The impact of FACTS devices to control the load flow.

Transkript

The impact of FACTS devices to control the load flow.
Proceedings of the
11th International
Scientific Conference
ELECTRIC POWER
ENGINEERING 2010
BRNO UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
DEPARTMENT OF ELECTRICAL POWER ENGINEERING
Name:
Proccedings of the 11th International Scientific Conference Electric Power Engineering 2010
Publisher:
Brno University of Technology
Faculty of Electrical Engineering and Communication
Department of Electrical Power Engineering
Published:
Editors:
Edition:
Circulation:
Print:
Cover:
Price:
May 4, 2010, Brno, Czech Republic
Jiří Drápela, Jan Macháček
first
220
MSD, s. r. o., Brno, 2010
c 2010
Lindovský & Psota, Brno, 100 e
The authors are responsible for the contentual and lingual accuracy of their papers and the materials they present.
Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Electrical
c 2010.
Power Engineering ISBN 978 - 80 - 214 - 4094 - 4
TABLE OF CONTENTS
Part A - Invited lectures
Evaluation of the Methods for Harmonic Resonance Analyses in Power Systems . . . . . . . . . . . . . . . . 3
Kazimierz Wilkosz (Wroclaw University of Technology, Poland)
Smart Metering and Ripple Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
György Morva, István Szén Óbuda (University of Budapest, Hungary)
Advanced Adaptive Control for Thyristor Controlled Series Capacitors . . . . . . . . . . . . . . . . . . . . . 13
Nikolay Djagarov, Zhivko Grozdev, Milen Bonev (Technical University of Varna, Bulgaria),
Michal Kolcun, Ľubomír Beňa, Daniel Hlubeň (The Technical University of Košice, Slovak Republic)
Development Tendency of the Baltic Power System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Anna Mutule, Irina Oleinikova, Artjoms Obushevs (Institute of Physical Energetics, Latvia)
Fault Location on Power Transmission Lines with Use of Two - End Synchronised
and Unsynchronised Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Jan Izykowski, Eugeniusz Rosolowski (Wroclaw University of Technology, Poland)
Protecting Grid Connected Wind Farms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Zhibo Ma, Miles A. Redfern (University of Bath, United Kingdom)
Příspěvek k strategickému významu elektroenergetiky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Contribution to Strategic Significancy of Electrical Power Engineering
Zdeněk Vostracký (University of West Bohemia in Pilsen, Czech Republic)
Intelligent Measurement as the Decisive Factor into the Creation of the Strategy
of the Energy - Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Jerzy Szkutnik (Cze˛stochowa University of Technology, Poland)
Action and Reaction in Electrical Circuits - Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Jaan Järvik (Tallinn University of Technology, Estonia)
Action and Reaction in Electrical Equipment - Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Jaan Järvik (Tallinn University of Technology, Estonia)
Wind and Hydro Power Large - scale Integration With Energy Storage into Regional Power Grid . . . . . 55
Viktor V. Elistratov (Saint - Petersburg State Polytechnical University, Russia)
Part B - Power system management and operation, Electricity market
PTDF Calculation in Network with Phase Shifting Transformers . . . . . . . . . . . . . . . . . . . . . . . . 61
Karel Máslo, Andrew Kasembe (ČEPS, a. s., Czech Republic)
Středoevropský region jako kontext modelování trhu s elektřinou v České republice . . . . . . . . . . . . . 65
Central European Region As an Electricity Market Modeling Context in Czech Republic
Petr Čambala, Michal Macenauer, Jan Toufar (EGÚ Brno, a. s., Czech Republic),
Martin Hrubý (Brno University of Technology, Czech Republic)
ZigBee Smart Energy profil v síti Smart Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
ZigBee Smart Energy Profile in the Smart Grid
Aleš Krutina (University of West Bohemia in Pilsen, Czech Republic)
Transmission Lines Loading Control using FACTS Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Zdeněk Müller, Tomáš Sýkora, Jan Švec, Josef Tlustý
(Czech Technical University in Prague, Czech Republic)
The Size of Customers’ Loads Influence to Their Reconnection in the Reconfiguration . . . . . . . . . . . 83
Martin Paar (Brno University of Technology, Czech Republic)
EPE 2010, BRNO, CZECH REPUBLIC
vii
Numerical Stability of the Newton - Raphson Method in Load Flow Analysis . . . . . . . . . . . . . . . . . 87
Jan Veleba (University of West Bohemia in Pilsen, Czech Republic)
Automatic Power Load Balancing using a Multi - Agent System . . . . . . . . . . . . . . . . . . . . . . . . . 93
Miroslav Prýmek, Aleš Horák (Masaryk University Brno, Czech Republic),
Petr Baxant, (Brno University of Technology, Czech Republic)
The Impact of FACTS Devices to Control the Load Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Stanislav Kušnír, Ľubomír Beňa, Michal Kolcun (The Technical University of Košice, Slovak Republic)
Power Consumption Profiles and Potentials of Selected Electrical Appliances
as Way to Regulate Electricity Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Petr Baxant (Brno University of Technology, Czech Republic)
Part C - Transmission and distribution grids, Faults and protection of power networks
Breaker Control Scheme for Rebuilding Networks containing Distributed Generation
following System Disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Wenting Shang, Miles A Redfern, R O’Gorman (University of Bath, United Kingdom)
Analysis of Technical Losses in the Low and Medium Voltage Power Network . . . . . . . . . . . . . . . . 119
Anna Gawlak (Cze˛stochowa University of Technology, Poland)
A New Fuzzy Differential Protection for Parallel Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Krzysztof Solak, Waldemar Rebizant (Wroclaw University of Technology, Poland)
Load Capacity and Transient Stability Analysis on Modified IEEE 14 Bus System
using Power System Analysis Toolbox (PSAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Joseph E. Essilfie, Josef Tlustý (Czech Technical University in Prague, Czech Republic)
Dynamic Equivalents in Power System Stability Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Petr Mareček, Miroslav Müller, Zdeněk Müller, Jan Švec, Tomáš Sýkora, Josef Tlustý
(Czech Technical University in Prague, Czech Republic)
Rectangular Formulation of Power System State Estimation: A Critical Analysis
of Different Solutions to the Problem of Zero - Injection Measurements . . . . . . . . . . . . . . . . . . . . 139
Tomasz Okoń, Kazimierz Wilkosz (Wroclaw University of Technology, Poland)
Evaluation of Power Grid Development Using Newton - Rapshon Method . . . . . . . . . . . . . . . . . . . 145
Almabrok Abdoalhade Almabrok, Petr Toman (Brno University of Technology, Czech Republic)
Ochrany a komunikace v Smart Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Protections and Communications in Smart Grid
Luboš Frank (University of West Bohemia in Pilsen, Czech Republic)
Influence of Parameters of Electrical Power System on Rise and Course
of Ferroresonance Overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Branislav Bátora, Petr Toman (Brno University of Technology, Czech Republic)
CCT - Basic Criteria of Power System Transient Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Žaneta Eleschová, Anton Beláň (Slovak University of Technology Bratislava, Slovak Republic)
Impact of PST Transformers on Short - circuit Conditions of the Power System . . . . . . . . . . . . . . . 163
Vladimír Krištof, Daniel Hlubeň, Michal Kolcun (The Technical University of Košice, Slovak Republic)
Possible Application of Triangulation Principles for Fault Location
in 22 kV Distribution Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Marek Höger, Peter Braciník (University of Žilina, Slovak Republic)
Negative Effects of the Earth Fault in Isolated Neutral System IT/500V
on Rolling Mill for Rail Plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Tomáš Sniegoň, Jiří Gurecký (VŠB - Technical University of Ostrava, Czech Republic)
viii
EPE 2010, BRNO, CZECH REPUBLIC
Podíl vlivu svodu na výpočty chodu sítě u vedení 110 kV až 750 kV . . . . . . . . . . . . . . . . . . . . . . 177
Share of Influence of the Leakage on Calculation of Network Working at the Line of 110 kV to 750 kV
Ladislav Rudolf (University of Ostrava, Czech Republic)
Aplikace softwaru pro výpočty technických ztrát na vedení přenosové soustavy . . . . . . . . . . . . . . . . 181
Application of Software for Calculations of Technical Losses on the Line of the Transmission System
Ladislav Rudolf (University of Ostrava, Czech Republic),
Vladimír Král (VŠB - Technical University of Ostrava, Czech Republic)
Porovnání simulace transientních jevů v programu EMTP - ATP a PSCAD . . . . . . . . . . . . . . . . . . 187
Confrontation of Transient Phenomena Simulation in EMTP - ATP and PSCAD
David Topolánek, Petr Toman (Brno University of Technology, Czech Republic)
Kompenzace vlivu paralelního vedení nastavením zemního poměru distančních ochran . . . . . . . . . . . 191
The compensation of a Influence Parallel Line by Setting of a Ground Rate of a Distance Protection
Jiří Bermann (ABB, s. r. o., Czech Republic)
Protection of Distribution Network with Inserted Underground Cables . . . . . . . . . . . . . . . . . . . . . 197
Jaroslava Orságová, Petr Toman (Brno University of Technology, Czech Republic)
TKSL and Wave Partial Differential Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Jiří Kunovský, Alexandr Szöllös, Václav Šátek (Brno University of Technology, Czech Republic)
Part D - Power generation, Dispersed generation and its integration
Computer Modelling of Electrical Precipitation and Separation . . . . . . . . . . . . . . . . . . . . . . . . . 209
Roman Cimbala (The Technical University of Košice, Slovak Republic),
Milan Bernát, Renáta Bernátová (University of Presov in Presov, Slovak Republic)
Production Conditions Analysis of Cogeneration Units Based on Gas Engine and Gas Turbine . . . . . . . 215
Nail Khisamutdinov, Petr Toman (Brno University of Technology, Czech Republic)
Experiences with Examination of Dispersed Sources Impact on Distribution Power System . . . . . . . . 219
Jozef Rusnák, Ľubomír Beňa, Michal Kolcun (The Technical University of Košice, Slovak Republic)
Nasazení fotovoltaické elektrárny v lokální distribuční soustavě Letiště Ostrava, a. s. . . . . . . . . . . . . 223
Placing of Photovoltaic Power Station in Local Distribution System of Airport Ostrava, a. s.
Milan Messerschmidt, Jiří Gurecký (VŠB - Technical University of Ostrava, Czech Republic)
Zvyšovanie využitia primárnej energie v systémoch s kogeneračnými jednotkami . . . . . . . . . . . . . . . 229
Cogeneration Waste Heat Conversion to Electric Power
Marek Pípa, Juraj Kubica, František Janíček (Slovak University of Technology Bratislava, Slovak Republic)
Evaluation Factors in Carbon Capture Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Tomáš Bartošík, Petr Mastný (Brno University of Technology, Czech Republic)
Vliv kogenerační výroby tepla a elektřiny na příkladu Elektrárny Poříčí II . . . . . . . . . . . . . . . . . . . 237
Influence of Cogeneration in Heat and Electricity Production on Example of Power Station Poříčí II
Jiří Beneš, Zbyněk Martínek (University of West Bohemia in Pilsen, Czech Republic)
Feedback Effects Definition of Alternative Electric Energy Sources Connected
to the Distribution Power Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Ondřej Procházka, Jiří Gurecký, Stanislav Mišák (VŠB - Technical University of Ostrava, Czech Republic)
Operating Mode of Permanent Magnet Synchronous Generator . . . . . . . . . . . . . . . . . . . . . . . . . 249
Václav Sládeček, Petr Palacký, David Slivka, Petr Hudeček
(VŠB - Technical University of Ostrava, Czech Republic)
Využití obnovitelných zdrojů energie k napájení svítidel veřejného osvětlení . . . . . . . . . . . . . . . . . . 253
Use of Renewable Energy to Power public Lighting Luminaire
Tomáš Novák, Stanislav Mišák, Karel Sokanský (VŠB - Technical University of Ostrava, Czech Republic)
Quality of Electric Power Supplied by Co - generation Unit with Landfill Gas Combustion . . . . . . . . . . 257
Jiří Gurecký, Petr Moldřík (VŠB - Technical University of Ostrava, Czech Republic)
EPE 2010, BRNO, CZECH REPUBLIC
ix
Zpětné vlivy větrných elektráren na napájecí síť . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Impact of Wind Power Plants on Distribution Systems Power Quality
Daniel Spáčil, Pavel Santarius (VŠB - Technical University of Ostrava, Czech Republic)
Optimisation of Operation of Wind Power Generators in Distribution System . . . . . . . . . . . . . . . . . 267
František Střída, Martin Mach, Stanislav Rusek (VŠB - Technical University of Ostrava, Czech Republic)
Domestic Cogeneration Units Scheme with Gas Boiler and with Heat Accumulator . . . . . . . . . . . . . 271
Nail Khisamutdinov, Petr Toman (Brno University of Technology, Czech Republic)
Hodnocení poruch armatur v jaderných elektrárnách . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Investigation of Fitting Defects in Nuclear Power Plants
Jiří Raček (Brno University of Technology, Czech Republic)
Part E - Renewable energy sources, Energy accumulation and storage devices
Case Study of Cyprus: Wind Energy or Solar Power? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Davut Solyali, Miles A. Redfern (University of Bath, United Kingdom)
Optimalizace větrné elektrárny s využitím programu EMTP - ATP . . . . . . . . . . . . . . . . . . . . . . . . 291
Wind Power Plant Optimalization by EMTPl - ATP
Stanislav Mišák, Veleslav Mach (VŠB - Technical University of Ostrava, Czech Republic)
Analýza technických a ekonomických parametrů hybridních systémů . . . . . . . . . . . . . . . . . . . . . . 295
Technical - Economic Analysis of Hybrid Off - Grid Power System
Stanislav Mišák, Lukáš Prokop (VŠB - Technical University of Ostrava, Czech Republic)
Predikce výroby elektrické energie z větrných elektráren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Prediction System for Energy Production from WPP
Stanislav Mišák, Lukáš Prokop (VŠB - Technical University of Ostrava, Czech Republic)
Hodnocení efektivity práce tepelných čerpadel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Effectiveness Evaluation of Heat Pump Operation
Mojmír Vrtek (VŠB - Technical University of Ostrava, Czech Republic)
Design and Material Modification of Heat Engine Compression Cylinder . . . . . . . . . . . . . . . . . . . . 313
Jan Macháček (Brno University of Technology, Czech Republic)
The Design of a Thermoelectric Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Jan Gregor, Ivana Jakubová (Brno University of Technology, Czech Republic)
Towards Renewable Energy Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Miroslava Smitková, František Janíček, Ivan Daruľa (Slovak University of Technology Bratislava, Slovak Republic)
Využití tepelného čerpadla pro chlazení fotovoltaického panelu . . . . . . . . . . . . . . . . . . . . . . . . . 327
Utilization of Heat Pump for Cooling of Photovoltaic Module
Jiří Polívka (University of West Bohemia in Pilsen, Czech Republic)
Vyhodnocení provozních účinností větrné elektrárny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Operating Efficiency Diagnostics Wind Power Plant
Tomáš Mlčák, Stanislav Mišák (VŠB - Technical University of Ostrava, Czech Republic)
Photovoltaic Power Plants in the Electricity System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Jan Novotný, Antonín Matoušek (Brno University of Technology, Czech Republic)
Maximalizace získávání elektrické energie z fotovoltaického panelu . . . . . . . . . . . . . . . . . . . . . . . 339
Maximal Energetic Effect of Solar Photovoltaic Cell
Ludvík Koval, Mojmír Vrtek, Petr Bilík (VŠB - Technical University of Ostrava, Czech Republic)
Vlivy provozních podmínek na elektroniku obnovitelných zdrojů . . . . . . . . . . . . . . . . . . . . . . . . . 345
The Influence of Environment on Renewable Source Electronics
Marek Tučan, Pavel Žák (Czech Technical University in Prague, Czech Republic)
x
EPE 2010, BRNO, CZECH REPUBLIC
Pokusná bioplynová stanica so suchou fermentáciou a KGJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Experimental Biogas Station with Dry Fermentation and Cogeneration - unit
Marek Pípa, Juraj Kubica, František Janíček (Slovak University of Technology Bratislava, Slovak Republic)
Laboratórium OZE na FEI STU v Bratislave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Laboratory of RES on Slovak University of Technology in Bratislava
Marek Pípa, Juraj Kubica, František Janíček (Slovak University of Technology Bratislava, Slovak Republic)
Operation Characteristics of Hydrogen Proton Exchange Membrane Fuel Cells . . . . . . . . . . . . . . . . 359
Petr Moldřík, Roman Chválek, Robert Šebesta (VŠB - Technical University of Ostrava, Czech Republic)
Grid Connection of Photofoltaic Sources - Legislative Requirements . . . . . . . . . . . . . . . . . . . . . . . 365
Jana Jiřičková, Milan Krasl, Rostislav Vlk (University of West Bohemia in Pilsen, Czech Republic)
The Usage of Compressed Air Energy Storage in Cooperation
of Geothermal Energy in the Czech Republic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Lukáš Radil, Petr Mastný (Brno University of Technology, Czech Republic)
Simulation Cycle of Heat Pump by the help of Wolfram Mathematica . . . . . . . . . . . . . . . . . . . . . 375
Lukáš Radil, Petr Mastný (Brno University of Technology, Czech Republic)
Efektivnost výroby tepla a chladu při využití solární energie . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Effective Heat and Cold Production with the Use of Solar Energy
Iva Pešková, Karel Štrunc, Zbyněk Martínek (University of West Bohemia in Pilsen, Czech Republic)
Designing Energy Systems for Low Energy Buildings With the Support
of Knowledge Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Petr Mastný, Zuzana Mastná (Brno University of Technology, Czech Republic)
Tepelná čerpadla, obnovitelný zdroj energie pro aulu na VŠB - TU Ostrava . . . . . . . . . . . . . . . . . . 391
Heat Pumps, Renewable Energy Source for the University Hall VŠB - TU Ostrava
Zdeněk Hradílek, Petr Zach (VŠB - Technical University of Ostrava, Czech Republic)
Stochastics in the Electricity Generation in Wind and Photovoltaic Power Stations . . . . . . . . . . . . . 395
Martin Vysloužil, Zdeněk Hradílek (VŠB - Technical University of Ostrava, Czech Republic)
Reliability of Electricity Power Supplies from Renewable Sources . . . . . . . . . . . . . . . . . . . . . . . . 401
Zdeněk Hradílek, Tomáš Šumbera (VŠB - Technical University of Ostrava, Czech Republic)
Photovoltaic Sources for Hydrogen Production in VSB - TU Ostrava Laboratory . . . . . . . . . . . . . . . 407
Roman Chválek, Zdeněk Hradílek, Petr Moldřík
(VŠB - Technical University of Ostrava, Czech Republic)
Možnosti splnění požadavků EU v oblasti obnovitelných zdrojů v podmínkách ČR . . . . . . . . . . . . . . 413
Possibilities of the Czech Republic to Fulfil EU Requirements in Renewable Sources Area
Jiří Ptáček, Petr Modlitba, Tomáš Špaček, Jiří Malý (EGÚ Brno, a. s., Czech Republic)
Part F - EMC, Power quality and metering
Methods for Detection of Sub - harmonics in Power Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
Sabino Giarnetti, Fabio Leccese (University Roma Tre, Italy),
Zbigniew Leonowicz (Wroclaw University of Technology, Poland)
Advanced CFD Application in Medium Voltage Instrument Transformers
and Sensors Development and Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
David Raschka, Petr Michlíček (ABB, s. r. o., Czech Republic)
Design of Transducers Matching Requirements of Microprocessor - Based Equipment . . . . . . . . . . . . 431
Radek Javora, Pavel Váňo (ABB, s. r. o., Czech Republic)
Problematika vyhodnocování parametru flicker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
Problems when Evaluating the Flicker
Martin Kašpírek (E.ON, s. r. o., Czech Republic)
EPE 2010, BRNO, CZECH REPUBLIC
xi
Experimentální ověření vlivu filtračně - kompenzačního zařízení na provoz
trakční transformovny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
Experimental verification of tuned capacitor bank impact on traction transformer sub - station
Petr Orság, Stanislav Kocman , Jaroslav Kýpus (VŠB - Technical University of Ostrava, Czech Republic)
Postprocessing rozsáhlých datových souborů měření . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
Postprocessing of Large Measurement Datasets
Stanislav Sumec, Petr Baxant (Brno University of Technology, Czech Republic)
Vliv kvality napájecího napětí na provozní vlastnosti pulzního usměrňovače . . . . . . . . . . . . . . . . . . 449
The Voltage Power Quality Impact to the Pulse Rectifier Operating Properties
Stanislav Kocman, Petr Orság, Jaroslav Kypús (VŠB - Technical University of Ostrava, Czech Republic)
A Light - flickermeter - Part I: Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
Jiří Drápela, Jan Šlezingr (Brno University of Technology, Czech Republic)
A Light - flickermeter - Part II: Realization and Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
Jiří Drápela, Jan Šlezingr (Brno University of Technology, Czech Republic)
Elektronický předřadník s pasivním kapacitním PFC obvodem a nábojovou pumpou . . . . . . . . . . . . . 465
Electronic Ballast with Charge Pumped Valley - Fill Passive PFC
Jan Pithart, Jiří Drápela (Brno University of Technology, Czech Republic)
Návrh simulátoru kolísání napětí . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
Design of a Voltage Fluctuation Simulator
Jan Šlezingr, Jiří Drápela (Brno University of Technology, Czech Republic)
Comparison of Voltage Events Detection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
Jaromír Bok, Jiří Drápela (Brno University of Technology, Czech Republic)
Vliv délky vyhodnocovacího intervalu veličin na výsledky vybraných
parametrů kvality elektřiny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
The Impact of the Aggregation Interval Length on Selected Power Quality
Quantities and Their Results
Jan Žídek, Petr Bilík, Daniel Kaminský (VŠB - Technical University of Ostrava, Czech Republic)
Statistické zpracování veličin se dvěma limity pro hodnocení kvality elektrické energie . . . . . . . . . . . 483
Statistical Data Processing of two Limits Quantities for Power Quality Evaluation Purposes
Jan Žídek, Petr Bilík, Daniel Kaminský (VŠB - Technical University of Ostrava, Czech Republic)
Selected Aspects of Evaluation of Complete Frequency Spectra
up to 9 kHz According to Valid International Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
Petr Bilík (VŠB - Technical University of Ostrava, Czech Republic)
Vliv změn druhého vydání IEC61000 - 4 - 15 na implementaci měřiče blikání . . . . . . . . . . . . . . . . . . 493
Planned Changes in the Second Edition of IEC61000 - 4 - 15
and Their Impact on Flickermeter Specification
Petr Bilík (VŠB - Technical University of Ostrava, Czech Republic)
Analyzátor výkonů a účinnosti frekvenčních měničů na platformě cRIO . . . . . . . . . . . . . . . . . . . . . 497
Frequency Converter Power and Efficiency Analyzer Based on cRIO Platform
Marek Hořínek, Petr Pětvaldský, Petr Bilík (VŠB - Technical University of Ostrava, Czech Republic)
Testování odezvy zdrojů nepřetržitého napájení (UPS) na krátkodobé poklesy,
zvýšení a přerušení napětí . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
Testing of Uninterruptable Power Supplies (UPS) Response on Short Time Voltage Dips,
Swells and Interruptions
Petr Pětvaldský, Marek Hořínek, Petr Bilík (VŠB - Technical University of Ostrava, Czech Republic)
Možnosti rozšíření analyzátorů kvality o vyhodnocování synchronních fázorů
a synchronizované měření přechodných dějů . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
Extension of Power Quality Analyzer Functionality for Synchrophasor Evaluation
and Synchronized Measurement of Transient Signals
Jakub Maňas, Petr Bilík (VŠB - Technical University of Ostrava, Czech Republic)
xii
EPE 2010, BRNO, CZECH REPUBLIC
Záznamník provozních a poruchových stavů pro systém akumulace elektrické energie
z obnovitelných zdrojů (OZE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
Datalogger for Operational and Disturbance Signals Monitoring Intended
for Electrical Energy Accumulation System Using Renewable Energy Sources
Jakub Maňas, Petr Bilík (VŠB - Technical University of Ostrava, Czech Republic)
Vývoj prenosného VN systému pre meranie prúdu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
Development of portable high - voltate system for current measurement
Attila Kment, Marek Pípa (Slovak University of Technology Bratislava, Slovak Republic)
Porovnání výsledků vyhodnocení blikání řady PQ analyzátorů na opakovatelných
kolísajících napěťových signálech odpovídajících některým typickým spotřebičům . . . . . . . . . . . . . . . 521
The Flickermeter Results Comparison Using Reproducible Voltage Varying Signals
Corresponding with some Typical Loads
Martin Kašpírek (E.ON, s. r. o., Czech Republic),
Petr Bilík (VŠB - Technical University of Ostrava, Czech Republic)
Influence of Power Semiconductor Converters Setup on the Quality
of Electrical Energy from Renewable Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
Václav Sládeček, Petr Palacký, David Slivka, Martin Sobek
(VŠB - Technical University of Ostrava, Czech Republic)
Praktické měření kvality elektrické energie a možnost zlepšení její kvality . . . . . . . . . . . . . . . . . . . 533
Experiences with Measuring Power Quality in Real Operating Conditions
Petr Hečko, Alena Otčenášová (University of Žilina, Slovak Republic)
Testing of Appliances Immunity to Voltage Dips and Short Interruptions
under Laboratory Conditions and Practical Usage of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
Jaromír Bok, Jiří Drápela (Brno University of Technology, Czech Republic)
Active Power Filters and their Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
Petr Simonik, Pavel Brandstetter, Petr Chlebis (VŠB - Technical University of Ostrava, Czech Republic)
Spolupráce trakční a energetické soustavy z hlediska EMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
Cooperation of Traction Transformer Substation with Electric Power System in term of EMC
Petr Mičulka, Josef Paleček, Václav Kolář, Vítězslav Stýskala
(VŠB - Technical University of Ostrava, Czech Republic)
Analýza vlivu trakční transformovny Velešín na napájecí soustavu z hlediska nesymetrie . . . . . . . . . . 555
An Analysis of the Influence of Traction Transformer Substation in Velesin
on Power Network in Terms of Unbalance
Václav Kolář, Josef Paleček, Petr Mičulka, Vítězslav Stýskala
(VŠB - Technical University of Ostrava, Czech Republic)
Analýza stavu kvality napětí v distribuční síti, očekávané náklady
na zajištění požadavků normy ČSN EN 50160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
Analysis of Voltage Quality Condition in Distribution Systems and Expected Costs
to Meet the Standard ČSN EN 50160 Requirements
Martin Kašpírek (E.ON, s. r. o., Czech Republic)
Metoda pro rychlé a korektní kontinuální měření jalového výkonu
pro výpočetně omezené mikroprocesory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
Method for Fast and Precise Calculation of Reactive Power
for Computationally Limited Microprocessors
Jan Kraus, Tomáš Tobiška (Technical University of Liberec, Czech Republic)
Part G - Power grids and systems reliability
Practical and Theoretical Methods of Reliability Securing
in Transmission and Distribution Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
Antons Kutjuns, Laila Zemite, Kristina Berzina (Riga Technical University, Latvia)
EPE 2010, BRNO, CZECH REPUBLIC
xiii
Error Estimation of Monte Carlo Reliability Model of Power Distribution Network . . . . . . . . . . . . . . 573
Pavel Praks, Tadeusz Sikora (VŠB - Technical University of Ostrava, Czech Republic)
Sensitivity Analysis of Monte Carlo Electric Power Grid Reliability Calculation . . . . . . . . . . . . . . . . 577
Tadeusz Sikora, Vladimír Král, Stanislav Rusek, Radomír Goňo
(VŠB - Technical University of Ostrava, Czech Republic)
Analysis of Failure Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
Radomír Goňo, Michal Krátký, Stanislav Rusek (VŠB - Technical University of Ostrava, Czech Republic)
Possibilities of Using Multi - Dimensional Statistical Analyses Methods
When Evaluating Reliability of Distribution Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
Lukáš Geschwinder, Petr Toman (Brno University of Technology, Czech Republic)
The Solution for Repairable Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
Zbyněk Martínek, Veronika Královcová (University of West Bohemia in Pilsen, Czech Republic)
Současné trendy v rozvoji distribučních sítí s ohledem na nepřetržitost distribuce . . . . . . . . . . . . . . 599
Present Trends in Distribution System Development with Regard to Supply Continuity
Petr Skala, Václav Dětřich (EGÚ Brno, a. s., Czech Republic)
Oceňování nedodané elektrické energie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
Estimation of Energy not Supply
Zdenek Medvec (VŠB - Technical University of Ostrava, Czech Republic)
Statistical Monitoring of Failures - Methods and Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
Blanka Šedivá, Eva Wagnerová, František Vávra, Tomáš Ťoupal, Patrice Marek
(University of West Bohemia in Pilsen, Czech Republic)
Decision - making Models of MCA and Supporting Software for Electric Power Engineering . . . . . . . . 617
Jiří Gurecký, Petr Moldřík (VŠB - Technical University of Ostrava, Czech Republic)
Cascade and Independent Malfunctions and Damages of Safety Systems
in Terms of a Nuclear Accident . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
Michal Ptáček, Antonín Matoušek (Brno University of Technology, Czech Republic)
Part H - Power network elements and diagnostics
Moderní principy testování silnoproudých rozváděčů . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
Modern Testing Principles of High Power Distribution Boxes
Tomáš Wittassek, Jan Žídek (VŠB - Technical University of Ostrava, Czech Republic)
New Approach of Thermal Field and Ampacity of Underground Cables
Using Adaptive hp - FEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639
Miroslav Müller,Josef Tlustý (Czech Technical University in Prague, Czech Republic)
PhanTu Vu (HoChiMinhCity Univeristy of Technology, Vietnam)
High Frequency Signals Transmitting via Low Voltage Installations . . . . . . . . . . . . . . . . . . . . . . . 645
Pavel Mindl, Tomáš Jukl, Zdeněk Čeřovský (Czech Technical University in Prague, Czech Republic)
Measurement of Surface Discharge in Electroinsulating Liquids . . . . . . . . . . . . . . . . . . . . . . . . . 649
Iraida Kolcunová, Martin Marci (The Technical University of Košice, Slovak Republic)
Měření teploty prostřednictvím optovláknových senzorů v energetice . . . . . . . . . . . . . . . . . . . . . . 655
Temperature Measurements by Fibre Optic Sensors in Power Industry
Michal Mazanec (SAFIBRA, s. r. o., Czech Republic)
Theoretical Analyses of a Substation Grounding System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659
Jan Sedláček (University of West Bohemia in Pilsen, Czech Republic)
Numerical Analysis of a 25kV Bus Holder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663
Jan Sedláček, Jiří Laurenc (University of West Bohemia in Pilsen, Czech Republic)
xiv
EPE 2010, BRNO, CZECH REPUBLIC
Fyzikální jevy kontaktních sestav . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667
Physical Phenomena in contact assemblies
Jana Jiřičková, Štěpán Rusňák, Rostislav Vlk (University of West Bohemia in Pilsen, Czech Republic)
Využití programového prostředí ANSYS, pro optimalizaci vodičů venkovního vedení . . . . . . . . . . . . . 671
Optimization of overhead lines using ANSYS SW
Stanislav Mišák, Štefan Hamacek (VŠB - Technical University of Ostrava, Czech Republic)
Porovnání modelů alternátoru v modelovacích nástrojích vhodných pro elektroenergetiku . . . . . . . . . 677
Comparison of Alternator Models in Modeling Tools Suitable for Power Engineering
Lucie Noháčová, Karel Noháč (University of West Bohemia in Pilsen, Czech Republic)
Modelování izolačních vad ve statorovém vinutí turbogenerátoru . . . . . . . . . . . . . . . . . . . . . . . . 683
Modelling of Insulating Defects in Stator Winding of Turbo Generator
Jan Klasna, Petr Martínek, Josef Pihera (University of West Bohemia in Pilsen, Czech Republic),
Radek Fanta (BRUSH SEM, s. r. o., Czech Republic)
Intelligent Diagnostic Unit of a Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687
Petr Palacký, Petr Hudeček David Slivka, Martin Sobek, Václav Sládeček
(VŠB - Technical University of Ostrava, Czech Republic)
Zvýšení účinnosti synchronního generátoru s permanentními magnety pro větrnou elektrárnu . . . . . . . 693
Increasing of Efficiency of PM Synchronous Generator for Wind - Power Plant
Petr Kačor, Stanislav Mišák (VŠB - Technical University of Ostrava, Czech Republic)
Měření propuštěné energie v jističi nízkého napětí při zkratu . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
Measurement of Let - Through Energy of Low Voltage Cirit Breakers in Short - Circuit Condition
Petr Kačor (VŠB - Technical University of Ostrava, Czech Republic)
Eliminace emisního hluku elektrických strojů a přístrojů pomocí protifáze . . . . . . . . . . . . . . . . . . . 701
Electrical devices noise emissions elimination using anti - phase concept
Viktor Pokorný (VŠB - Technical University of Ostrava, Czech Republic)
Metódy snímania čiastkových výbojov v izolačných systémoch
vysokonapäťových zariadení . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
Partial Discharge Measuring Methods in The Case of High Voltage Insulation Systems
Jaroslav Petráš, Jaroslav Džmura, Jozef Balogh (The Technical University of Košice, Slovak Republic)
Výskyt whiskerů rizikem pro funkci elektrárny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711
Whisker’ Appearance Risk for Power Plant Functionality
Pavel Žák, Ivan Kudláček (Czech Technical University in Prague, Czech Republic)
Stárnutí výkonových transformátorů . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717
Power Transformer Ageing
Eva Müllerová (University of West Bohemia in Pilsen, Czech Republic),
Jan Hrůza (ETD TRANSFORMÁTORY, a. s., Czech Republic)
Analysis of Issues in Long - therm Thermovision Measurements in Distribution Networks . . . . . . . . . . 721
Miroslav Hrabčík, Radomír Goňo (VŠB - Technical University of Ostrava, Czech Republic)
Experimental Analysis of Temperature Influence on Idly Currents Parameters
of Types Toroid Transformers Compared with Conventional Types of Transformers . . . . . . . . . . . . . 727
Aleš Folvarčný, Martin Marek (VŠB - Technical University of Ostrava, Czech Republic)
Thermal Analysis of HV Type Traction Disconnector Using FEM . . . . . . . . . . . . . . . . . . . . . . . . 733
Regina Holčáková, Martin Marek (VŠB - Technical University of Ostrava, Czech Republic)
The Change of Relaxation Current Pattern Due to Forced Thermal Aging
of Sintered Ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739
Bystrík Dolník, Juraj Kurimský (The Technical University of Košice, Slovak Republic)
Thermal Dependency of Dielectric Properties of Liquid Insulating Materials . . . . . . . . . . . . . . . . . 746
Roman Cimbala, Iraida Kolcunová, Lýdia Dedinská, Vieroslava Čačková
(The Technical University of Košice, Slovak Republic)
EPE 2010, BRNO, CZECH REPUBLIC
xv
Economical and Technical Problems of High Voltage Power Line Construction
and Modernization with the Use of High - temperature Low Sag Wire Technology . . . . . . . . . . . . . . 749
Jerzy Szkutnik (Cze˛stochowa University of Technology, Poland),
Krystyna Baum (ENION S.A, Poland)
Vybrané principy elektroenergetiky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753
Veleslav Mach (VŠB - Technical University of Ostrava, Czech Republic)
Part I - Power electronics, electric power applications
Experimentální určení celkového součinitele přestupu tepla mezi předřadníkem
a vnitřním prostorem svítidla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757
Experimental Determination of the Heat - Transfer Coefficient Between a Ballast and a Lighting unit Interior
Miroslav Müller, Jan Kyncl (Czech Technical University in Prague, Czech Republic)
Nalezení optimálního tvaru elektromagnetu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761
Finding the Optimal Shape of the Electromagnet
Stanislav Zajaczek, Lubomír Ivánek, Phan Thi Thanh Thao
(VŠB - Technical University of Ostrava, Czech Republic)
Analýza pohonů velkých výkonů ve vlastní spotřebě energobloku . . . . . . . . . . . . . . . . . . . . . . . . 765
Analysis of Big Drives in Internal Consumption of Powerblock
Zdeněk Vostracký, Václav Pašek, Martin Kadera (University of West Bohemia in Pilsen, Czech Republic)
Transport Coefficients of Air and Argon Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769
Ilona Lázničková (Brno University of Technology, Czech Republic)
Thermal Plasma Parameters Determining Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775
Jan Gregor, Ivana Jakubová, Tomáš Mendl, Josef Šenk (Brno University of Technology, Czech Republic)
Properties of a DC Arc Plasma Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
Jan Gregor, Ivana Jakubová, Josef Šenk (Brno University of Technology, Czech Republic)
The New Type of Resonant Active Power Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
Petr Simonik, Petr Chlebis, Zdenek Pfof, Petr Vaculik
(VŠB - Technical University of Ostrava, Czech Republic)
Modern Wiring System as Building Management System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
Branislav Bátora, Petr Toman, Jan Macháček (Brno University of Technology, Czech Republic)
Vývoj ionizačního zapalovacího zdroje pro plazmový generátor . . . . . . . . . . . . . . . . . . . . . . . . . . 795
Development of Ionization Source for Plasma Generator
Pavel Kloversa, Jaroslav Fait (University of West Bohemia in Pilsen, Czech Republic)
Control of Lighting Systems Using Compact Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797
Jan Škoda, Petr Baxant (Brno University of Technology, Czech Republic)
Comparison of Efficiency of Luminaire by the Shape of the Luminous Intensity Curve . . . . . . . . . . . . 799
Jan Škoda, Petr Baxant (Brno University of Technology, Czech Republic)
Comparison of Lighting Regulators in Terms of Energy Savings and Operational Parameters . . . . . . . 803
Tomáš Pavelka, Petr Baxant (Brno University of Technology, Czech Republic)
Marketing Study of the Electric Vehicles’ Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807
Eva Chlebišová, Jana Kyzeková, Hana Svobodová (VŠB - Technical University of Ostrava, Czech Republic)
Optimalizace měření příkonu tepelného zařízení s pulzním řízením . . . . . . . . . . . . . . . . . . . . . . . 813
Optimization of pulse controlled heat load input power measurement
Vladimír Král, Zdeněk Hradílek (VŠB - Technical University of Ostrava, Czech Republic)
Asynchronous Motor Working as Generator with VSI using Flux Field Oriented Control . . . . . . . . . . 817
Petr Palacký, Martin Sobek, Petr Hudeček, David Slivka, Václav Sládeček
(VŠB - Technical University of Ostrava, Czech Republic)
xvi
EPE 2010, BRNO, CZECH REPUBLIC
Electric Car with Induction Motor Supplied by Voltage Inverter . . . . . . . . . . . . . . . . . . . . . . . . . 823
Ivo Neborak, Petr Skotnica (VŠB - Technical University of Ostrava, Czech Republic)
Využití zapojení snižujícího měniče napětí v obvodu střídavého napájení . . . . . . . . . . . . . . . . . . . . 827
Use of the Buck Converter in AC Circuits
Michal Brejcha (Czech Technical University in Prague, Czech Republic)
Úspory energie v osvětlování při hodnocení energetické náročnosti budov . . . . . . . . . . . . . . . . . . . 833
Energy Savings in Lighting When Assessing the Energy Performance of Buildings
Karel Sokanský, Tomáš Novák, Jaroslav Šnobl (VŠB - Technical University of Ostrava, Czech Republic)
Innovative Research of Modern Types Magnetic Lens and Chambers of Electron
Microscopes - Magnetic Properties of Lens Steel and Simulation of Layout Magnetic Field . . . . . . . . . 837
Martin Marek, Regina Holčáková, Aleš Folvarčný, Petr Urbánek, Ladislav Jelen
(VŠB - Technical University of Ostrava, Czech Republic)
Vector Pulse - Width Modulation for Voltage Source Inverter Using Artificial Neural Network . . . . . . . 843
Pavel Brandštetter, Martin Kuchař, Petr Šimoník (VŠB - Technical University of Ostrava, Czech Republic)
Vyšetřování magnetických polí v okolí jízdní kolejnice stejnosměrné vozby . . . . . . . . . . . . . . . . . . . 847
Magnetic Fields in the Vicinity of Rail DC Electric Railways
Tomáš Kotrle, Petr Kačor, Josef Paleček (VŠB - Technical University of Ostrava, Czech Republic)
Vyšetřování magnetického pole v okolí jízdní kolejnice jednofázové vozby . . . . . . . . . . . . . . . . . . . 853
Magnetic Fields in the Vicinity of Rail AC Electric Railways
Marcela Machová, Martin Marek, Václav Kolář (VŠB - Technical University of Ostrava, Czech Republic)
Public Lighting Part Measurement for Night Sky Glare increasing Before
and After Switching Off Big Area (Liberec District in the Czech Republic) . . . . . . . . . . . . . . . . . . 857
Tomáš Novák, Karel Sokanský, František Dostál (VŠB - Technical University of Ostrava, Czech Republic)
EPE 2010, BRNO, CZECH REPUBLIC
xvii
ELECTRIC POWER ENGINEERING 2010
The Impact of FACTS Devices to Control the Load Flow
Stanislav Kušnír 1), ďubomír BeĖa 2), Michal Kolcun 3)
FEI TU of Košice, Department of Electric Power System, Mäsiarska 74, 041 20 Košice,
http://web.tuke.sk/fei-kee/kee-s.html
1)
tel: +421 55 602 3566, email: [email protected] ,
2)
tel: +421 55 602 3561, email: [email protected] ,
3)
tel: +421 55 602 3550, email: [email protected]
ABSTRACT
Opening of the electricity market brought number of
problems that force transmission system operators to use
new equipments. These devices allow us to divide load flow
among distribution lines. The article deals with a brief
summary of knowledge of the load flows regulation in the
electric power system. Based on the results of calculations
on a model network, special equipments used to regulate
power flows were analyzed.
Keywords: Power flow, FACTS devices, Unified Power
Flow Controller
1 INTRODUCTION
The problem of regulation of load flow the power system
is currently becoming more and more discuss among professionals. Opening of an electricity market brought a much of
advantages, but on the other hand, also much of drawbacks.
Since commercially negotiated power flows are significantly
different from the actual flows of trade laws and do not exceed the laws of physics, the question arises how to bring
near these laws. As a result, of electricity trading has been
increasing interstate transfers, often because of what some of
the lines to the state, which are surcharge, while others are
not fully utilized.
With reference to the market liberalization in the power
industry, the actual tendencies of the electric power systems
operation have the following character:
ƒ Increasing capacities of the electric energy international exchanges in term of exportation from the
sources, as well as in term of powers transit,
ƒ increasing operating exploitation of the transmission
elements, mainly international lines of interconnected electric power systems. This advanced form
of the using of elements causes less reserves in case
of the line surcharge. In background, the international lines were used mainly to increase the operation electric power system dependability in given
area. Nowadays is overrides big business using, at
what networks and their interconnections were not
conceptually constructed,
ƒ increasing differences between physical and business electric energy flows with the negative consequence to loss. These differences are still more
expanding in last years,
ƒ
ƒ
ƒ
it exists relatively big unstableness and time changes
of the transmission size. These processes are not
possible to well predict,
the networks operation is often adapted (by nonstandard solutions too) to the business events,
on these conditions, in any cases during the operation are beginning to detect networks bottlenecks,
which can be limiting factor for the desired business
changes. Sequentially, these situations can to cause
the risk of the fail and breaking of the electric energy supply in areas.
The classic solution of the networks development (networks bottlenecks elimination), relative with the reinforcing
and building of the new lines, is no wear as sufficient and
quick in continuity with the problems to obtain of the new
corridors and in connection with environmental problems.
Therefore, often sought the ways, which could to enable at
least regionally affect the negative functioning of therein
before present processes for the transmission networks operation.
One of the decision distributive companies into the future
is production of renewable for each household. Such production may result in rotation of direction load flow. Actual
situation is possible to change and load flow will not from the
transmission system to distribution, but on the contrary.
To arrive to effective operation of lines and prevent congestion interstate lines we can use devices designed to power
flows control. One of the practically usable devices, which
can be used to electric power system control in interconnected power systems are flexible alternating current transmission system (FACTS).
2 FACTS
Flexible electric transmission systems belong to progressive technologies in electro-energetic. FACTS devices are
used to optimize already the existing transmission lines.
These devices have been developed by Electrical Power
Research Institute (EPRI) in the 80s.
EPE 2010, BRNO, CZECH REPUBLIC
99
FACTS device are:
ƒ Serial Controllers: Static Synchronous Series Compensator SSSC, Interline Power Flow Controller
IPFC, Thyristor Controlled Capacitor TCSC, Thyristor Switched Series Capacitor TSSC, Thyristor
Controlled Series Reactor TCSR, Thyristor Switched Series Reactor TSSR
ƒ Parallel Controllers: Static Synchronous Compensator STATCOM, Static Synchronous Generator SSG,
Static Var Compensator SVC, Thyristor Controlled
Reactor TCR, Thyristor Switched Reactor TSR,
Thyristor Switched Capacitor TSC, Thyristor Controlled Braking Resistor TCBR
ƒ Serial - serial controllers
ƒ Series - parallel controllers: Unified Power Flow
Controller UPFC, Unified Controller Phase Shifting
Transformer TCPST, Interphase Power Controller
IPC
This paper is aimed at Unified Power Flow Controller
UPFC.
2.1 Construction of UPFC
Unified Power Flow Controller (UPFC) is used to control
the power flow in the transmission systems by controlling of
the impedance, voltage magnitude and phase angle. This
controller offers advantages in terms of static and dynamic
operation of the power system.
Figure 1 shows the schematic diagram of the three phases
UPFC connected to the transmission line. The UPFC consists
of two voltage source converters; series and shunt converter,
which are connected to each other with a common DC link.
Series converter (Converter 2) or Static Synchronous Series
Compensator (SSSC) is used to add controlled voltage magnitude and phase angle in series with the line, while shunt
converter (Converter 1) or Static Synchronous Compensator
(STATCOM) is used to provide reactive power to the AC
system, beside that, it will provide the DC power required for
both inverter. Each of the branches consists of a transformer
and power electronic converter. These two voltage source
converters shared a common DC capacitor. The reactive
power in the shunt or series converter can be chosen independently, giving greater flexibility to the power flow control.
The coupling transformer is used to connect the device to the
system [2].
Fig. 2 Phasor diagram of voltage and current
The equation for the active and reactive power is given as
follow:
V1 .V2
P12
. sin G (W; V, V, -, :)
(1)
X 12
Q12
V1 .V2
.cos G 1 (var; V, V, -,:)
X 12
(2)
Control of power flow is achieved by adding the series
voltage, VS with certain amplitude, VS and phase shift, ) to
V1. This will give a new line voltage V2 with different magnitude and phase shift. As the angle ) varies, the phase shift į
between V2 and V3 also varies. [4]
2.2 Newton–Raphson Method
Simulation performed by using of the Extended NewtonRaphson method should be used in:
x Symmetrical transmission networks
x Area/Zone control
x FACTS elements/HVDC
x Switched shunts
x Remote controls and special controls
x Direct current networks
The Extended Newton-Raphson method is basically the
same as the normal Newton-Raphson method.
In large-scale power flow studies the Newton–Raphson
method has proved most successful owing to its strong convergence characteristics (Peterson and Scott Meyer, 1971;
Tinney and Hart, 1967). The Newton-Raphson method
proceeds from the error equation for the network node i.
'S i
Pi j.Qi U i .¦ Yik .U k (VA; W, var, V, S,V)
n
(3)
k 1
Fig. 1 Schematic diagram UPFC connected to a transmission
line
The complex voltages Uk have to be find such the error
'Si becomes zero. Pi and Qi are the predefined active and
reactive power. Yik is an element of the Y-matrix of the i-th
row and k-th column.
The solution of error equation consists of three steps:
ƒ Calculation of the power mismatch with the help of
the voltages of every node.
ƒ Calculation of the voltage variations for every node
with the Jacobian.matrix J.
ƒ Calculation of the node voltages.
H
¦ 'S
n
i 1
100
EPE 2010, BRNO, CZECH REPUBLIC
i
(4)
3 SIMULATION MODEL
Standard 14 bus test network is tested with and without
UPFC inserted into two areas (13,8 kV and 69 kV) to analyze
parameters (power flows and voltages) in this network.
The power control in UPFC_1 causes the change of the
nodal voltages in the network; see Tab. 2 and Tab. 3.
Tab. 2 Voltage and power values without UPFC
Tab. 3 P=5MW, Q=8.09Mvar set on UPFC_1
Fig. 3 14 nodes network
3.1 UPFC_1 in Area 13.8kV
Tab. 1 shows the power flows on the lines of tested network for various values of active power flow, setting in
UPFC_1. The reactive power flow of UPFC_1 is setting as
constant. The UPFC_1 inserted into area 13,8 kV affects on
the power flows mainly in this area. The change of power
flows in area 69 kV is small.
The values of the nodal voltages are in the range of limit
up to setting of active power 30 MW in UPFC_1. The overrunning of the P = 30 MW and Q= 8,09 Mvar causes decreasing of the nodal voltage under the allowed value in BUS_11.
Tab. 1 Power Flows
EPE 2010, BRNO, CZECH REPUBLIC
101
Tab. 4 P=30MW, Q=8.09Mvar set on UPFC_1
The increasing of the reactive power on the 10 Mvar in
UPFC_1 ensures allowed value of the nodal voltage of
BUS_11.
Tab. 6 P=140MW, Q=0.83Mvar set on UPFC_2
The increasing of the reactive power on the Q= -10 Mvar
in UPFC_2 ensures allowed value of the nodal voltage of
BUS_2 and BUS_6.
Tab. 7 P=140MW, Q=-10Mvar set on UPFC_2
Tab. 5 P=30MW, Q=10Mvar set on UPFC_1
The change of the power flow on the UPFC_1 causes the
increasing of the active power losses in the network, see
Fig. 4.
The change of the power flow on the UPFC_2 causes the
increasing of the active power losses in the network, see
Fig. 5
Fig. 5 Losses according to P set to UPFC_2
Fig. 4 Losses according to P set to UPFC_1
3.2 UPFC_2 in Area 69kV
The reactive power flow of UPFC_2 is setting as constant. The UPFC_2 inserted into area 69 kV affects on the
power flows mainly in this area. The change of power flows
in area 13,8 kV is small. The power control in UPFC_2 causes the change of the nodal voltages in the network; see Tab. 6
and Tab. 7.
102
EPE 2010, BRNO, CZECH REPUBLIC
4 CONCLUSION
UPFC belongs to the most integrated devices of the
FACTS devices group. It is possible to use these devices for
the independed active and reactive power flows controlling.
Its utilization in the electric power system control corresponds to their technical and economic demand. Currently, the
investment cost not allows the mass installation of UPFC to
the electric power system.
The market of FACTS equipments for load-flow control
is expected to develop faster in the future, as a result of the
liberalization and deregulation in the power industry. The
main benefits of the FACTS devices are: increasing of the
transmission capacity of the current lines, active and reactive
power flow controlling, increasing of the limits of static and
dynamic stability and voltage quality. Because of the compactness and modularity of the FACTS, these devices allow
simply expansion according to the demands.
ACKNOWLEDGEMENTS
This work was supported by Scientific Grant Agency of
the Ministry of Education of Slovak Republic and the Slovak
Academy of Sciences under the contract No. 1/0166/10 and
by Slovak Research and Development Agency under the
contract No. APVV-0385-07 and No. SK-BG-0010-08.
REFERENCES
[1] Ptáþek, J.: Regulace výkonĤ v propojených
elektrizaþních soustavách. [Dizertaþná práca]. Brno :
FEKT VUT v Brne. 201 s. 2004.
[2] Nashiren.F. Mailah, Senan M. Bashi: Single Phase
Unified Power Flow Controller (UPFC): Simulation
and Construction. European Journal of Scientific Research. [online]. ISSN 1450-216X. Vol.30 No.4 (2009),
pp.677-684. [Cited on March 15, 2010]. Access:
[3] Rusnák, J.: Použitie nových prostriedkov v riadení
prevádzky elektrizaþnej sústavy. In: Elektroenergetika
2003 – zborník prednášok II. Medzinárodného vedeckého sympózia, VydavateĐstvo: Smékal Publishing,
2003, ISBN 80-89061-80-X
[4] Single Phase Unified Power Flow Controller (UPFC):
Simulation and Construction. [online]. Available on the
Internet:
<
http://www.eurojournals.com/ejsr_30_4_15.pdf>
[5] Hingorani, G. N., Gyugyi, L.: Understanding FACTS.
Concepts and Technology of Flexible AC Transmission
Systems. New York : IEEE Press, 2000. 432 s. ISBN 07803-3455-8.
[6] Power control by FACTS. [online]. Available on the
Internet:
http://pnal.ee.ccu.edu.tw/Research/PPT/Power%20Flow
%20Control%20By%20FACTS.pdf
[7] Kolcun, Michal: Trans European interconnected systems. In: Technical and economic aspect of modern
technology transfer in context of integration with European union. Košice: Mercury-Smékal Publishing
House, 2004. pp. 11-18. ISBN 80-89061-99-0.
EPE 2010, BRNO, CZECH REPUBLIC
103

Podobné dokumenty

Experiences with examination of dispersed sources impact on

Experiences with examination of dispersed sources impact on Part C - Transmission and distribution grids, Faults and protection of power networks Breaker Control Scheme for Rebuilding Networks containing Distributed Generation following System Disturbances ...

Více

Conference Program Book

Conference Program Book Wenting Shang, Miles A Redfern, R O’Gorman (University of Bath, United Kingdom) L085 Case Study of Cyprus: Wind Energy or Solar Power? Davut Solyali, Miles A. Redfern (University of Bath, United Ki...

Více

Zaměření výzkumu a vývoje, přístrojové vybavení

Zaměření výzkumu a vývoje, přístrojové vybavení Balík softwaru pro elektromagnetické výpočty ANSYS EM slouží pro simulaci elektrotechnických zařízení. Balík se skládá z programu Ansys Maxwell a Ansys Simplorer. Program Ansys Maxwell slouží k sim...

Více

POSTER I

POSTER I Wind Power Supply Stability Analysis Karel Máslo, Martin Pistora Modelování možnosti separátního provozu větrné turbíny Václav Kolář, Roman Hrbáč Filtrace harmonických v trakčních transformovnách Z...

Více

MICROSTATION

MICROSTATION Help - nápověda (hypertextová, hierarchicky členěná) Info (Ctrl+I) - informace o prvku Interface - rozhraní Join Elements - spoj prvků Joints (Multi-line) - napojení, spoje (multičar) Justification...

Více