6.17 Dota

Transkript

6.17 Dota
Universita Karlova v Praze
(Charles University in Prague)
Department of Inorganic Chemistry
Coordination Compounds
for Medicinal Applications.
Koordinační sloučeniny pro aplikace v medicíně.
Ivan Lukeš
Coordination compounds
Metal – ligand bond
Magnetic Resonance Imaging MRI
Complexation of Radinuclides
2005
23 milions MR examinations in US (25 %)
In world near 100 milions examinations
Contrast agents are used for more than 35 % Examinations
Principles of NMR and MRI
NMR – variable frequency
– positions of peaks
Principles of MRI
The figure was adopted from U. S.
patent ‘832 of Dr. R. Damadian
on 3D MRI scanner. The patent
was filled on March 17, 1972.
MRI – intensity of peak (water protons)+
spatial resolution – field gradient
P.C. Lauterbur, P. Mansfield
(Nobel Prize 2003),
R. Ernst (1991)
Discrete Fourier Transormation
Principles of MRI
Contrast in MRI originaters from different water concentration among different
types of tissue and also from different relaxation rates of water protons
Proton longitudinal T1
Proton transversal T2
magnetic relaxation times
T1 – positive contrast, T2 – negative contrast
Contrast agents for MRI diagnostics
Proton longitudinal T1 – paramagnetic species
Proton transversal T2 – ferromagnetic species
Contrast agents are used for more than 35 % examinations
95 % CAs are based on Gd ( III )
Contrast agents for MRI diagnostics
Without CA
With extracelular
Gd(III) CA
With angiographical
Gd(III) CA
Interaction of the water molecules
with the gadolinium ( III ) complex
Efficiency of contrast
agent is expressed as
relaxivity, r1.
r1 ~ ability of 1mM CA
solution to increase
of longitudial relaxation
rate (1/T1 )
r1 = f (q, τM , τR , τMSS , T1,2e )
Theoretical profile of relaxivity
at 20 MHz, 37 °C
r1
– log(τR)
– log(τM)
Simulations of relaxivity as a function
of proton Larmor frequency
(1H NMRD profile) T = 37 °C, 298τv = 40 ps, Δ2 = 1019 s−2, RGdH = 3.1 Å.
The gray area shows the range of imaging fields currently used in clinics.
Ligads for MRI utilizations
HO2C
HO2C
N
N
CO2H
N
H4dota
Dotarem®, ProHance®, Gadovist®
N
CO2H
CO2H
HO2C
HO2C
N
H5dtpa
Magnevist®,
Omniscan®,
MultiHance®
OptiMARK®, Eovist®, AngioMARK®
N
N
CO2H
CO2H
Structures of the Complexes
[ Gd (dota)] –
[ Gd (dtpa)] 2–
r1 = f (q, τM , τR , τMSS , T1,2e )
Bifunctional phosphinic acid
derivatives with optimal τM 10 – 40 ns
I. Lukeš, J. Kotek, P. Vojtíšek, P. Hermann: Coord. Chem. Review, 2001, 216, 287-312
P. Vojtíšek, P. Cígler, J. Kotek, J. Rudovský, P. Hermann, I. Lukeš: Inorg. Chem., 2005, 44, 5591-9
J. Kotek, J. Rudovský, P. Hermann, I. Lukeš: Inorg. Chem., 2006, 45, 3097-3102
P. Hermann, J. Kotek, V. Kubíček, I. Lukeš : Dalton Trans., 2008, 3027-47
Bifunctional phosphinic acid
derivatives with optimal τM 10 – 40 ns
CO2H
OH
HO2C
N
N
HO2C
P
N
N
O
HO2C
N
N
CO2H
H4do3aPABn
N
O
NH2
HO2C
N
N
CO2H
H3do3a-pyNO-C
suitable for conjugation of MRI contrast agent to macromolecule
J. Rudovský, J. Kotek, P. Hermann, I. Lukeš, V. Mainero, S. Aime: Org. Biomol. Chem., 2005, 3, 112
M. Polášek, J. Rudovský, P. Hermann, I. Lukeš, L.V. Elst, R.N. Muller: Chem. Comm., 2004, 2602
M. Polášek, M. Šedinová, J. Kotek, L.V. Elst, R.N. Muller, P. Hermann, I. Lukeš: Inorg. Chem., 2009, 48, 455-465
M. Polášek, J. Kotek, P. Hermann, I. Císařová, K. Binneman, I. Lukeš: Inorg. Chem., 2009, 48, 466-475
r1 = f (q, τM , τR , τMSS , T1,2e )
The chemical / physical features that affect τR
Slow molecular tumbling
Immobilization of low-molecular Gd ( III ) complexes
Covalent – linear carrier, spheric carrier
Conjugation with PAMAM
Generation12
Generation
N
N
N
NN
NN
HOOC
HOOC
N
N
N
P(O)
OH
COOH
NN
NH2 C
S
N
N
NN
NN
NN
NN
N
N
NN
NN
N
DO3APABn
N
N
NN
NN
N
NN
N
NN
NN
N
N
N
N
N
Poly (amidoamine)
J. Rudovský, P. Hermann, M. Botta, S. Aime, I. Lukeš: Chem. Comumun., 2005, 2390
J. Rudovský, M. Botta, P. Hermann, K.I. Hardcastle, I. Lukeš, S. Aime: Bioconjgate Chem., 2006, 17, 975
1H
NMRD profiles
40
35
25
20
15
1
H r 1 (s -1mM -1)
30
10
5
0
0,01
0,1
1
10
100
1000
Proton Larm or frequency (MHz)
O
O
OH
O
C
S
HO
C
H
N
OH
P
O
N
N
N
H
N
N
H
N
N
O
HO
N
HO
N
C
N
C
O
C
O
N
C
HO
O
τM298 = 60 ns
DO3A-PBnN{CS}
O
HO
DO3A-pyNO-C
τM298 = 40 ns
M. Polášek, P. Hermann, J.A.Peters, C.G.G.C. Geraldes, I. Lukeš: Bioconjgate Chem., in press
J. Rudovský, M. Botta, P. Hermann, K.I. Hardcastle, I. Lukeš, S. Aime: Bioconjgate Chem., 2006, 17, 975
Theoretical and experimental
relaxivities as a function of τr
Experimental relaxivities (20 MHz, 25 °C) as a function of theoretical τR
for Gn–PAMAM–[Gd(do3aPABn )(H2O)] x (full diamonds, Gn–JRx )
and –[Gd(do3apyNO-C )(H2O)] y (open triangles, Gn–MPy ) conjugates.
Anchoring of Gd ( III ) complex
on TiO2 nanoparticles
HO
O
O
HO
N
N
N
N
O
HN
O
OH
Advantages of our approach:
• No need of working with silylesters
• TiO2 is highly stable and easily preparable in nanosize
• First complexation, then adsorption
• Formation of monolayer – better surface definition
• Phosphonate adsorbs buch more stable than pyrokatechol
Anchoring of Gd ( III ) complex with
DOTA-like ligand on TiO2 nanoparticles
HO
OH
O
N
N
O
O
N
N
O
HO
HN
O
P OH
OH
DOTAPP
I. Řehoř, V. Kubíček, J. Kotek, P. Hermann, I. Lukeš, J. Száková, L. Vander Elst, R. N. Muller, J. A. Peters:
J. Materals Chem., 2009, 19, 1494-1500
Anchoring of Gd ( III ) complex
on the TiO2 surface
TiO2 – Degussa (type P25, diameter 30 nm, specific surface ~ 50 m2/g)
TiO2 in H2O and the suspension was sonificated
in an ultrasonic bath for 20 min. Then, a solution
of a Ln(III) DOTAPP complex 2 in H2O was added.
The pH of the obtained suspension was adjusted
to 3.5 and then it was stirred at 70 °C for 3 days
followed by 4 h of cooling down.
The resulting suspension was washed with water
and concentrated on ultrafiltration cell six times.
Qquantified by ICP-AES:
The content of TiO2 was 10.0 g /L
the adsorbed amount of the Ln(III)-DOTAPP
complex was 52 μmol/g TiO2.
Surface is fully covered.
NMRD profiles of Gd ( III ) - DOTAPP
37 oC
Due to the uncommon shape of the NMRD
profile an evaluation of the parameters by
fitting the profile was not possible.
25 oC
An NMRD profile, simulated using a τRH
value of 3 ms (from the Debye-StokesEinstein relation for particles 30 nm) and
with the other parameters the same as those
of free Gd(III)-DOTAPP has a maximum
which is of about the same magnitude as that
observed for Gd(III)-DOTAPP + TiO2.
This suggests that the Gd(III) chelates are
effectively immobilized on the nanoparticles.
The relaxivity of the suspension increases upon increase of the temperature.
This confirms that the relaxivity is no longer governed by the rotational correlation time.
Cyclodextrins
as rigid core carrier for middle Mr …
NH2
NH2
O
OH
H2 N
O
O
HO
O
O
OH
O
OH
OH
O
HO
NH2
OH
OH
O
HO
O
O HO
HO
HO
O
OH
H2 N
HO
O
H2 N
O
O
NH2
Synthesis of conjugates …
H2O, pH 8-9
CD-NH2 + L-NCS
40 °C, 24 h
O
OH
C
O
C
O
N
N
C
OH
OH
HO
N
OH
O
N
N
P
C
N
C
N
O
C
HO
O
O
HO
O
C
N
OH
HO
HN
P
O
C
S
OH
HN
S
N
P
C
O
N
NH
N
NH
C
N
O
OH
NH
C
O
O
OH
C
OH
HO
S
O
C
OH
O
HO
O
HO
O
P
O
HO
HO
HO
O
O
O
O
C
S
HN
O
N
N
C
S
O
O
C
OH
O
OH
C
P
O
O
C
N
N
N
HO
C
O
OH
N
N
HO
N
O
C
O
P
OH
C
OH
N
N
HO
NH
N
O
S
C
C
HO
O
C
OH
OH
NH
HN
N
OH
O
HO
C
P
OH
HN
N
H
NH
N
H
OH
N
C
O
HO
N
N
O
S
OH
OH
N
HO
C
O
O
C
OH
HO
O
O
HN
O
OH
O
Synthesis of conjugates …
CD-NH2 + L-COOH
Peptide coupling:
coupling ligand –COOH to dendrimer –NH2
O
OH
C
O
OH
N
O
HO
C
C
O
OH
N
C
N
N
N
C
OH
O
N
O
N
N
N
C
O
O
HO
N
O
O
OH
C
O
O
HN
N
O
H
H
OH
H
O
C
N
O
OH
N
H
O
O
O
H
HO
HO
OH
C
N
H
OH
H
HO
N
H
H
O
H
N
H
N
O
N
O
H
N
N
O
C
HN
H
H
N
OH
O
O
H
OH
C
H
HO
C
HN
H
O
HO
O
OH
H
H
O
H
H
O
HO
OH
H
H
H
O
OH
O
NH
H
O
H
OH
H
H
H
HO
H
HO
H
N
O
N
H
O
N
HO
O
N
O
O
H
N
O
H
H
O
OH
C
OH
C
H
OH
H
NH
O
N
N
C
N
O
N
O
O
N
C
HO
N
O
N
C
HO
O
OH
C
O
N
C
O
N
O
N
C
N
HO
C
O
HO
HO
O
1H
HOOC
N
NMRD profiles of Gd ( III ) DO3A-PBnN{CS}
conjugate with ß-cyclodextrine
P(O)
N
OH
HOOC
N
N
NH C
COOH
S
AB-βCD
25 °C
35
37 °C
30
20
–1
r1 / s mM
–1
25
15
10
5
0
0.001
0.01
0.1
1
Proton Larmor Frequency / MHz
10
100
1000
1H
NMRD profiles of Gd ( III ) DO3A-pyNO - C
conjugate with ß-cyclodextrine
O
O
H
N
OH
C
N
N
N
O
HO
N
N
C
C
O
O
HO
PNO-βCD
25 °C
37 °C
35
30
20
–1
r1 / s mM
–1
25
15
10
5
0
0.001
0.01
0.1
1
Proton Larmor Frequency / MHz
10
100
1000
Comparision of PAMAM and CD conjugates
β-cyclodextrine
r1 (ef.) =
r1 * N * 1000 / Mr
Molecular mass (kDa):
0.6
6.5
50
5.5
Multimodal Probes
Dual Probes
Labelling of Cells
Distribution of the Cells in Organism
Dual Probes
PAMAM dendrimers conjugates
(a)
(b)
(c)
(d)
Fluorescent photomicrographs of Langerhans islets labeled by G6.9F0.1C:
G6.9F0.1C a) visualization of
the contrast agent (green) and karyons (blue); b) highlighting of the a-cells (yellow-orange);
c) highlighting of the macrophages (yellow-orange); d) highlighting of the b-cells (pink). Islets
were incubated with 1 mm G6.9F0.1C (per GdIII) for 24 h. A typical size of the LIs is 300 μm.
MRI
Targeting
Gd
Similar strategy would be applied
for development of optical and
combined imaging probes.
Relaxometric parameters of
Gd ( III ) – DOTAPP and related ligands
O
PO3H2
Ligand
Δ2
[1020 s–2]
298τ
v
298τ
RH
298τ
M
[μs]
r1
[s–1 mM–1]
DOTAPP
0.32±0.3
21±1
135±4
1.00±0.08
6.17
BPAMD a
0.37
17
88
1.18
5.3
BPAPD b
1.22
27
85
1.1
5.0
DOTA c
0.16
11
77
0.244
4.8
[ps]
[ps]
HN
OH
PO3H2
N
N
N
N
O
HO
O
HO
O
O
H2O3P
NH
H2O3P
O
HO
N
N
N
N
HO
O
OH
O
V. Kubíček, J. Rudovský, J. Kotek, P. Hermann, L. Vander Elst, R. N. Muller, Z. I. Kolar, H. T. Wolterbeek,
J. A, Peters, I. Lukeš: J. Am. Chem. Soc., 2005, 127, 16477–16485.
b T. Vitha, V. Kubíček, P. Hermann, L. Vander Elst, R. N. Muller, Z. I. Kolar, H. T. Wolterbeek, W. A. P. Breeman,
I. Lukeš, J. A. Peters: J. Med. Chem., 2008, 51, 677– 683.
c D. H. Powell, O. M. N. Dhubhghaill, D. Pubanz, L. Helm, Y. S. Lebedev, W. Schlaepfer, A. E. Merbach:
J. Am. Chem. Soc., 1996, 118, 9333 –9346
a
Biodistribution
Biodistribution
of 177Lu-complexes in Lewis
rat 24 h after injection
Lu-c1
Lu-c3
SPECT/CT Imaging of Rats
177Lu-c1
75–80 MBq
1 h p.i.
24 h p.i.
V. Kubíček, J. Rudovský, J. Kotek,
P. Hermann, L. Vander Elst, R. N. Muller,
Z. I. Kolar, H. T. Wolterbeek,
J. A, Peters, I. Lukeš: J. Am. Chem. Soc.,
2005, 127, 16477–16485.
PET
. 18F (110) min., 11C (20 min.) – cyclotron
Combination of PET and MRI, PET and CT
68Ga (60 min.), generator
Acknowledgements
Support from the Grant Agency of the Czech Republic
(No. 203/06/0467), Grant Agency of the Academy of
Science of the Czech Republic (No. KAN201110651) and
Long-Term Research Plan of the Ministry of Education
of the Czech Republic (No. MSM0021620857) are
acknowledged. The work was carried out in frame of
COST D38 and the EU-supported NoE projects EMIL
(No. LSHC-2004-503569) and DiMI (No. LSHB-2005512146).
Collaboration
Charles University
Doc. Petr Hermann
Dr. Jan Kotek
Dr. Vojtěch Kubíček
Students
Dr. Jakub Rudovský
Zuzana Kotková
Dr. Miloš Polášek
Ivan Řehoř
Dr. Tomáš Vitha
IKEM
Dr. Milan Hájek
Dr. Daniel Jirák
Doc. Dr. František Saudek
COST D38
Dr. Joop A. Peters (Delft)
Prof. Richard N. Muller (Mons)
Prof. Luce Vander Elst (Mons)
Prof. Lothar Helm (Lausanne)
Prof. Silvio Aime (Torino)
Prof. Mauro Botta (Torino)
Prof. Erno Brücher (Debrecen)
Prof. Carlos F. G. C. Geraldes (Coimbra)
Dr. Eva Toth (Lausanne, Orleans)
Prof. Frank Roesch (Mainz)
Institute of Experimental
Medicine
Dr. Pavla Jendelová, Prof. Eva Syková

Podobné dokumenty

DRAZesr`ri vvHLASre

DRAZesr`ri vvHLASre as., IC. 639989S0,so sidlcm Na Paxkrdei 310/60,140 00 Pralra {, znstoupend:JUDr. Pavnfna Fojtikovi Ph.D., advskft, se *idlsm: Z,elen!'pruh 95197n140 0{ Praha {, na irkor majetku povinn€. osoby:JARO...

Více

Edison High School HR2MP1 2014

Edison High School HR2MP1 2014 Kanda, Karun Kanduri, Rohit Kaur, Divjot Kipnis, John Kirby, Shier Kirchoff, Peter Kovacs, Emily Kozak, Christopher Kumar, Anirban Kurdes, Logan Lobo, Isaac Maceda, Kenny Manivannan, Mithun Manzoor...

Více

zde - Katedra organické chemie

zde - Katedra organické chemie případě redukce těchto částic vhodnou metodou na unilamelární liposomy (SUVs 25–250 nm), lze výsledné koloidní liposomální formulace použít i injekčně.

Více

Bohové Osyrnalu

Bohové Osyrnalu l;;*L;:. i;' t*F- 't/'t*'4t*/'a:o',io t'au rnt,*/'a'at l,**/ag:fr:'tfut'';;) u ;J [i /J// r.' l7;u,,Iua*t, r;,t-' r.',7L"'',*, k/i:,; W#' f'lM/t

Více

Moderní elektrochemické metody

Moderní elektrochemické metody 6. Palecek E., Fojta M., F. Jelen, V. Vetterl: The Encyclopedia of Electrochemistry , A.J. Bard, M. Stratsmann (Editors), p. 365, Wiley-VCH, Weinheim, 2002. 7. Palecek E., Jelen F.: Perspectives in...

Více

Nebeské tajemství - www.jpavol.sweb.cz

Nebeské tajemství - www.jpavol.sweb.cz Mezi výzkumníky UFO je rostoucí shoda, že téma zahrnuje mnohem více, než obvyklé létající stroje z vesmíru. Pozorování, kontakty a únosy se zdají být propojeny a zahrnují záležitosti dříve zařazova...

Více