'>&*&.F((
.NF0.ND
ˆˆ)0œ-)*>#5
"'
$%$#&$#(%'+)(()')%2>>A
LRRALPQLXRPRN)(;"Te0=58ZX4
28

Podobné dokumenty

MUDr. Jiří Kofránek, CSc.

MUDr. Jiří Kofránek, CSc. systémů spustitelných na personálním počítači. Objevily se také i vývojové nástroje určené pro tvorbu simulačních modelů – např. Matlab/Simulink od firmy Mathworks. Následný rozvoj informačních a k...

Více

Untitled - Creative connections

Untitled - Creative connections tvořící certifikační řetězec nebo ke všem vztažným informacím o stavu revokace certifikátu. V takovém případě jsou možné dva přístupy řešení: • Všechny položky validačních údajů jsou součástí EP. ...

Více

Untitled - Creative connections

Untitled - Creative connections tohoto typu byly již provedeny (např. v [1]), některé další (detailnější) budou ještě následovat.

Více

Komplexní model acidobazické rovnováhy.

Komplexní model acidobazické rovnováhy. pro vyhodnocování acidobazické rovnováhy, byl původně experimentálně získán při teplotě 38°C a za předpokladu normální koncentrace plazmatických bílkovin. V klinické praxi je však nomogram (dnes vě...

Více