Room acoustical quality

Transkript

Room acoustical quality
Czech Technical University in Prague
Faculty of Civil Engineering
Department of Microenvironmental and Building Services Engineering
125 YMCB
MICROENVIRONMENT and Architecture
6th Lecture
Light and sound
prof. Ing. Karel Kabele, CSc.
A227b
[email protected]
Visual Comfort
125 YMCB 2012/2013
125 YMCB
prof. Karel Kabele
2
1
Light
• electromagnetic radiation that is visible to the
human eye
125 YMCB 2012/2013
prof. Karel Kabele
http://en.wikipedia.org/wiki/Light
3
The human eye
125 YMCB 2012/2013
125 YMCB
prof. Karel Kabele
4
2
The Human Eye
The function of the eye is to translate the light into patterns of
nerve impulses that are transmitted to the brain.
The actual process of seeing is performed by the brain (visual
cortex) rather than the eye.
125 YMCB 2012/2013
prof. Karel Kabele
5
Human Eye - Retina
• Photoreceptors
– rods
– cones
125 YMCB 2012/2013
125 YMCB
prof. Karel Kabele
http://en.wikipedia.org
6
3
Scotopic and Fotopic Vision
Scotopic vision
125 YMCB 2012/2013
• Vision scotopiq
Fotopic vision
prof. Karel Kabele
http://en.wikipedia.org/wiki/Luminosity_function
7
Adaptation
• operates via the contraction of the iris
(muscle), which allows to see well in different
lighting conditions: 0,25 – 100 000 lx
• In rapidly changing lighting conditions
temporarily we can not see or can see poorly
– To light – several seconds
– To dark – up to several minutes
125 YMCB 2012/2013
125 YMCB
prof. Karel Kabele
11
4
Accomodation
The eye focuses on a given object by changing the shape of the eye
lens through accommodation.
Healthy human eye: change power of 12-15 diopters
accommodation from "infinity" to a distance of 7 cm.
http://simple.wikipedia.org/wiki/Accommodation_(eye)
125 YMCB 2012/2013
prof. Karel Kabele
12
Accomodation Depending on Age
range of accommodation
in diopters
the minimum
distance
for sharp vision in cm.
125 YMCB 2012/2013
125 YMCB
prof. Karel Kabele
13
5
Vision Disorders
• myopia
• hypermetropia
125 YMCB 2012/2013
prof. Karel Kabele
14
Vision Disorders
Normal Vision
125 YMCB
prof. Karel Kabele
Macular Degeneration
Glaucoma
15
From National Eye Institute, USA
Diabetic Retinopathy
125 YMCB 2012/2013
Cataract
6
Vision Disorders
• Colourblidness (daltonism)
= disturbance of color vision. Colorblindness has several types depending on
what color a person does not perceive. Color blindness rarely occurs in all
colors (black and white vision).
http://cs.wikipedia.org/wiki
Sample test of
color
blindness.
125 YMCB 2012/2013
prof. Karel Kabele
16
What do we see?
The resulting image = image on the retina +
brain image adjustments based on past
experience
 We see what we "want to" see.
125 YMCB 2012/2013
125 YMCB
prof. Karel Kabele
17
7
125 YMCB 2012/2013
prof. Karel Kabele
http://michaelbach.de/ot/index.html
18
Quantitative Characteristics of
Lighting
125 YMCB 2012/2013
125 YMCB
prof. Karel Kabele
19
8
Measures and units of light
http://new-learn.info/learn/packages/mulcom/
125 YMCB 2012/2013
prof. Karel Kabele
21
Measures and units of light
http://cs.wikipedia.org/wiki/Steradian
http://new-learn.info/learn/packages/mulcom/
125 YMCB 2012/2013
125 YMCB
prof. Karel Kabele
22
9
Luminous Flux
Symbol: F
Unit:
lm
SOX 70 W – 6000 lm
100 W GLS – 1400 lm
http://new-learn.info/learn/packages/mulcom/
125 YMCB 2012/2013
prof. Karel Kabele
Luminous Intensity
23
Candle - 1 cd
Symbol: I
Unit:
cd
100 W GLS – 110 cd
Sun 3 x 1027 cd
Fitting and its corresponding luminous intensity distribution
125 YMCB 2012/2013
125 YMCB
prof. Karel Kabele
http://new-learn.info/learn/packages/mulcom/
24
10
Illuminance
Symbol: E
Unit:
lx =lm/m²
Sunlight 100 000lx
Office 500lx
Corridor 100lx
Dusk 50lx
Moon 0.5lx
125 YMCB 2012/2013
http://new-learn.info/learn/packages/mulcom/
Luminance
prof. Karel Kabele
25
VDU - 100
Candle – 8,000
Symbol: L
Unit:
cd/m2
Fluorescent 10,000
Sun 1,6 x 109
125 YMCB 2012/2013
125 YMCB
prof. Karel Kabele
http://new-learn.info/learn/packages/mulcom/
26
11
Percieved brightness
There is no linear relationship between the luminance
and the perceived brightness.
How we perceive the brightness of an object depends
on the luminance of the object and the state of the
adaptation of the eyes.
•
http://new-learn.info/learn/packages/mulcom/comfort/visual/vision/box1.html
125 YMCB 2012/2013
prof. Karel Kabele
27
Percieved Brightness
125 YMCB 2012/2013
125 YMCB
prof. Karel Kabele
28
12
Percieved Brightness
125 YMCB 2012/2013
prof. Karel Kabele
29
Qualitative Characteristics of
Lighting
125 YMCB 2012/2013
125 YMCB
prof. Karel Kabele
30
13
125 YMCB
125 YMCB 2012/2013
prof. Karel Kabele
31
125 YMCB 2012/2013
prof. Karel Kabele
32
14
125 YMCB
125 YMCB 2012/2013
prof. Karel Kabele
33
125 YMCB 2012/2013
prof. Karel Kabele
34
15
125 YMCB
125 YMCB 2012/2013
prof. Karel Kabele
35
125 YMCB 2012/2013
prof. Karel Kabele
36
16
Quality of Light
125 YMCB 2012/2013
prof. Karel Kabele
http://new-learn.info/learn/packages/mulcom/
37
Modelling Ability
• ability to recognize 3-dimensional
objects
• background of similar brightness
• Too diffuse light
• Too direct light
• Sport arenas,
• public places
• distinguishing faces
125 YMCB 2012/2013
http://new-learn.info/learn/packages/mulcom/
125 YMCB
prof. Karel Kabele
38
17
Directionality
Diffusely and directly lit wall
125 YMCB 2012/2013
http://new-learn.info/learn/packages/mulcom/
prof. Karel Kabele
39
Directionality
Direct, indirect, and direct-indirect luminaires
125 YMCB 2012/2013
125 YMCB
prof. Karel Kabele
http://new-learn.info/learn/packages/mulcom/
40
18
Colour temperature
http://new-learn.info/learn/packages/mulcom/
125 YMCB
125 YMCB 2012/2013
prof. Karel Kabele
41
125 YMCB 2012/2013
prof. Karel Kabele
http://new-learn.info/learn/packages/mulcom/
42
19
Light Sources
and Colour
Temperature
125 YMCB 2012/2013
prof. Karel Kabele
http://new-learn.info/learn/packages/mulcom/
43
Colour Rendering
http://new-learn.info/learn/packages/mulcom/
125 YMCB 2012/2013
125 YMCB
prof. Karel Kabele
44
20
Colour Rendering
http://new-learn.info/learn/packages/mulcom/
125 YMCB 2012/2013
prof. Karel Kabele
45
Colour Rendering
http://new-learn.info/learn/packages/mulcom/
125 YMCB 2012/2013
125 YMCB
prof. Karel Kabele
46
21
Contrast
•
Narrow beam angles create high contrasts in
the visual environment. If the ceiling and walls
are not lit at all, a cavern effect can be created
which will create an unpleasant feeling.
•
Broader distributions of the fittings will create a
visually interesting scalloping pattern on the
walls while still casting shadows which result in
a good contrast
•
Very diffuse light creates uniformly lit surfaces.
Since no shadows are cast, it can be difficult to
recognise objects.
http://new-learn.info/learn/packages/mulcom/
125 YMCB 2012/2013
prof. Karel Kabele
49
Simple contrast:
Contrast
Weber contrast:
Michelson contrast:
[source : Lechner (2001) Heating, Cooling, Lighting, fig. 12.8d, p. 341 + http://www.liden.cc/Visionary/Vision.frame.c.html]
125 YMCB 2012/2013
125 YMCB
prof. Karel Kabele
50
22
Glare
• Too large differencies
in contrast
• Light source is close
to the task area
• Windows
• impairs the visibility of objects
disability
glare
• creates unpleasentness
discomfort glare
125 YMCB 2012/2013
prof. Karel Kabele
http://new-learn.info/learn/packages/mulcom/
51
Glare and reflections
VDT reflection
Discomfort Glare
Veiling reflection
Disability Glare
[source : Guy Newsham, National Research Council of Canada, IRC, Cope]
125 YMCB 2012/2013
125 YMCB
prof. Karel Kabele
52
23
Glare - assessment
• UGR (unified glare rating) – glare index
Lz – luminance of light source of glare
Ώ – solid angle of the light source seen from the observer
Lp – average background illuminance (addaptation illuminance)
n - number of sources of glare
P – coefficient characterizing the effect of the position of glare source
125 YMCB 2012/2013
prof. Karel Kabele
54
Glare
Measures that avoid discomfort glare
Dark surfaces and heavy furnishing reduce daylight, especially at the back of
the room. In deep room, select light colours and cautious plan of furnishing.
[source: Jens Christoffersen, Sbi, Denmark]
125 YMCB 2012/2013
125 YMCB
prof. Karel Kabele
56
24
Glare
Interior finishes with light colours
EN-12464 (2002):
reflectances:
ceiling 0,6-0,9
walls 0,3-0,8
working planes 0,2-0,6
floor 0,1-0,5
[source: Public Works and Government Services, 2002, Daylight Guide for Canadian Commercial Buildings, Brown & Dekay, 2001,
Sun Wind Light, Standard, 2002 EN 12464-1]
125 YMCB 2012/2013
prof. Karel Kabele
57
Glare
Recommended values for interior surface reflectance:
Ceiling > 0,7 Walls > 0,5 - 0,7 Floor > 0,2 - 0,4
[source: Jens Christoffersen, Sbi, Denmark]
125 YMCB 2012/2013
125 YMCB
prof. Karel Kabele
58
25
Glare
• Direct glare
• Glare from a luminous object located in the same
direction as the object which is looked at, or in a
neighbouring direction.
• Reflected or indirect glare
• Glare caused by a luminous object not located in the
direction of the object which is looked at.
prof.
Karel
125
YMCB 2012/2013
Kabel
e
Direct and reflected glare
prof. Karel Kabele
59
Glare
Direct glare
Reflected or
indirect glare
[source: Steven Holl]
125 YMCB 2012/2013
125 YMCB
prof. Karel Kabele
60
26
Criteria for good lighting
– Adequate illuminance level in the room and
task
– Luminance distribution within field of view
(e.g. contrast, luminance ratio between
horizontal and vertical surfaces ….)
– ‘Preventing’ glare
– Light distribution in the room and task (e.g.
direct/diffuse, daylight/artificial light)
– Colour properties of the light
[source : Jens Christoffersen, Sbi, Denmark]
125 YMCB 2012/2013
prof. Karel Kabele
61
Lighting Requirements
EN 15251, EN 12464-1.
Specify requirements for illuminance, glare and color rendering.
125 YMCB 2012/2013
125 YMCB
prof. Karel Kabele
62
27
Acoustic Comfort
125 YMCB 2012/2013
prof. Karel Kabele
73
Is environmental component made ​up of
acoustic flows in the atmosphere, that act
on body and so help to create its overall
condition. (prof. M.Jokl)
74
125 YMCB
28
ACOUSTIC FLOW
is created by oscillation of air molecules or other liquid by a
sound source, giving rise to acoustic waves of different lengths
or frequency

c
m
f
λ- wavelength[m]
c – sound velocity [m.s-1]
in air 15°C = 340 m.s-1
in water 25 °C = 1500 m.s-1
in seawater 13°C =1500 m.s-1
in ice -4°C = 3250 m.s-1
in steel při 20 °C = 5000m.s-1
f – frequency [s-1] [Hz]
75
SOUND =
is a mechanical wave that is an oscillation
of pressure transmitted through a solid,
liquid, or gas, composed of frequencies
within the range of hearing
THE SOUND is every ACOUSTIC
FLOW.
76
125 YMCB
29
SOUNDS
TONES = music sounds
regular (periodic)
oscillation
NOISE = non-musical
sounds - irregular
(aperiodic) oscillations
flute
Sound „s“
Sound „o“
77
THE EFFECT OF SOUND ON THE HUMAN
Sound is received by the ear,
that consists of three parts
1. OUTER EAR (auricle, the
ear canal, tympanic
membrane)
2. MIDDLE EAR (the malleus
(hammer), incus (anvil), and
stapes (stirrup), oval window)
3. INNER EAR (cochlea, basilar
membrane, thousands of hair
cells, nerve impulses to the
brain, interpretation of
sounds)
http://en.wikipedia.org/wiki/Ear
125 YMCB
78
Zdroj : http://www.audified.com
30
SOUND
Basic Properties
PHYSICAL INTENSITY
FREQUENCY
COURSE OF VIBRATION
physical quantity
SOUND
PRESSURE
LEVEL[dB]
physical quantity
FREQUENCY
[s-1,Hz]
physiological
value
VOLUME
physiological
value
THE TONE PITCH
physical quantity
COURSE OF
VIBRATION
physiological value
THE COLOR OF
SOUND
79
THE EFFECT OF SOUND ON THE HUMAN
???
FREQUENCY OF SOUND WAVES
5 Hz
100 kHz
12 Hz
175 kHz
5 000
http://www.zubrno.cz/studie/kap06.htm
v tomto rozmezí je lidské ucho nejcitlivější
125 YMCB
80
31
THE EFFECT OF SOUND ON THE HUMAN
STRENGTH OF SOUND WAVE
perceives intensity of sound waves on the
basis of SOUND PRESSURE, which creates
sound
http://tattoo-a-pierc.blog.cz/
HEARING
sound pressure from 20
µPa do 100 000 000 µPa
𝒑𝟎 = 20 µPa = 0dB
THRESHOLD OF HEARING
logarithm of these values
so-called
SOUND PRESSURE LEVEL
[dB]
𝑳𝒑 = 𝟐𝟎 𝒍𝒐𝒈
𝒑
𝒑𝟎
THRESHOLD OF PAIN = 100 Pa =130 dB
81
SOUND
PRESSURE
LEVEL
> 35 dB – negative
impact on the psyche
> 65 db – autonomic
nervous system
> 85 db – danger to
the auditory system
> 120 db – may
permanently damage
the cells and tissues
Sound at 155 decibels can burn the skin.
Sound at 180 decibels can kill
83
http://www.audified.com/projekt
mu/page58/page69/page69.html
125 YMCB
32
NOISE
SOUND
BASED ON THE EFFECTS ON
HUMANS!
(person x sound x situation)
PLEASANT
UNPLEASANT
ACOUSTIC
ACOUSTIC
MICROCLIMATE
MICROCLIMATE
84
NOISE
= unwanted sound (regardless of volume)
which adversely affects human well-being
- INTERRUPT, ANNOY, THREATEN THE HEALTH
in general
Noise is each sound / sounds
that are harmful to the human body.
85
125 YMCB
33
SOURCES OF NOISE IN A BUILDING
•
•
•
•
•
•
From outside:
traffic
meteorological events
industry
agriculture
Ventilation and cooling
systems on walls and
roofs
show-business (cultural
and social facilities,
sporting equipment)
Zdroj: http://skrt.kam.vutbr.cz/?p=klid
86
SOURCES OF NOISE IN A BUILDING
From inside:
• building services
• normal activity of persons in dwelling
• noise from neighbors
http://www.youtube.com/watch?v=hvQfkEXl5_Q&feature=related
Respect your neighborough !!!
125 YMCB
87
34
BIGGEST SOURCE OF NOISE
in the CR is ROAD TRANSPORT (over 95%)
Noise mapping showed noise annoyance of almost
300 000 inhabitants of the Czech Republic.
(not mapped the entire country!)
In Prague - 36 schools and 14 health facilities are exposed
to noise levels that exceed the maximum limits for all-day
nuisance (70 dB).
88
Velká Británie – zpěvný pták červenka ustoupil konkurenci hluku
velkoměsta !!!
Noise map – Prague Airport
http://hlukovemapy.mzcr.cz/
125 YMCB
89
35
Noise map – Prague Airport
• Prague airport annoys by noise
( ˃ Ld =60 dB a Ln = 50 dB)
1600 inhabitants all day
1900 inhabitants in the night
• Airport troubles mostly inhabitants of
Horoměřice (1452 inhabitants)
Jeneč (325 inhabitants)
Kněževes (66 inhabitants)
r. 2008
90
NIGHT
Noise map
Praha
Barrandov
http://hlukovemapy.mzcr.cz/
DAY
91
125 YMCB
36
Noise Map Praha Barrandov
• From the 22 656 residents living near the street K
Barrandovu is 51.44% permanently (day and night!) hit
by unsafe levels of traffic noise
• In the area of ​risk there are primary and nursery
schools
ZŠ Slivenec – day 78,5 dB a night 74 dB
MŠ Kurandova na sídlišti Barrandov - day 74,1dB
r.200492
THE EFFECT OF SOUND ON THE HUMAN
The
alarm
signal
http://www.guardian.co.uk/football/2009/dec
/22/vuvuzela-ownership-row
Hearing =
a warning system
http://health.howstuffworks.com/human
-body/systems/nervous-system/brainpictures.htm
heart rhythm
increase
respiratory rhythm
increase
blood pressure
increase
Increase of
levels of stress
hormones
125 YMCB
STRESS
RESPONSE OF
THE ORGANISM
Increase of
brain activity
THREAT
93
37
Room acoustical quality
-> reverberation time
The time necessary, after switching off
the source, for the sound pressure level
to drop 60 dB.
94
Room acoustical quality
-> reverberation time
Sound absorbing
space
Sound reflecting
space
Short reverberation
time
Long reverberation
time
95
125 YMCB
38
Room acoustical quality
-> reverberation time: target values
Type of room
Reverberation time
Furnished room
Office space
Landscape office
Classroom
Music room
Theatre
Chamber music hall
Opera
Concerthall
Church (organ music)
T = ca. 0,5 s
T = 0,5 – 0,7 s
T = 0,7 – 0,9 s
T = 0,6 – 0,8 s
T = 0,8 – 1,2 s
T = 0,9 – 1,3 s
T = 1,2 – 1,5 s
T = 1,2 – 1,6 s
T = 1,7 – 2,3 s
T = 1,5 – 2,5 s
96
Room acoustical quality
-> reverberation time in seconds
Room volume in m3
T= 1/6 x (V/A)
Total absorption in the room
in m2
The larger the room, the longer the reverberation time!
The more absorbing materials present in the room, the shorter
the reverberation time!
97
125 YMCB
39
Room acoustical quality
-> total absorption in m2
Surface area in m2 of the material
A = α1 x S1 + α2 x S2 + α3 x S3 + …
Absorption coefficient of the material 0 < α < 1
totally reflecting
totally absorbing
An open window has an absorption coefficient α equal to 1 (all of the sound will
disappear outside through the open window). If the surface area of the open
window equals 1 m2, then the total absorption of this window is equal to
A = 1 x 1 = 1 m2
98
Room acoustical quality
-> sound absorbing materials
= acoustically ‘soft + open’ materials or perforated materials with
an acoustically ‘soft + open’ material behind the perforations
99
125 YMCB
40
Room acoustical quality
-> sound absorbing materials
= acoustically ‘soft + open’ materials or perforated materials with
an acoustically ‘soft + open’ material behind the perforations
[Source: Schallschutz +
Raumakustik in der Praxis –
Planungsbeispiele und konstruktive
Lösungen, W. Fasold / E. Veres,
Verlag für Bauwesen – Berlin, 1998]
100
Room acoustical quality
-> calculation of reverberation time
3.0m
3.0m
3.0m
Surface
S [m2]
0<α<1
α x S [m2]
Ceiling
Floor
Window
Door
Walls
9
9
1
2
33
0,79
0,04
0,03
0,08
0,02
7,11
0,36
0,03
0,16
0,66
Total
A [m2]
8,32
A = a1 x S1 + a2 x S2 + a3 x S3+…. [m2]
T= 1/6 x (V/A) = 0,167 x (27/8,32) = 0,54 s
101
125 YMCB
41
Room acoustical quality
-> problem:
classroom 15 x 8 x 3 m3, door 2 m2, window 12 m2
target value reverberation time T = 0,7 seconds
Surface
0<α<1
Floor
Window
Door
Walls
0,04
0,03
0,08
0,02
[Source: Schallschutz +
Raumakustik in der Praxis –
Planungsbeispiele und konstruktive
Lösungen, W. Fasold / E. Veres,
Verlag für Bauwesen – Berlin, 1998]
Which absorption coefficient is necessary for the ceiling to achieve
a reverberation time equal to 0,7 seconds?
102
Room acoustical quality
-> solution: T= 1/6 x (V/A)
A = 1/6 x (V/T)
= 0,167 x (360/0,7) = 86 m2
Surface
S [m2]
0<α<1
α x S [m2]
Ceiling
Floor
Window
Door
Walls
120
120
12
2
124
?
0,04
0,03
0,08
0,02
?
4,8
0,36
0,16
2,48
Total
A [m2]
? + 7,8
86 – 7,8 = 78,2 m2
α = A/S = 78,2/120 = 0,65
103
125 YMCB
42
Room acoustical quality
-> Regular office room with concrete core activition
target value reverberation time T < 0,8 s
Solution: Add sound absorbing materials to the upper
part of the walls
104
Room acoustical quality
-> Landscape office with concrete core activition
target value reverberation time T < 0,5 s (furnished room)
upper part of the walls = not sufficient
Alternative solutions
Ceiling islands or baffles
105
125 YMCB
43
Room acoustical quality
-> undesirable echo’s and reflections -> reflectogram!
106
Sound insulation between rooms
air-borne
sound insulation
structure-borne
sound insulation
109
125 YMCB
44
Sound insulation between rooms
-> air-borne sound insulation
Sound transmission
-1 direct
-2 flanking
-3 circulation
110
Sound insulation between rooms
-> circulation sound = sound that reaches the destination room
through an adjacent space or room, for example a plenum
Solution? Sound barriers
111
125 YMCB
45
Sound insulation between rooms
-> flanking sound = sound that reaches the destination room
through adjacent constructions
112
Sound insulation between rooms
-> sound leaks, for example with pore seam sealing, through cable
trays, duct transits, etc.
113
125 YMCB
46
Sound insulation between rooms
-> structure-borne sound insulation
• sliding chairs
• walking sounds
• falling objects
•…
Direct <<excitation>>
of the building
Lots of energy injected into
the buidling structure!
FLOOR MASS = UNSUFFICIENT
114
Sound insulation between rooms
-> improving structure-borne sound insulation
floating floors structures!
115
125 YMCB
47
Sound insulation between rooms
-> floating floors structures = very sensitive to construction details on site
- levelling ducts
- border strips
- flexibel layer
- covering foil
116
Background noise levels
-> Installation noise = background noise coming from the operation of
all the necessary technical installations in a building such as airconditioning units, elevators, sanitary installations, etc.
117
125 YMCB
48
Background noise levels
-> technical installations
Energy efficiency / Comfort
Ventilation system (incl. cooling)
Technical installations larger and larger
Project enough technical rooms
Where??
118
Background noise levels
-> building design
• Technical rooms not directly adjacent to work or living
spaces
• Installations not on the roof, noise disturbance for the
environment
• Sanitary blocks, elevators, traffic zones not
directly adjacent to work or living spaces
• Installation noise can also be useful for
preserving speech privacy in a landscape office
119
125 YMCB
49
Background noise levels
-> building design
Office or
living space
Office or Office or
living space living space
Office or Office or Office or
living space living space living space
Office or
living space
Target value background
noise
max. 30 à 35 dB(A)
[Source: Bouwakoestiek, G.
Vermeir, Uitgeverij Acco Leuven,
1999]
Target value background
noise
max. 30 à 35 dB(A)
120
Noise radiation
-> air-conditioning unit on roof top: - 3 dB with doubling of the
distance
Sound power level
Sound pressure
level
80 à 100 dB(A)
40 à 60 dB(A)
30 m
Mesures necessary!! Enclosures, silencers, …
121
125 YMCB
50
Background noise levels
-> Environmental noise = background noise coming from sound
sources outside such as traffic (cars, trains, airplanes), industry,
bars, etc.
[Source: Bouwakoestiek, G.
Vermeir, Uitgeverij Acco Leuven,
1999]
122
Background noise levels
-> High environmental noise levels
solutions through building site layout
123
125 YMCB
51
Background noise levels
-> High environmental noise levels
solutions through building design
124
Background noise levels
-> High environmental noise levels
solutions through facade design
125
125 YMCB
52
Background noise levels
-> Facade sound insulation = composed sound insulation
126
Background noise levels
-> Weak link in facade sound insulation = seam sealing
- ‘deaf’ facade = completely ‘closed’ facade -> windows cannot be
opened -> to be used with high sound pressure levels from
environmental noise
- ventilation through facade
openings not possible
127
125 YMCB
53
Background noise levels
-> Weak link in facade sound insulation = ventilation openings
- mechanical balanced ventilation system
- ventilation through sound muffled ventilation unit
sound absorbing
material
128
Standards on acoustics
•
•
•
•
•
•
•
EN 12354 Building acoustics: estimation of acoustic performance of
buildings from the performance of elements
EN ISO 14257 Acoustics: measurements and parametric description of
spatial sound distribution curves in workrooms for evaluating acoustical
performance
EN ISO 140 Acoustics. Measurement of sound insulation in buildings and
of building elements
EN ISO 10052 Acoustics: field measurement of airborne and impact
sound insulation and of service equipment noise; survey method
ISO 9921 Ergonomics. Assesment of speech comunication
EN ISO 18233 Acoustics: application of new measurement methods in
building and room acoustics
ISO 6897, ISO 2631-1, ISO 2631-2
129
125 YMCB
54
Literature
•
L. CREMER, M. HECKL, E. UNGAR, Structure-Borne Sound, Springer Verlag, 1973
•
L. CREMER, H. MÜLLER, T. SCHULTZ, Principles and Applications of Room
Acoustics, Volume 1, Volume 2, Applied Science Publishers, 1982
L.L. Beranek (ed.), Noise and vibration control, Institute of Noise Control
Engineering, 1988
W. Fasold, H. Winkler, Bau- und raumakustik, Verlag für Bauwesen, VEB, Berlin,
1987
Bluyssen Philomena M.: The Indoor Environment Handbook, How to Make Buildings
Healthy and Comfortable, Earthscan Ltd (United Kingdom), 2009, ISBN-13:
9781844077878
http://educypedia.karadimov.info/electronics/dataaudio.htm
http://www.abqenvironmentalstory.org/city/energy-pollution/s5noise.html
http://www.freewebs.com/soundwaves-/introduction.htm
•
•
•
•
•
•
130
125 YMCB
55