4b. FV PANELY, SYSTÉMY, NÁVRATNOST, VÝTĚŽNOST Čas ke

Transkript

4b. FV PANELY, SYSTÉMY, NÁVRATNOST, VÝTĚŽNOST Čas ke
4b.
FV PANELY, SYSTÉMY, NÁVRATNOST, VÝTĚŽNOST
Čas ke studiu: 2 hodiny
Cíl
Po prostudování tohoto odstavce budete umět
 seznámí se s problematikou vlivu FV systémů na okolí
 definovat a orientovat se v problematice výroby solárního křemíku,

metodách
zvyšování účinnosti solárních fotovoltaických článků
definovat pojmy energetické náročnosti, návratnosti a výnosnosti aplikací FV
systémů
Výklad
Od roku 1975 do roku 2006 se energetická návratnost fotovoltaických systémů zkrátila na
1/10. Uvedená skutečnost má zásadní vliv na pokles ceny i environmentální dopady výroby
elektřiny z fotovoltaických systémů. V uvedeném období vzrostla roční produkce
fotovoltaických systémů 25 000krát, přičemž cena poklesla na 1/20. Největší podíl na trhu
mají krystalické křemíkové články.
ÚVOD
Fotovoltaické systémy neprodukují žádné odpady ani emise při výrobě elektřiny. Nejdříve je
však třeba je vyrobit a nainstalovat a na konci životnosti opět demontovat a zpracovat. Při
všech těchto procesech se spotřebovávají materiály a energie. Důležitá je proto energetická
návratnost (EPBT - Energy PayBack Time) - doba, za kterou systém vrátí energii, která byla
investována do jeho výroby na začátku jeho životního cyklu, včetně těžby a zpracování
materiálů a surovin. Dalším parametrem umožňujícím porovnávání zdrojů energie je
energetická výnosnost (EROEI - Energy Return on Energy Invested, též EROI) - poměr
získané energie k energii vložené.
Z ekonomického hlediska jsou rozhodující investiční náklady systému, ty jsou dosud vysoké,
rychle však klesají. Na jejich pokles má vliv zejména růst účinnosti článků, očekávaný pokles
ceny křemíku v souvislosti s novými výrobními kapacitami a používání tenčích desek [5, 12].
Výrazně se na poklesu ceny projevuje růst objemu výroby podporovaný výkupními cenami.
1
PODPOŘENO GRANTEM Z ISLANDU, LICHTENŠTEJNSKA A NORSKA V RÁMCI FINANČNÍHO MECHANISMu EHP A NORSKÉHO
FINANČNÍHO MECHANISMU.
Obr.1. Skladba panelu s krystalickými křemíkovými články (EVA - Etylen-Vinyl-Acetát)
ENVIRONMENTÁLNÍ DOPADY
Fotovoltaika je vnímána jako technologie šetrná k životnímu prostředí, i z obchodního
hlediska se výrobcí snaží toto pojetí posilovat. Sledování environmentálních dopadů je proto
věnována odpovídající pozornost [1, 5].
Analýza životního cyklu fotovoltaické elektrárny s multikrystalickými články metodou CML
je uvedena ja obrázku 2, Na potenciálu globálního oteplování, humánní toxicity a acidifikace
(2., 4. a 6. sloupec) se minimálně ze 70 až 80 % podílí sekundární dopady - emise z výroby
spotřebované energie [5]. Redukce spotřeby energie ve výrobě má tedy výrazně pozitivní
environmentální dopady. Pokud by byly ve výrobě použity obnovitelné zdroje energie, byly
by environmentální dopady výrazně nižší. Z hlediska trvalé udržitelnosti je významná
rychlost čerpání surovinových zdrojů (sloupec 1) pro vyhodnocení jejich dostupnosti v
budoucnosti.
Obr.2. Environmentální dopady výroby PV panelů o výkonu 1 kWp, metoda CML [5]
ENERGETICKÁ NÁROČNOST VÝROBNÍHO CYKLU FOTOVOLTAICKÉHO
SYSTÉMU
2
PODPOŘENO GRANTEM Z ISLANDU, LICHTENŠTEJNSKA A NORSKA V RÁMCI FINANČNÍHO MECHANISMu EHP A NORSKÉHO
FINANČNÍHO MECHANISMU.
V případě fotovoltaických (PV) panelů z krystalického křemíku můžeme rozlišit následující
fáze životního cyklu (zvýrazněny jsou nejvýznamnější položky z hlediska energetické
náročnosti):
 těžba surovin
 výroba metalurgického křemíku (mg-Si)
 rafinace na solární křemík (sg-Si)
 krystalizace ingotu a řezání desek
 výroba článků
 kompletace panelů
 montáž fotovoltaického systému
 provoz - výroba elektřiny
 demontáž systému
 recyklace nebo likvidace
 doprava (v různých fázích)
Podobný řetězec lze vysledovat pro ostatní komponenty fotovoltaického systému - měnič,
nosnou konstrukci případně tracker a další.
Podíl jednotlivých položek závisí kromě použité metody výroby solárního křemíku a ingotů i
na konkrétním výrobci. Výroba monokrystalických článků je ve srovnání s
multikrystalickými energeticky náročnější, mají však vyšší účinnost. Novější provozy mají v
obou případech spotřebu až několikanásobně nižší [1]. Podobně technologie tažení
křemíkových pásů přímo z taveniny (tzv. ribbon) je díky nižší spotřebě křemíku energeticky
výhodnější, viz obrázek 3, články vyrobené touto technologií však mají nižší účinnost.
Obr.3. Podíl jednotlivých fází na energetické náročnosti výroby PV panelů
Výroba solárního křemíku
Dokud byl pro výrobu fotovoltaických článků používán odpadní křemík z výroby
mikroelektronických součástek, byla otázka energetické náročnosti výroby vedlejší. S růstem
výrobních kapacit fotovoltaických článků vyvstala nutnost budovat nové kapacity speciálně
na výrobu solárního křemíku. Původní tzv. Siemens proces byl sice upraven s cílem snížit
spotřebu energie, přesto podíl výroby křemíku na celkové spotřebě energie byl stále vysoký.
3
PODPOŘENO GRANTEM Z ISLANDU, LICHTENŠTEJNSKA A NORSKA V RÁMCI FINANČNÍHO MECHANISMu EHP A NORSKÉHO
FINANČNÍHO MECHANISMU.
Novější proces využívající tzv. Fluidized Bed Reaktor (FBR) namísto původního reaktoru
Siemens vykazuje nižší spotřebu elektrické energie, spotřeba tepla je zhruba stejná [1]. Ve
fázi ověřování je výrobní postup firmy Elkem Solar, v němž je solární křemík vyráběn přímo
metalurgickým postupem. Srovnání spotřeby energie uvedených metod je v tabulce 1.
Jednotka
Spotřeba energie
Elektřina
Teplo
Celkem
kWhel
MJth
MJprim
Metoda
Siemens
FBR
Elkem
110
185
1070
30
185
500
25
300
Tab.1. Energetická náročnost různých metod výroby solárního křemíku [1]
Ostatní fáze výroby panelů
Spotřeba energie při výrobě ingotu souvisí s tepelnými ztrátami zařízení. U větších ingotů
jsou měrné ztráty na jednotku produkce menší. Další pokles spotřeby lze očekávat v
souvislosti s rekuperací tepla.
Řezání ingotů a desek se blíží technologickým limitům, nelze již dále zmenšovat šířku řezu a
proto ani spotřebu energie. Snížit spotřebu energie až o dvě třetiny a zároveň finanční náklady
je možno recyklací řezné emulze [1].
Podíl spotřeby energie zbývajících fází výroby fotovoltaických panelů byl donedávna málo
významný. V současnosti nad snahou o snižování spotřeby energie převažuje snaha o
zvyšování účinnosti, která má významnější vliv na energetickou návratnost. V důsledku
spotřeba energie ve výrobě článků a při kompletaci panelů mírně narůstá.
Doplňkové komponenty fotovoltaických systémů
Snižování energetické náročnosti výroby ostatních komponent fotovoltaické elektrárny invertor, kabeláž, nosná konstrukce - je věnována zvýšená pozornost teprve v posledních
letech, dříve byl jejich podíl na celkové spotřebě energie málo významný.
ENERGETICKÁ NÁVRATNOST A ENERGETICKÁ VÝNOSNOST
Odhady budoucích cen energetických komodit jsou zatíženy značnou nejistotou. V polovině
loňského roku byla cena ropy třikrát vyšší než v současnosti. Ekonomové jen odhadují, jaký
podíl na dosavadním vývoji měly spekulace nebo současná ekonomická krize a jaký je podíl
rostoucích nákladů na těžbu ropy. Ekonomické porovnávání zdrojů energie z dlouhodobého
hlediska je proto velmi obtížné.
Jednou z možností, jak se vyhnout nejistotám ekonomických prognóz, je porovnávat zdroje
energie čistě z energetického hlediska. K tomu jsou používány ukazatele vysvětlené v úvodu energetická návratnost (EPBT) a energetická výnosnost (EROEI). U paliv a podobných zdrojů
energie lze vyhodnocovat pouze EROEI. Naproti tomu u elektráren je možno vyhodnocovat
4
PODPOŘENO GRANTEM Z ISLANDU, LICHTENŠTEJNSKA A NORSKA V RÁMCI FINANČNÍHO MECHANISMu EHP A NORSKÉHO
FINANČNÍHO MECHANISMU.
oba ukazatele. U všech konvenčních zdrojů energie lze do budoucna očekávat pokles EROEI,
protože se snižující se dostupností porostou náklady na jejich těžbu. Naproti tomu u
obnovitelných zdrojů energie a zejména u fotovoltaiky je do budoucna očekáváno ještě
výrazné zlepšení. Je zřejmé, že z dlouhodobého hlediska mohou být používány zdroje s
nízkým EROEI jen v případě, že budou dotovány, například proto, že budou mít jiné výhodné
vlastnosti.
Cesty ke zkracování doby energetické návratnosti (EPBT):
 snižování spotřeby energie ve výrobě solárního křemíku
 snižování spotřeby křemíku
 zvyšování účinnosti článků
 recyklace na konci životnosti
Cesty ke zvyšování energetické výnosnosti (EROEI):
 zkracování energetické návratnosti (viz výše)
 prodlužování životnosti
 snižování spotřeby křemíku
Spotřeba křemíku na výrobu článků (měřeno v g/Wp) klesá jednak snižováním ztrát křemíku
ve výrobě, jednak zvyšováním účinnosti článků a panelů. Snížení spotřeby křemíku obvykle
snižuje výrobní náklady. Současný standard je spotřeba na úrovni 10 až 12 g/Wp, viz Obrázek
4. V poslední době jsou zkoušeny bezřezné technologie oddělování desek. Uvažuje se o
výrobě desek s tloušťkou jen 80 µm s odpadem asi 5 % [12]. Spotřeba křemíku by se snížila
na zlomek současné hodnoty. V nejbližších letech je očekáván pokles na 4 až 6 g/Wp [1]. Za
technologickou mez jsou v současnosti považovány 2 g/Wp. Při tak nízké spotřebě křemíku
už vysoce převažuje energetická náročnost ostatních komponent, viz Obrázek 5.
Obr.4. Vývoj spotřeby energie na výrobu fotovoltaických panelů v závislosti na spotřebě
křemíku [5]
Zvyšování účinnosti článků a panelů
Účinnost lze u krystalických křemíkových článků považovat za měřítko kvality výroby. Ještě
před několika málo lety byla účinnost 12 % považována za vyhovující. V současnosti je
5
PODPOŘENO GRANTEM Z ISLANDU, LICHTENŠTEJNSKA A NORSKA V RÁMCI FINANČNÍHO MECHANISMu EHP A NORSKÉHO
FINANČNÍHO MECHANISMU.
standardem 16 %, za dobrou hodnotu je považováno 18 %. Toto poměrně výrazné zlepšení
bylo dosaženo relativně malými úpravami výrobního postupu. Špičkové články dosahují
účinnosti kolem 22 % [11]. Rekordní účinnost monokrystalických článků je již 10 let na
úrovni 24,7 %, což je blízko teoretického maxima pro jednovrstvé technologie,
multikrystalické články dosáhly účinnosti 20,3 % [13]. Je však třeba rozlišovat účinnost
samotných článků a účinnost kompletních panelů, která je asi o dvě procenta nižší [13].
Zvýšení účinnosti panelů a zároveň zlepšení dlouhodobé stability výkonu, a tím i prodloužení
životnosti by mohlo přinést laminování do silikonu. Silikon má lepší odolnost proti UV záření
i vysokým teplotám než v současnosti používaná EVA fólie. Je sice cenově náročnější,
umožňuje však zrychlit kontinuální výrobní proces.
Obr.5. Energetická návratnost fotovoltaických elektráren v závislosti na spotřebě křemíku a
účinnosti článků pro různé technologie výroby solárního křemíku, upraveno podle [1]
Energetická návratnost kompletního fotovoltaického systému se při použití v současnosti
dostupných metod může zkrátit na méně než 2 roky i v podmínkách České republiky, viz
Obrázek 6. Při životnosti 30 let tak mohou fotovoltaické elektrárny s panely z krystalických
křemíkových článků dosáhnout EROEI 15 i více.
6
PODPOŘENO GRANTEM Z ISLANDU, LICHTENŠTEJNSKA A NORSKA V RÁMCI FINANČNÍHO MECHANISMu EHP A NORSKÉHO
FINANČNÍHO MECHANISMU.
Obr.6. Energetická návratnost PV systému s vyznačením podílu jednotlivých komponent [4]
RECYKLACE PANELŮ NA KONCI ŽIVOTNOSTI
Recyklace fotovoltaických panelů je dosud okrajovou záležitostí, v současnosti je vyřazováno
z provozu jen několik stovek tun panelů ročně v rámci celé Evropy [2]. Kromě recyklace
panelů vyrobených běžnými technologiemi [2, 3] jsou zkoušeny i úpravy konstrukce s cílem
recyklaci usnadnit [8, 9].
Nejvýznamnější komponenty z hlediska hmotnosti jsou sklo (63 %) a hliníkový rám (22 %)
[2]. Jejich recyklace je dnes zcela běžná, recyklovatelnost se blíží 100 %. Naopak plastové
materiály téměř nelze recyklovat. Recyklace skla snižuje spotřebu energie na jeho výrobu asi
o 40 %, v případě hliníku dokonce o 95 %. Jsou však nabízeny i panely bez hliníkového rámu.
Recyklace těžkých kovů je z hlediska spotřeby materiálů a energií srovnatelná s výrobou z
primárních surovin. Tyto materiály jsou recyklovány z důvodu ochrany životního prostředí jsou toxické.
Samotné fotovoltaické články jsou nejvýznamnější položkou jak z hlediska ceny, tak z
hlediska spotřeby energie na výrobu panelu, přestože jejich hmotnost je zanedbatelná. Na
konci životnosti panelu jsou přitom články v podstatě nezměněny.
Termická recyklace
Z hlediska připravenosti pro praktické použití je nejpokročilejší metodou recyklace panelů
termický proces navržený Deutsche solar AG, pro který již existuje demonstrační jednotka
průmyslové velikosti [2, 3].
Metoda je použitelná pro většinu stávajících panelů a článků. Recyklační proces je náročný na
energii a ruční práci, lze však vytěžit až 85 % křemíkových desek a tím snížit spotřebu
energie na výrobu nových panelů až o 70 %.
7
PODPOŘENO GRANTEM Z ISLANDU, LICHTENŠTEJNSKA A NORSKA V RÁMCI FINANČNÍHO MECHANISMu EHP A NORSKÉHO
FINANČNÍHO MECHANISMU.
Obrázek 7 Třídění surovin při termické recyklaci
Konstrukční úpravy
Cílem konstrukčních úprav je usnadnit demontáž celých plně funkčních článků na konci
životnosti panelu. Na rozdíl od termické metody, kde výstupním produktem jsou křemíkové
desky po odleptání funkčních vrstev původního článku. Jsou navrhovány metody zapouzdření
článků bez laminace nebo dvojité zapouzdření s mezivrstvou, která má nízkou přilnavost k
článkům - metoda DEM (Double Encapsulated Module) [9]. U metody DEM jsou články před
laminací zapouzdřeny do silikonu, který má srovnatelný index lomu jako EVA, ale nízkou
adhezi k článkům. Dodatečné vrstvy snižují účinnost v nejlepších případech o 3 %.
Obrázek 8 Odlupování EVA a mezivrstvy při demontáži panelu
Recyklace fotovoltaických systémů a zejména článků by mohla přispět k výraznému zkrácení
energetické návratnosti, viz tabulku 2. Obě uvedené metody však byly navrženy pro články o
tloušťce 200 až 270 µm, jejich použitelnost pro články menších tlouštěk je problematická.
Tenčí články jsou výrazně náchylnější na mechanické poškození, v důsledku klesá výtěžnost
recyklovaných článků.
8
PODPOŘENO GRANTEM Z ISLANDU, LICHTENŠTEJNSKA A NORSKA V RÁMCI FINANČNÍHO MECHANISMu EHP A NORSKÉHO
FINANČNÍHO MECHANISMU.
Tab.2. Porovnání energetické náročnosti metod recyklace s přímou výrobou ze surovin [10]
Ceny fotovoltaických systémů
Ceny fotovoltaických panelů i celých elektráren v minulosti klesaly o 14 % při každém
zdvojnásobení roční produkce. Ke zpomalení tohoto procesu v současnosti došlo v důsledku
nedostatku základní suroviny - solárního křemíku. Jeho cena prudce stoupla, což zvýhodnilo
tenkovrstvé technologie, kde je spotřeba polovodičových materiálů o jeden až dva řády nižší.
V letošním roce mají být uvedeny do provozu nové provozy pro výrobu solárního křemíku,
očekává se proto pokles jeho ceny.
Obr.9. Podíl jednotlivých komponent na ceně fotovoltaické elektrárny
V dlouhodobém horizontu je očekáván pokles ceny fotovoltaických elektráren s panely z
krystalických křemíkových článků asi na jednu třetinu oproti současné úrovni. Hlavními
důvody jsou jednak výše uvedený potenciál pro pokles spotřeby energie a materiálů ve výrobě
krystalických křemíkových článků a jednak pokles nákladů v souvislosti s růstem objemu
výroby.
Vývoj cen v České republice je ovlivněn změnami kurzu koruny. Výrazný pokles investičních
nákladů na fotovoltaické elektrárny v loňském roce byl změnou kurzu koruny posílen.
Výkupní ceny fotovoltaické elektřiny poklesly o 5 %, ceny elektráren však klesly o více než
10 %. Investice do fotovoltaiky se tak stala výhodnější, než bylo původně zamýšleno. V
současnosti však v souvislosti s rychlým oslabováním koruny ceny dovážených komponent
rostou, s tím klesá výhodnost nových investic. Stabilní vývoj porovnatelný se zeměmi EU
9
PODPOŘENO GRANTEM Z ISLANDU, LICHTENŠTEJNSKA A NORSKA V RÁMCI FINANČNÍHO MECHANISMu EHP A NORSKÉHO
FINANČNÍHO MECHANISMU.
bude možný až po přijetí eura, podíl spekulativních investic využívajících momentálních
výkyvů kurzu poklesne.
ZÁVĚR
Výroba krystalických křemíkových článků prochází obdobím rychlého snižování energetické
náročnosti. Zároveň se snižuje spotřeba materiálů a vedlejší produkty výroby jsou dle
možností recyklovány.
Při použití dostupných výrobních technologií lze dosáhnout v podmínkách České republiky
energetické návratnosti kratší než 2 roky. Další zkracování energetické návratnosti je možné v
souvislosti se snižováním tloušťky desek a zvyšováním účinnosti článků. Řada navrhovaných
úprav výrobního postupu zároveň snižuje finanční náročnost výroby, proto jsou průběžně
zaváděny do praxe.
Otázky
1. Specifikujte enviromentální dopady výroby a využití FV systémů.
2. Specifikujte energetickou náročnost výrobního cyklu FV článku, panelu a systému.
3. Popište výrobu solárního křemíku a ostatní fáze výroby solárního systému.
4. Specifikujte energetickou návratnost a výnosnost FV systémů
5. Popište metody zvýšení účinnosti FV článků.
6. popište používané metody recyklace FV článků, panelů a systémů.
7.
Další zdroje
[1] ALSEMA, E. A.; de WILD-SCHOLTEN, M. J. Reduction of the envoronmental impact in
crystaline silicon manufacturing production. In: 22nd European Photovoltaic Solar Energy
Conference, Milano, Italy, 3-7 September 2007.
[2] WAMBACH, K.; SHLENKER, S.; RÖVER, I; MÜLLER, A. Recycling of Solar Cells and
Photovoltaic Modules.
[3] MÜLLER, A; WAMBACH, K.; ALSEMA, E. A. Reduction of environmental impacts of PV by
the recycling process of Deutsche Solar,
[4] de WILD-SCHOLTEN, M. J.; GL?CKNER, R.; ODDEN, J.-O.; HALVORSEN, G.; TRONSTAD,
R. LCA Comparison of the Elkem Solar Metallurgical Route and Conventional Gas Routes to Solar
Silicon. In: 23rd European Photovoltaic Solar Energy Conference, 1-5 September 2008, Valencia,
Spain
[5] ALSEMA, E. A.; de WILD, M. J. Reduction of Environmental Impacts in Crystalline Silicon
Photovoltaic Technology, An Analysis of Driving Forces and Opportunities, In: MRS Fall 2007,
Boston, 26-29 November 2007
[6] de WILD-SCHOLTEN, M. J. et all. Fluorinated Greenhouse Gates in Photovoltaic Module
Manufacturing. Potential Emissions and Abatement Strategie. In: 22nd European Photovoltaic Solar
Energy Conference, Milano, Italy, 3-7 September 2007
[7] Sanyo. HIT photovoltaic module, karalogový list
10
PODPOŘENO GRANTEM Z ISLANDU, LICHTENŠTEJNSKA A NORSKA V RÁMCI FINANČNÍHO MECHANISMu EHP A NORSKÉHO
FINANČNÍHO MECHANISMU.
[8] DOI, T.; IGARI, S.; TSUDA, I. Development of a recyclable PV module: Evaluation of electrical
characteristics of recycled cells. In: EuroPV 2004, Slovenia
[9] SÁNCHEZ-FRIERA, P.; GALÁN, J. E.; GUARDE, D.; MANJÓN, D. Simple design of recyclable
PV modules.
[10] BECHNÍK, Bronislav; BAŘINKA, Radim; ČECH, Petr. Analýza životního cyklu FVS. In:
Sborník příspěvků ze 3. České fotovoltaické konference. 3. až 5. listopadu 2008, Brno, Kongresové
centrum BVV. ISBN 978-80-254-3528-1. Dostupné zde.
[11] High-Efficiency Solar Cell on N-Type Silicon Substrates. Dostupné zde.
[12] Progress, slice by slice. Sun & Wind Eneregy č. 6/2008, str. 132 až 142.
[13] GREEN, Martin A.; EMERY, Keith; HISHIKAWA, Yoshihiro; WARTA, Wilhelm. Solar Cell
Efficiency Tables (Version 32). Prog. Photovolt: Res. Appl. 2008; 16:435-440. Published online in
Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/pip.842
11
PODPOŘENO GRANTEM Z ISLANDU, LICHTENŠTEJNSKA A NORSKA V RÁMCI FINANČNÍHO MECHANISMu EHP A NORSKÉHO
FINANČNÍHO MECHANISMU.

Podobné dokumenty

ekonomická bilance výroby a likvidace

ekonomická bilance výroby a likvidace rozsahu nejméně 85 % jeho průměrné hmotnosti a příprava na opětovné použití a recyklace elektroodpadu ze solárních panelů v rozsahu nejméně 80 % jeho průměrné hmotnosti, - nakládání s elektroodpade...

Více

Agustín Barrios Mangoré

Agustín Barrios Mangoré Hectorem a Virgiliem a studoval kytaru u Escalady. Počátkem roku 1901 byl zapsán na Colegio Nacional (národní střední škola), kde začal studovat v březnu téhož roku. Byl velmi dovedný a měl vynikaj...

Více

Seznam přihlášených

Seznam přihlášených Ka6e LF-109 Pionýr Fantom Antares V Bellanca Citabria L-213A VSB-66 Orlice ASW-15 V Piper J3 Cub (OK-X001D) V Bivoj Kirby Kite V Piper PA-25 Pawnee Ka 8b větroň LF-109 Pionýr V Citabria V Piper PA ...

Více

fotometrie. - České vysoké učení technické v Praze

fotometrie. - České vysoké učení technické v Praze používají křemíková čidla s vhodnými filtry. Z uvedených materiálů má nejbližší shodu s fotopickou křivkou lidského oka CdS [13].

Více

Energie v udržitelném územním plánování

Energie v udržitelném územním plánování Průmysl – zde se očekává, že si průmyslové společnosti budou více vědomi energeticky úsporných možností, každé 3 roky budou vyžadovány energetické audity.

Více