Okrajové a počáteční podmínky.

Transkript

Okrajové a počáteční podmínky.
Počítačová simulace
tepelných procesů s
využitím výpočetních
MKP systémů
Obsah cvičení
Přednáška
• Výpočetní metody identifikace termomechanických procesů stručný přehled
• Příklady použití výpočetních metod ve průmyslové a výzkumné
praxi
• Výpočetní systém Cosmos/M
Cvičení
• Popis úlohy
• Samostatná práce - řešení MKP úlohy se systémem Cosmos/M
• Vyhodnocení výsledků, zpráva z měření
Výpočetní metody identifikace
termomechanických procesů stručný přehled
Metody identifikace termomechanických procesů
• Přímé nebo nepřímé měření
• Teoretické řešení - řešení matematického modelu zkoumaného procesu
Matematický model
• Soubor parciálních diferenciálních rovnic
Deterministický popis (tradičnější případ, např. Fourierova rovnice vedení
tepla nebo Navierovy rovnice statické rovnováhy)
¾ Stochastický popis
• Okrajové podmínky
• Počáteční podmínky
• Materiálové vlastnosti a materiálové modely
¾
Matematický model
Okrajové
podmínky
Počáteční
podmínky
Omezující
podmínky
Materiálové
Experiment/ vlastnosti
Model (?)
Volba výpočetního modelu
(stochastický, deterministický,
analytický, numerický)
Implementace a postup
numerického zpracování
Výsledek
Výpočetní metody - výpočetní model
- metody řešení matematického modelu.
• Stochastické metody. Pracují s náhodnými procesy a veličinami, k jejich zástupcům
patří např. metody Monte Carlo nebo Exodus. Speciální aplikace, např. řešení
nepřímých úloh nebo úloh mimo termodynamické rovnováhy.
• Deterministické metody. Řeší matematický model jednoznačně popisující
zkoumaný proces.
• Analytické modely. Umožňují získat řešení ve tvaru funkce času a prostorových souřadnic.
Např. variační metody, metody separace proměnných, přibližné analytické metody využívající
Besselových funkcí a další. Výhodou rychlost výpočtu a malé hardwarové nároky, použití je
ovšem v naprosté většině případů omezeno na značně zjednodušené úlohy. Řešení (podstatou
analytické) často vede na relativně složité integrální příp. rekurentní vztahy, jejichž
vyhodnocení je nutné provést numericky (semi-analytické). S rozvojem výpočetní techniky
jejich význam klesá.
• Numerické modely. Podstatou je diskretizace spojitých veličin, která vede k vyjádření
diferenciálních rovnic jako soustavy algebraických rovnic. Řešení je nalezeno v konečném
počtu diskrétních míst. Rozvíjí především v souvislosti s počítačovým modelováním. K
používaným metodám patří např. metoda konečných diferencí, metoda kenečných objemů,
metoda konečných prvků nebo metoda hraničních prvků. Z dalších např. metody na základě
neuronových sítí, vyvíjeny jsou také bezsíťové metody.
Důležité numerické metody
• Diferenční metody (metodu konečných diferencí, metoda konečných objemů).
Vyjádření diferenciálních rovnic ve tvaru soustavy rovnic diferenčních. Přesnost
řešení je dána diferenčním schématem (explicitní, implicitní apod.) a hustotou sítě.
Relativní jednoduchost schématu umožňuje využití těchto metod i pro silně
nelineární sdružené problémy, většinou ovšem za použití velmi rozsáhlých sítí.
Typické uplatnění těchto metod je pro tepelné výpočty a proudění, méně časté je pro
výpočty mechanických úloh. Metoda konečných objemů je implementována např. ve
výpočetním systému Fluent (tepelné úlohy, proudění a některé sdružené tepelné
procesy, např. vícefázové proudění, fázové přeměny, hoření a další).
• Metoda konečných prvků (MKP nebo FEM). Patří do skupiny variačních metod.
Řešená oblast se rozdělí na konečný počet podoblastí, tj. konečných prvků, kde je
neznámá veličina přiblížena tzv. interpolační tvarovou funkcí. Řešením jsou
neznámé hodnoty parametrů tvarových funkcí. Nejrozšířenější metoda pro
modelování mechanických a termomechanických úloh. Využívána např. v systému
Cosmos DesignStar, MARC, NASTRAN, ANSYS, ABAQUS a další..
Metoda konečných prvků
• Řešená oblast se rozdělí na konečný počet podoblastí, tj. konečných prvků, vzájemně
spojených v uzlech. Neznámá veličina přiblížena tzv. interpolační tvarovou funkcí - spojitá v
rámci jednoho prvku a definuje průběh hledané veličiny mezi jednotlivými uzly prvku.
• Vlastní řešení hledáno ve tvaru minimalizace funkcionálu příslušného dané úloze vzhledem k
této veličině - výsledkem soustava algebraických rovnic, jejichž řešením (inverze matice
soustavy) jsou neznámé hodnoty parametrů tvarových funkcí, tedy také hodnot hledané funkce.
• Tvarová funkce se nejčastěji volí jako polynom 1. nebo 2. stupně (elementy prvního a druhého
řádu). Obecě lze použít také polynomy vyšších stupňů - to umožňuje snížit počet elementů,
ovšem přináší to některé problémy se stabilitou řešení (např. systém Pro/MECHANICA).
Stěna
konečného
prvku
- zadávání
vektorový
ch veličin
Uzel konečného prvku
- zadávání skalárních
veličin
Pomocné uzly
(elementy vyššího
řádu)
Nejčastější typy
2D elementů konečných
prvků.
Metoda konečných prvků
• Rozsáhlost výpočtu je dána velikostí časového
kroku (s ohledem na stabilitu řešení) a tzv.
počtem stupňů volnosti, tj. počtem řešených
rovnic. Ten je určen celkovým počtem prvků,
jejich typem, vlastnostmi a omezeními.
• Metoda je obvykle poměrně náročná na
výpočetní kapacity - od několik desítek tisíc až
po rozsáhlé modely komplexní celků s několika
mil. stupňů volnosti.
• Speciální numerické postupy - např. postupy
inverze řídkých matic nebo iterační postupy v
případě velkých gradientů, nelineárních úloh
apod.
• Efektivní použití metody umožňuje vývoj
algoritmů pro řešení specifických skupin úloh,
např. rotačně symetrické úlohy, modelování
skořepinových tvarů apod.
3D model působení
napětí na stěnu
kruhového otvoru.
Numerické metody - shrnutí
• Silný nástroj pro teoretické řešení úloh nejrůznějších aplikací.
• Hlavní nevýhody - nutnost nalezení vhodného matematického modelu řešeného procesu a
určení fyzikálních parametrů v tomto modelu, často závislých na hledané veličině
(nelineárních) a proměnné v čase i prostoru. Jejich stanovení proto vyžaduje provést
náročné experimenty.
• Efektivní způsob řešení náročných aplikací je kombinace numerického a experimentálního
přístupu.
3D model automobilového brzdového disku.
Příklady použití výpočetních
metod ve průmyslové a výzkumné
praxi
Výpočet prostupu tepla do tepelné box-bariéry
Optimalizace tepelné box-bariéry pro měření teplot v průmyslových průběžných
pecích
Model ohřevu předvalku v průběžné narážecí peci.
Kontrola a optimalizace průběhu ohřevu ocelových předvalků po rekonstrukci
pece. Řešení nepřímé úlohy tepelného přestupu z pece do předvalku a následný
výpočet teplotního pole.
Model chladnutí odlitku
Řešení chladnutí odlitku ve formě za přítomnosti litinového chladítka - návaznost
na projekt s cílem návrhu technologického postupu lití velkých odlitků z tvárné
litiny. Nepřímá úloha s fázovou přeměnou. Řešení teplotního pole odlitku na
základě několika měřených teplot.
Výpočet tepelně-mechanického vlivu odvrtávání
Vliv tepelně-indukovaných napětí v průběhu odvrtávání otvoru při měření
zbytkových napětí odvrtávací tenzometrickou metodou.
Výpočetní systém Cosmos/M
(Cosmos DesignStar)
Cosmos/M (Cosmos DesignStar)
• Numerický systém Cosmos/M (Cosmos DesignStar) firmy Solidworks (původně
SRAC - Structural Research and Analysis Company) je MKP výpočetní systém pro
PC (MS Windows) platformu. Řešení např. úloh lineární i nelineární statické
analýzy, dynamickou analýzu, termomechanické úlohy, elektromagnetické úlohy,
proudění a další (umožňuje např. řešení optimalizačních úloh). Jedná se o modulární
sytém, tj. skládá se z několika na sobě nezávislých modulů (úspora nákladů při
pořízení systému - lze pořídit jen několik potřebných modulů, výhody při správě
výpočtů z hlediska licencí).
• Grafické uživatelské prostředí (GUI) programu tvoří modul Geostar nebo
DesignStar. Modul DesignStar je plně grafické prostředí vycházející z 3D modeláře
Solidworks. Umožňuje import geometrie z 3D modelářů i efektivní tvorbu a síťování
3D geometrie ve vyspělém GUI. Geostar představuje základní (původní) uživatelské
prostředí pro ovládání programu. Geostar nenabízí z hlediska GUI takový komfort
jako DesignStar, nicméně umožňuje řešit širší oblast úloh. Další text se proto bude
věnovat především prostředí Geostar.
Geostar
• Geostar zahrnuje preprocesor (tvorba geometrie a sítě, zadání okrajových a
počátečních podmínek, zadání parametrů výpočtu a řešiče), umožňuje vlastní
spuštění analýzy a postprocesor (načtení výsledků analýzy a práce s nimi, jejich
zobrazení, export apod.). Je dále doplněn o řadu pomocných funkcí, např. funkce pro
zobrazování grafických objektů na hlavním panelu, export/import geometrie a dat,
tvorba proměnných, příkazový řádek apod. Vlastní analýza se provádí spuštěním
samostatného programu-řešiče, tj. modulu příslušného pro daný typ úlohy.
Geostar
(preprocesor, postprocesor)
Procesor - řešič
(lineární mechanika,
nelineární mechanika,
tepelné úlohy, ...)
Geostar - grafické uživatelské prostředí
• Pracovní plocha - zobrazení modelu, sítě, výsledků a pod.
• Hlavní menu - většina příkazů pro ovládání programu.
• Panel ikon - některé z příkazů, především pro ovládání grafického zobrazení
• Příkazový řádek - možnost provádět příkazy přímo jejich zadáním v příkazovém řádku. Pro
zkušené uživatele nejrychlejší způsob práce s programem.
• Významný rys - možnost seskupování
příkazů do skriptů.
Hlavní menu
• Vlastní programovací jazyk, který
umožňuje zadávání příkazů Geostaru,
kontrolu běhu programu (podmínky,
cykly, definice proměnných, apod.) i
spouštění externích úloh.
• Možnost definice kompletní úlohy zadání geometrie a sítě, výpočet,
vyhodnocení výsledků (výhoda při
řešení velkého množství podobných
úloh, např. při optimalizačních nebo
nepřímých úlohách).
Pracovní plocha
Panel ikon
Příkazový řádek
Postup tvorby MKP modelu
Návrh geometrie pro MKP
(zjednodušená geometrie
vhodná pro výpočet)
Tvorba
geometrie
Nastavení
parametr
ů sítě
Zadání
okrajových a
počátečních
podmínek
Tvorba
sítě
Geostar
Výpočet
(spuštění
řešiče)
Nastavení
parametr
ů řešiče
Postprocesing:
Vyhodnocení
výsledků, vykreslení
průběhů a polí
zkoumaných veličin
Zadání geometrie
• Načtení z externího programu nebo tvorba přímo v Geostaru.
• Zadání se ve většině případů provádí postupně od nejnižších entit: body, křivky, plochy,
objemy. Lze využívat různé pomocné funkce, jako např. kopírování, otáčení, generace entit
podle vzoru apod.
• Každá entita má svůj jednoznačný identifikátor (číslo) - slouží pro zadávání okrajových
podmínek, parametrů sítě apod.
Otvor
Geostar představuje jednoduchý
modelář vhodný pro jednodušší
tvary a geometrie. Pro
modelování (tvorbu geometrie)
složitějších komponent není
vhodný.
Geometrický model objektu by
ovšem měl odpovídat především
účelu tvorby MKP sítě,
podrobné modely v podobě
výrobních výkresů nejsou
vhodné.
Oblast zhuštěné sítě
Osa symetrie
Zkoumaný objekt
Tvorba sítě
• Síť konečných prvků (1D, 2D i 3D) lze vytvořit několika způsoby.
¾ Manuální definice souřadnic jednotlivých uzlů a jejich propojení - velmi pracné a téměř
nepoužitelné pro rozsáhlejší sítě.
¾ Poloautomatická tvorba sítě: jednoduchá základní síť ⇒ rozšíření pomocí operací táhnutí,
otočení, převrácení, kopírování apod. Rychlé a univerzální, nelze použít pro speciální (např.
gradované) nestrukturované sítě.
¾ Automatický generátor sítě - plně automatický proces. V některých případech zdlouhavé a
především u složitějších tvarů a 3D modelů problematické. V případě nutnosti výhodnější
použití vyspělejších generátorů sítě.
• Množství typů prvků - rozměr (1D, 2D, 3D),
vlastnosti (plošná úloha, skořepinová úloha, apod.)
a možnostmi použití (tepelné úlohy, mechanické
úlohy, lineární, nelineárni apod.).
• Vytvořená síť a její hustota musí odpovídat
požadavkům na řešení.
• Zadání dalších vlastností elementů, např. o
tloušťky u skořepinových elementů, vlastnosti a
omezení elementů pro numerický proces,
materiálové vlastnosti (konstantní nebo v závislosti
na teplotě, deformaci apod.).
V programu Cosmos/M lze velmi dobře generovat 1D a 2D sítě, u 3D modelů je tvorba sítě komplikovanější. Obdobně jako v
případě geometrie, lze MKP síť importovat z jiného softwaru (jiný výpočetní program nebo specializovaný generátor sítí).
Konverze však může přinášet další komplikace při následné práci s modelem, zadávání okrajových podmínek apod.
Okrajové a počáteční podmínky, parametry výpočtu
Parametry sítě,
materiálové vlastnosti
Okrajové a počáteční podmínky
Výběr a nastavení
vlastností řešiče
• Počáteční podmínky definují výchozí stav výpočtu. Jsou zadávány na elementy (např. napětí) nebo uzly
(např. teplota). Počáteční podmínky může tvořit i výsledek předchozí analýzy.
• Okrajové podmínky se zadávají na hranicích tělesa a definují např. teplotu okolí, intenzitu přestupu
tepla, ukotvení objektu, síly, tlaky apod. Okrajové podmínky mohou být stacionární (konstantní v čase)
nebo nestacionární (časově proměnné) a lineární (nezávislé na dalších veličinách) nebo nelineární
(např. součinitel přestupu tepla závislý na teplotě, síly závislé na reakci tělesa apod.). Nestacionární nebo
nelineární okrajové podmínky se obdobně jako materiálové vlastnosti zadávají pomocí tzv. definičních
křivek. Nesprávné zadání okrajových podmínek má za následek chybné výsledky nebo nestabilitu řešení.
• Parametry výpočtu definují např. typ úlohy (stacionární, nestacionární, lineární, nelineární apod.),
specifická zatížení (výpočet tepelných napětí, působení gravitačních sil apod.) a upřesňují typ řešiče.
• Numerické parametry definují např. způsob integrace nebo podmínky konvergence řešení. Tyto
parametry jsou závislé na konkrétním typu řešiče a typu úlohy. Vhodnost jejich použití a vliv na výsledky
jsou dány především zkušenostmi výpočtáře.
• Vlastní analýza - numerické řešení matematického modelu úlohy. V závislosti na řešeném procesu může
trvat několik sekund až několik dní (i déle). Cosmos/M je vzhledem ke způsobu práce z pamětí vhodnější
spíše pro menší a střední úlohy (desítky až stovky tisíc stupňů volnosti), jeho použití pro řešení
komplexních úloh o mnoha milionech stupňů volnosti není příliš výhodné.
Zpracování výsledků (postprocessing)
• Zpracování výsledků a jejich přehledná a srozumitelná prezentace je jednou z
nejvýznamnějších částí numerické simulace.
• Zobrazení v grafickém tvaru jako pole kontur nebo izočar, grafy průběhů vyšetřovaných
veličin na teplotě nebo profily (path-graphs).
• Výpis numerických hodnot nebo jejich export (grafické i číselné hodnoty) do souborů.
• Výsledky simulace mohou být konečnou hledanou hodnotou, případně je lze využít jako
okrajové nebo počáteční podmínky pro další úlohy (např. teplotní pole pro tepelněmechanickou analýzu).
Okrajová
podmínka
napětí na
otvoru
Napěťové
pole
Zadání samostatné úlohy
Popis úlohy
• Šíření tepla a teplotní pole v uzavřeném prostoru
• 2D úloha přestupu a šíření tepla z tepelného zdroje v objektu o různých materiálových vlastnostech.
• Obvodové stěny o tloušťce 1 m a vnějších rozměrech 10 a 8 m, materiál o tepelné vodivosti 0.5 W.m-1.K-1,
měrné tepelné kapacitě 1000 J. kg-1.K-1 a hustotě 1800 kg.m-3 (cihla).
• Ve vnitřním rohu objektu umístěno topné těleso o rozměrech 1 x 2 m, tepelné vodivosti 1 W.m-1.K-1, měrné
tepelné kapacitě 1000 J. kg-1.K-1 a hustotě 1800 kg.m-3. Těleso homogenní (zjednodušení), uprostřed tělesa
je na jeden uzel MKP sítě aplikován bodový tepelný zdroj o výkonu 600 J.s-1.
• Zbytek vnitřního prostoru tělesa tvoří
prostředí o tepelné vodivosti 50 W.m-1.K1, měrné tepelné kapacitě 1000 J. kg-1.K1 a hustotě 1.3 kg.m-3 (vzduch s
mnohonásobně zvýšenou tepelnou
vodivostí pro zahrnutí vlivu proudění).
• Na vnějších plochách (křivkách) zadáván
konvektivní přestup tepla s koeficientem
přestupu tepla 10 W.m-2, případně
8
konstantní teploty odpovídající teplotě
vnějšího prostředí. Počáteční teplota
všech částí objektu je 10 °C, vnější teplota
je v rozmezí od 10 do -10 °C.
• Úkolem je sestavit MKP úlohu, provést
stacionární výpočet (tj. výpočet ustáleného
stavu) rozložení teplot a nestacionární
výpočet tepelného pole v objektu.
Okrajová
podmínka (přestup
tepla nebo teplota)
Vnější prostor
Obvodová stěna
3
Vnitřní prostor
2
2
Topné
těleso
1
1
4
1 (tloušťka)
10
Postup řešení MKP problému
• Geometrie úlohy. Tvorba bodů, propojení bodů liniemi. Tvorba kontur ohraničujících
jednotlivé bloky, tvorba regionů.
• Parametry a tvorba sítě. Nastavení teplotního ofsetu 273.15 pro výpočet ve stupních celsia
(příkaz TOFFSET). Definice skupiny elementů (EGROUP - elementy typu TRIANG, PLANE
STRAIN, ostatní parametry implicitní), reálné konstanty pro danou skupinu (RCONST implicitní) a materiálových vlastností (MPROP - vodivost, kapacita a hustota) pro elementy
dané skupiny. Tvorba sítě pomocí automatického generátoru pro plochy typu REGION (síť pro
každý materiál je generována bezprostředně po jeho definici příkazy EGROUP, RCONST a
MPROP). Po vysíťování celé úlohy provedení příkazu NMERGE pro spojení hraničních uzlů.
• Okrajové a počáteční podmínky. Zadání konvektivního přestupu tepla na vnější hranici
(křivku) obvodové stěny. Zadání počáteční teploty - homogenní rozložení teploty na všech
uzlech.
• Stacionární úloha. Zadání parametrů úlohy - použití FFE řešiče (A_FFETHERMAL s
parametrem STATIONARY, ostatní parametry implicitní). Spuštění výpočtu. Vyhodnocení a
výpis výsledků.
• Nestacionární úloha. Zadání času a časového kroku (příkaz TIMES). Zadání parametrů úlohy
- použití FFE řešiče (A_FFETHERMAL s parametrem TRANSIENT, ostatní parametry
implicitní). Spuštění výpočtu. Vyhodnocení a výpis výsledků.
Vyhodnocení (pro všechny úlohy)
• Kontury. Mapa rozložení teplot po řešení stacionární úlohy nebo ve dvou zvolených
časech nestacionární úlohy (menu RESULTS).
• Časový průběh. Časový průběh teplot v uzlech v místech 1 až 4 podle schématu (pro
nestacionární úlohu)
• Profil teploty. Profil teploty po řešení stacionární úlohy nebo ve dvou zvolených časech
nestacionární úlohy podél přímky procházející středem objektu (čerchovaná čára na
obrázku)
Úkoly
1. Výpočet stacionární úlohy pro okrajovou podmínku - konstantní teplota na vnějším
plášti obvodové stěny. Teplota okolí/stěny podle zadání.
2. Výpočet stacionární úlohy pro okrajovou podmínku - konvektivní přestup tepla na
vnějším plášti obvodové stěny, koeficient přestupu tepla 10 W.m-2. Teplota okolí/stěny
podle zadání.
3. Výpočet nestacionární úlohy pro okrajovou podmínku - konvektivní přestup tepla na
vnějším plášti obvodové stěny, koeficient přestupu tepla 10 W.m-2.
4. Porovnání úloh 1. a 2. Zhodnocení vlivu okrajové podmínky.
5. Na základě řešení nestacionární úlohy stanovení doby, kdy se systém dostane do
rovnovážného stavu.
6. Stanovení výkonu zdroje pro dosažení rovnovážné teploty 20 °C ve středu místnosti.
Zhodnocení "ročních nákladů na vytápění" podle intenzity zdroje, výhřevnosti a ceny
zvoleného paliva (plyn, uhlí - údaje dohledat z veřejných zdrojů) při předpokládané
účinnosti 40%.
Jsou tři různé teploty okolí/stěny podle zadání: -10 °C, 0 °C a + 10 °C.

Podobné dokumenty