Chemistry

Transkript

Chemistry
Chemistry
I. Chemical elements and their pronunciation in English
II. Chemical nomenclature
1. Inorganic chemistry – naming inorganic compounds
2. Organic chemistry – naming organic compounds
III. How to read chemical formulas in inorganic chemistry – examples
IV. How to read chemical formulas in organic chemistry – examples
V. Notes on reading chemical formulas
VI. Some abbreviations in common use in chemistry
Source: http://sciencenotes.org/wp-content/uploads/2015/01/PeriodicTableMuted.png
Symbol
Atomic number
English
Pronunciation
Czech
Ac
Ag
Al
Am
Ar
As
At
Au
B
Ba
Be
Bh
Bi
89
47
13
95
18
33
85
79
5
56
4
107
83
actinium
silver
aluminium
americium
argon
arsenic
astatium
gold, aurum
boron
barium
beryllium
bohrium
bismuth
æk’tiniəm
silvə
ælə’miniəm
əme‘risiəm
‘a:gən
‘a:sənik
əs‘teitiəm
‘gəuld; ‘o:rəm
‘bo:ron
‘beəriəm
bə‘riliəm
‘bo:riəm
‘bizməɵ
aktinium
stříbro
hliník
americium
argon
arsen
astat
zlato
bór
baryum
beryllium
bohrium
bizmut
Bk
Br
C
Ca
Cd
Ce
Cf
Cl
Cm
Cn
Co
Cr
97
35
6
20
48
58
98
17
96
112
27
24
Cs
Cu
Db
Ds
Dy
Es
Er
Eu
F
Fe
Fl
Fm
Fr
Ga
Gd
Ge
H
He
Hf
Hg
Ho
Hs
I
In
Ir
K
Kr
La
Li
Lu
Lv
Lw
Md
Mg
Mn
Mo
Mt
55
29
105
110
66
99
68
63
9
26
114
100
87
31
64
23
1
2
72
80
67
108
53
49
77
19
36
57
3
71
116
103
101
12
25
42
109
berkelium
bromine
carbon
calcium
cadmium
cerium
californium
chlorine
curium
copernicium
cobalt
chromium,
chrome
caesium
copper, cuprum
dubnium
darmstadtium
dysprosium
einsteinium
erbium
europium
fluorine
iron, ferrum
flerovium
fermium
francium
gallium
gadolinium
germanium
hydrogen
helium
hafnium
mercury
holmium
hassium
iodine
indium
iridium
potassium
krypton
lanthanum
lithium
lutecium
livermorium
lawrentium
mendelevium
magnesium
manganese
molybdenum
meitnerium
bə:’keiliəm
‘brəumi:n
‘ka:bən
‘kælsiəm
‘kædmiəm
‘siəriəm
,kæli’fo:niəm
‘klo:ri:n
‘kjuəriəm
kopən’i:šiəm
‘kəu,bo:lt
‘krəumiəm,
‘krəum
‘si:ziəm
‘kopə, ‘kju:prəm
‘dubniəm
,da:m’stætiəm
,dis’prəuziəm
,ain’stainiəm
‘ə:biəm
,juə’rəupiəm
‘fluəri:n
‘aiən, ‘ferəm
fle’rəuviəm
‘fə:miəm
‘frænsiəm
‘gæliəm
,gædə’liniəm
,džə:’meiniəm
‘haidrədžən
‘hi:liəm
‘ha:fniəm
‘mə:kjuri
‘həulmiəm
‘hæsiəm
‘aiədi:n
‘indiəm
ai’ridiəm
pə’tæsiəm
‘kriptən
‘lænɵənəm
‘liɵiəm
lu’ti:šiəm
,livə’mo:riəm
,lo:’rentiəm
,mendə’li:viəm
mæg’ni:ziəm
‘mængəni:z
mə’libdinəm
mait’ne:riəm
berkelium
bróm
uhlík
vápník
kadmium
cer
kalifornium
chlór
curium
kopernicium
kobalt
chróm
cesium
měď
dubnium
darmstadtium
dysprosium
einsteinium
erbium
europium
fluor
železo
flerovium
fermium
francium
gallium
gadolinium
germanium
vodík
helium
hafnium
rtuť
holmium
hassium
jód
indium
iridium
draslík
krypton
lanthan
lithium
lutecium
livermorium
lawrencium
mendelevium
hořčík
mangan
molybden
meitnerium
N
Na
Nb
Nd
Ne
Ni
No
Np
O
Os
P
Pa
Pb
Pd
Pm
Po
Pr
Pt
Pu
Ra
Rb
Re
Rf
Rg
Rh
Rn
Ru
S
Sb
Sc
Se
Sg
Si
Sm
Sn
Sr
Ta
Tb
Tc
Te
Th
Ti
Tl
Tm
U
Uuo
Uup
Uus
Uut
V
7
11
41
60
10
28
102
93
8
76
15
91
82
46
61
84
59
78
94
88
37
75
104
111
45
86
44
16
51
21
34
106
14
62
50
38
73
65
43
52
90
22
81
69
92
118
115
117
113
23
nitrogen
sodium
niobium
neodymium
neon
nickel
nobelium
neptunium
oxygen
osmium
phosphorus
protactinium
lead, plumbum
palladium
prometheum
polonium
praseodymium
platinum
plutonium
radium
rubidium
rhenium
rutherfordium
roentgenium
rhodium
radon
ruthenium
sulphur
antimony
scandium
selenium
seaborgium
silicon
samarium
tin, stannum
strontium
tantalum
terbium
technecium
tellurium
thorium
titanium
thallium
thullium
uranium
ununoctium
ununpentium
ununseptium
ununtrium
vanadium
‘naitrədžən
´səudiəm
nai’əubiəm
niə’dimiəm
‘ni:on
‘nikl
,nəu’bi:liəm
,nep’tju:niəm
‘oksidž(ə)n
‘ozmiəm
‘fosfərəs
,proutæk’tiniəm
‘led, ‘plambəm
pə’leidiəm
prə’mi:ɵiəm
pə’ləuniəm
,præziə’dimiəm
‘plætinəm
,plu:’təouniəm
‘reidiəm
ru’bidiəm
‘ri:niəm
raθə’fo:diəm
,rən’dži:niəm
‘rəudiəm
‘reidən
,ru:’ɵiniəm
‘salfə
‘æntiməni
‘skændiəm
si’liniəm
si:’bogiəm
‘silikən
sə’ma:riəm
‘tin, ‘stænəm
‘strontiəm
‘tæntələm
‘tə:biəm
tek’nišiəm
te’ljuəriəm
‘ɵo:riəm
tai’teiniəm
‘ɵæliəm
‘ɵju:liəm
ju’reiniəm
ə,nan’oktiəm
ə,nan’pentiəm
ə,nan’septiəm
ə’nantriəm
və’neidiəm
dusík
sodík
niob
neodym
neon
nikl
nobelium
neptunium
kyslík
osmium
fosfor
protaktinium
olovo
palladium
promethium
polonium
praseodym
platina
plutonium
radium
rubidium
rhenium
rutherfordium
roentgenium
rhodium
radon
ruthenium
síra
antimon
skandium
selen
seaborgium
křemík
samarium
cín
stroncium
tantal
terbium
technecium
tellur
thorium
titan
thalium
thulium
uran
ununoctium
ununpentium
ununseptium
ununtrium
vanad
W
Xe
Y
Yb
Zn
Zr
74
54
39
70
30
40
tungsten
xenon
yttrium
ytterbium
zinc
zirconium
‘taɳstən
‘zi:nən
‘itriəm
i’tə:biəm
‘zink
zə’kəuniəm
wolfram
xenon
yttrium
ytterbium
zinek
zirkonium
Notes:
- Before a newly found element is assigned its final name confirmed by IUPAC (International
Union of Pure and Applied Chemistry), its name is based on a system of temporary names.
They use prefixes based on Latin and Greek numerals indicating the atomic number followed
by the ending – (i)um. Thus, e.g., livermorium (atomic number 116), the heaviest element
yet and one of the latest products of nuclear fusion, called after the research centre in
Livermore, USA, was first referred to as ununhexium.
System of prefixes (and their symbols):
0 - nil (n)
1 - un (u)
4 - quad (q)
5 - pent (p)
8 - oct (o)
9 - enn (e)
2 - bi (b)
6 - hex (h)
3 - tri (t)
7 - sept (s)
For example:
the yet unnamed element with atomic number 113 can be theoretically called
ununtrium (= un+un+tri+um)
the yet unnamed element with atomic number 115 can be theoretically called
ununpentium ( = un+un+pent+ium)
- From the point of history, the names of elements can be divided into several groups,
reflecting, for example:
- the mineral in which they were found, e.g.
calcium – vápník - from the Latin word calx (= vápno)
silicon – křemík - from the Latin word silex (= křemen)
- the colour properties, e.g.
chlorine - chlór – from the Greek word chloros (= yellowgreen)
iodine – jód – from the Greek word ioeidés (= violet); its vapours are violet
- the names of planets and stars, e.g.
helium – helium – from the Greek word helios (= Sun)
mercury – rtuť – from the French word mercure (= rtuť) and the Greek hero
neptunium – neptunium – after the name of the planet Neptun and the god
- figures from mythology or history, e.g.
tantalum – tantal – after the Greek king Tantalos
prometheum – promethium – after the Greek hero Prometheus
- names of famous scientists, e.g.
fermium – fermium – after E. Fermi, the Italian physicist
mendelevium – mendelevium – after D. I. Mendeleev, the Russian chemist
bohrium – bohrium – after N. Bohr, the Danish scientist
- geohraphical terms, e.g.
polonium – polonium – after Poland, the country of M. Curie-Sklodowska
dubnium – dubnium – after Dubna, the Russian centre of nuclear research
livermorium – livermorium – after Livermore, the US centre of nuclear research
gallium – gallium – after Gallia, the Latin word for France
- Symbols of chemical elements are pronounced as letters of the alphabet, e.g.
U [ju:]
H [eič]
S [es]
- There are differences in the spelling of some names between British (BE) and American
English (AE), for example:
in BE aluminium
in AE aluminum
sulphur, sulphate, sulphite
sulfur, sulfate, sulfite
- In compounds, some elements use also the Latin version of their name:
Gold – Aurum
Iron – Ferrum (e.g. Ferrum oxide)
Lead – Plumbum
Tin – Stannum
II. Chemical nomenclature
Chemical nomenclature /nəu´menkleičə/ is a system of rules for naming chemical
compounds which is to ensure that the name of every compound, whether spoken or
written, matches a single substance, and, if possible, that the substance has a single name.
The first attempt to provide a system of naming compounds goes back to the late 18th
century (A. Lavoisier) and has been constantly refined. The present nomenclature of
inorganic and organic compounds as recommended by IUPAC can be found in its Red Book
and Blue Book, respectively. However, there exist even other forms of naming depending on
the user and addressee. Therefore, there is no single correct form of nomenclature, but
there are various forms appropriate to the circumstances. The traditional system for naming
inorganic compounds used below is intended for both non-specialist and specialist users
among engineering students.
Beginnings of the Czech inorganic nomenclature go back to the first half of the 19th century
(J. S. Presl, J. Jungmann). However, fundamental for the system is the contribution of B.
Batěk and E. Votoček of 1914 and 1941, expressing the oxidation state/number of elements,
namely the system of affixes (-ný, -natý, -itý, -ičitý, -ičný/-ečný, -ový, -istý, -ičelý).
1. Inorganic chemistry – naming inorganic compounds
A) Oxides
The nomenclature of oxides depends mainly on the number of oxides which the given
element can form.
1) If the element forms only one oxide, the name of the element (cation) comes first,
without any change (irrespective of the valence state of the element), followed by the
word “oxide” [´oksaid], i.e.
element + oxide
e.g. Al2O3 – aluminium oxide (oxid hlinitý)
2) If the given element can form more than one oxide, the valence state is taken into
consideration. It is expressed by:
a) prefixes
mono- [´monǝ-, ´mono-, ´monəu]
di- [dai-]
tri- [trai-]
tetr(a)- [´tetrǝ-]
pent(a)- [´pentǝ-/ pen´tæ-]
hex(a)- [´heksǝ-/ hek´sæ-]
hept(a)- [´heptǝ/, hep´tæ-]
oct(a)- [´oktǝ-/ ok´tæ-]
The prefix becomes part of the word “oxide”
element + mono/di…oxide
e.g. NO2 – nitrogen dioxide (oxid dusičitý)
N2O3 – nitrogen trioxide (oxid dusitý)
N2O5 – nitrogen pentoxide (oxid dusičný)
b) affixes
-ous [-ǝs] (for the lower valence state)
-ic [-ik] (for the higher valence state)
The affix is added to the name of the cation to distinguish between the R2O and RO
types of oxides. They are used only with Latin names of elements:
cation of the element …ous + oxide
cation of the element …ic + oxide
e.g. N2O – nitrous oxide (oxid dusný)
NO – nitric oxide (oxid dusnatý)
c) prefix
sesqui- [´seskwi-]
The prefix becomes part of the word “oxide” of the R2O3 type
element + sesquioxide
e.g. Mn2O3 – manganese sesquioxide (oxid manganitý)
d) prefix
sub- [sab-] or hemi- [´hemi-]
The prefix denotes an oxide in a valence state lower than the common valence state
of the element:
element + sub/hemi…oxide
e.g. Pb2O – lead suboxide, lead hemioxide (suboxid železa)
e) prefix
per- [pǝ-] or
super- [´sju(:)pǝ-]
The prefix denotes a peroxide.
e.g. H2O2 – hydrogen peroxide (peroxide vodíku)
3) Oxides with two different valence states of the element are denoted by combining the
names of both oxides:
Fe3O4 – ferriferous oxide, ferrosoferric oxide (oxid železnato-železitý)
B) Acids
1) Acids not containing oxygen atoms are denoted by:
a) affix –ic [-ik] and the word “acid” [´æsid]:
e.g. HCl – hydrochloric acid (kyselina chlorovodíková)
Hl – hydroiodic acid (kyselina jodovodíková)
b) or the acidic molecules can be considered compounds with hydrogen and the
names are formed as with oxides:
e.g HCl – hydrogen chloride (chlorovodík, plyn)
Hl – hydrogen iodide (jodovodík, plyn)
2) Acids containing oxygen atoms:
To name the acid, the number of possible acids is decisive:
a) If only one acid can be formed, its name is formed by adding –ic [-ik] to the
element
e.g. H2CO3 – carbonic acid (kyselina uhličitá)
b) If only two acids can be formed, as with oxides, the affix –ous [-ǝs] denotes the
lower valence acid and –ic [-ik] the higher valence acid:
e.g. HNO2 – nitrous acid (kyselina dusitá)
HNO3 – nitric acid (kyselina dusičná)
c)
If the given element forms more than two acids, the acid in the lowest valence
state combines the prefix hypo- [´haipəu-] with the affix –ous [-ǝs]; for the highest
valence the affix –ic [-ik] and the prefix per- [pǝ-] are combined:
e.g. HClO – hypochlorous acid (kyselina chlorná)
HClO2 – chlorous acid (kyselina chloritá)
HClO3 – chloric acid (kyselina chlorečná)
HClO4 – perchloric acid (kyselina chloristá)
d) Similar to the Czech nomenclature, the English system uses the following prefixes
meta- [´metǝ-]
ortho- [´oθǝ-, o´θo-]
pyro- [´pairəu-]
thio- [´θaiəu-]
hypo- [´haipə-]:
e.g. HPO3 – metaphosphoric acid (kyselina metafosforečná)
H3PO4 – orthophosphoric acid (kyselina trihydrogenfosforečná)
H4P2O7 – pyrophosphoric acid (kyselina difosforečná)
H3PO3S – thiophosphoric acid (kyselina thiofosforečná)
C) Hydroxides
Similar to oxides, the word hydroxide [hai´droksaid], is combined
1) with the unchanged name of the cation if only one hydroxide can be formed:
e.g. NaOH – sodium hydroxide (hydroxid sodný)
2) with the name of the element with affixed –ous [-ǝs] or –ic [-ik] to distinguish between
the lower and higher valence states, respectively:
e.g. Fe(OH)2 – ferrous hydroxide (hydroxid železnatý)
Fe(OH)3 – ferric hydroxide (hydroxid železitý)
D) Salts
1. Salts of acids not containing oxygen atoms:
To name the salt, the number of possible salts is decisive:
a) If the cations form a salt in a single valence state, the name is formed as with
oxides, i.e. the cation remains unchanged and the name is given by the anion with
the affix –ide [-aid]:
element + anion…ide
e.g. NaCl – sodium chloride (chlorid sodný)
2) If the cation forms salts in various valence states, then, similar to oxides, the valence
state is taken into consideration. It is expressed by:
a) prefixes mono- [´monǝ-, ´mono-, ´monəu-]
di- [dai-]
tri- [trai-], etc.:
e.g. FeS – iron monosulphide (sulfid železnatý)
FeS2 – iron disulphide (disulfid železa)
b) or affixes –ous [-ǝs] and
- ic [-ik]
The affix becomes part of the cation name.
e.g. FeCl2 – ferrous chloride (chlorid železnatý)
FeCl3 – ferric chloride (chlorid železitý)
c) The valence state of the metal can also be denoted by the Roman numeral:
e.g. FeCl3 – iron(III)-chloride (chlorid železitý)
2. Salts of acids containing oxygen
The name is formed by starting from the name of the respective acid, and
- the affix –ous [-ǝs] is replaced by the affix –ite [-ait] or
- the affix –ic [-ik] by the affix –ate [-eit],
preserving also the respective prefixes hypo- and per-:
e.g. hypochlorous acid – hypochlorite (chlornan)
chlorous acid – chlorite (chloritan)
e.g. chloric acid – chlorate (chlorečnan)
perchloric acid – perchlorate (chloristan)
2. Organic chemistry - naming organic compounds
There are trivial and systematic names of organic compounds. Trivial names (such as
acetone, toluene) have their origin in history or in nature. IUPAC takes care of a systematic
nomenclature system in chemistry. The system of naming organic compounds according to
IUPAC is illustrated below.
Systematic names are built up by joining syllables according to the following rules:
a) A syllable is used to denote the number of carbon atoms in the longest straight
unbranched carbon chain in the compound. The number of carbon atoms thus
formulates a saturated hydrocarbon (having only single bonds between carbon
atoms) and the specific compound is regarded as a substituted hydrocarbon (using
prefixes of functional groups, double bonds etc.). The longest straight carbon chain
can be found by following the occurrences of carbon in the formula.
The systematic syllables are:
Number of
Carbon
Atoms
Syllable
(Saturated
Hydrocarbon)
1
2
3
4
5
6
7
8
9
10
meth(ane)
eth(ane)
prop(ane)
but(ane)
pent(ane)
hex(ane)
hept(ane)
oct(ane)
non(ane)
dec(ane)
An ending is used to indicate the type of bond between the carbon atoms:
Type of Bonds
Single bonds
Double bond
Triple bond
Ending
–ane (for example ethane)
–ene (for example ethene)
–yne (for example ethyne)
In one compound there can be more double or triple bonds.
Example 1: Find the longest straight unbranched carbon chain in the following compound
and name it:
H3C
CH2
CH2
CH2
C
H3C
CH3
CH2 CH3
What do we already know?
We have found the longest unbranched carbon chain (highlighted by red colour and marked
by numbers 1 – 7). The number of carbon atoms is seven; therefore, the name of the
compound will be derived from heptane. All bonds in our compound are single bonds;
therefore, the ending “-ane” in heptane is correct.
H3C
7
CH2
6
CH2
5
CH2
4
H3C
C
CH3
3
CH2
2
CH3
1
The carbon atoms in the longest unbranched carbon chain are numbered by Arabic
numerals. The numbers are placed so as to have the smallest number where the chain is
branched (blue groups in our compound, carbon atom number 3). These two –CH3 groups
are called functional groups.
b) A syllable (prefix or ending) is used to indicate a functional group:
Formula of
a Functional
Group
–CnH2n+1
Functional
Group
Name
alkyl group
Prefix
-
Ending
-yl
-ol
–C2H5
C2H5OH
H3C
hydroxy–OH
Example
alcohol
O
CH
HO
–CHO
=CO
–Cl
–NH2
–NO2
aldehyde
ketone
chloride
amino
nitro
–COOH
carboxylic
acid
aldehydechloroaminonitro-
-al
-one
-oic acid /
carboxylic
acid
HCHO
CH3COCH3
C2H5Cl
CH3NH2
C6H5NO2
CH3COOH
C
-ethyl
ethanol
2-hydroxypropanoic acid
OH
methanal
propanone
chloroethane
aminomethane
nitrobenzene
ethanoic acid
What do we already know?
There are two methyl groups (functional groups) in position 3. Compounds with the same
molecular formula but different structure (e.g. different position of functional groups) are
called isomers. Therefore, it is important to mark the position of the functional group.
Isomers usually have different chemical or physical properties.
c) Greek prefixes are used to indicate the number of the same functional group(s),
except for the monosubstituted compound.
Number of Groups
1
2
3
4
5
Prefix
monoditritetrapenta-
Number of Groups
6
7
8
9
10
Prefix
hexaheptaoctanonadeca-
What do we already know?
There are two methyl groups in the compound; therefore, the prefix is “di-” dimethylheptane. As has already been shown, Arabic numerals are used to denote the
carbon atoms in the carbon chain to which functional groups are bonded. We know that two
functional groups are in position 3; therefore, the name of the compound is
3,3-dimethylheptane.
What does 3,3-dimethylheptane mean? How do we understand the name of this compound?
The main (longest) carbon chain is “heptane”. It refers to a carbon chain with 7 atoms.
The ending “-ane” indicates that all bonds between carbon atoms are single bonds. Then we
know from “dimethyl” that two methyl groups are in the structure and that both are in
position 3; therefore, twice 3 (“3,3”).
d) Aromatic compounds
Aromatic compounds without side chains have benzene as the root with the already
mentioned prefixes and suffixes to indicate functional groups. The selected examples are
in the following table:
Structure
Name
nitrobenzene
NO2
NO2
Structure
1,3-dinitrobenzene
Cl
COOH
Name
chlorobenzene
benzene-1,2dicarboxylic acid
COOH
NO2
Example 2: Can you now name the following compound?
H3C
CH CH3
CH CH
CH CH
H3C
Rules:
1)
2)
3)
4)
5)
6)
Find the longest unbranched carbon chain.
Number carbon atoms in the longest unbranched carbon chain and name the chain.
Determine bonds between carbon atoms.
Indicate a functional group/functional groups in the main chain.
Indicate the number and position of functional group(s).
Finally, name the compound.
Solution:
1) The longest unbranched carbon chain is highlighted by red colour.
H3C
CH CH3
6
7
CH CH
4
5
CH CH
2
3
H3C
1
2) The numbered carbon atoms are shown above. The main syllable of hydrocarbon is
“hept”, because it has 7 atoms.
3) Between C2 and C3, and C5 and C6 there are two double bonds – thus there is “di-”
before “-ene”, i.e. “diene”. Moreover, numbers of the first atoms from where the
double bond starts are used before the ending “diene”, i.e. “2,5-diene”.
4) The functional group in the main chain is a methyl group –CH3.
5) There is only one methyl group in position 4.
6) The name of the compound thus is 4-methylhepta-2,5-diene.
Note: When the terminal ending (i.e. “diene” in our case) starts with a consonant, there
is “-a” at the end of the hydrocarbon name (hepta).
If there is just one double bond in position 2, the name of the compound would be 4methylhept-2-ene. Because the terminal ending (“-ene”) starts with a vowel, we do not
have to add “-a” at the end of the hydrocarbon name.
OVERVIEW OF HYDROCARBONS AND DERIVATIVES OF HYDROCARBONS
Part A: Hydrocarbons
Group Name
Group
Characteristics
Name
Selected Representatives
Formula
Properties
H
methane
Alkanes
Cycloalkanes
Alkenes
Alkynes
Only single
bonds between
carbon atoms
(General
formula
CnH2n+2)
Cyclic alkanes
(General
formula CnH2n)
At least one
double bond
between
carbon atoms
(General
formula CnH2n)
At least one
triple bond
between
carbon atoms
(General
formula CnH2n-2)
C
H
the simplest alkane;
main component of
natural gas
H
H
octane
very flammable; a
component of
gasoline (petrol)
C8H18
cyclohexane
can have different
conformations – chair
or boat ones
ethene
(ethylene)
the simplest alkene; a
plant hormone
(causes ripening of
fruits)
ethyne
(acelylene)
C2H4
H
C
C
H
a linear symmetrical
molecule; colourless
gas; the simplest
alkyne
H
Hydrocarbons
with alternating
Arenes
double and
(aromatic
single bonds
hydrocarbons)
between
carbon atoms
forming ring(s)
H
benzene
H
C
C
C
C
C
C
H
H
planar structure;
carcinogenic; liquid
with a sweet smell
H
polycyclic aromatic
hydrocarbon; white
crystalline solid
naphthalene
Part B: Derivatives of Hydrocarbons
Group
Name
Group
Characteristics
Selected Representatives
Formula
Properties
Name
H
Haloalkanes
(halogenoal
kanes, alkyl
halides)
Containing one
or more
halogens
(F, Cl, Br, I)
chloroethane
(ethyl chloride)
H
C
H
C
H
F
C
C
F
Amines
Nitro
compounds
Alcohols
Phenols
(phenolics)
Containing an
amino
functional
group -NH2
Containing a
nitro
functional
group
-NO2
Containing
a hydroxyl
functional
group
-OH
Containing a
hydroxyl group
bonded
directly to an
arene
used as a local anesthetic in
sports
H
F
tetrafluoroethyl
ene
Cl
F
NH2
polytetrafluoroethylene (PTFE)
- produced by its
polymerization; also known as
Teflon or Gore-Tex
toxic organic compound with
formula C6H5NH2, used in dye
industry
aniline
CH3
TNT
(trinitrotoluene)
O2N
NO 2
yellow-coloured solid;
explosive material
NO2
methanol
CH3OH
also known as wood alcohol;
used to be produced as a
byproduct of distillation of
wood
ethanol
C2H5OH
alcohol found in alcoholic
beverages, produced by
fermentation of sugars
OH
phenol
crystalline volatile solid; an
important industrial precursor
to many materials
Ethers
Aldehydes
Containing an
oxygen atom
connected to
two alkyl or
aryl groups
R-O-R
Containing
an aldehyde
functional
group –CHO
dimethyl ether
the isomer of ethanol;
colourless gas
CH3-O-CH3
O
acetaldehyde
(ethanal)
H3C
occurs naturally in coffee,
bread, and ripe fruit
C
O
H
C
R
Ketones
H
Containing
a carbonyl
functional
group R-CO-R’
O
O
acetone
(propanone)
H3C
C
CH3
important solvent; used also
for cleaning purposes in
laboratories
C
R
R'
methanoic acid
(formic)
H
Carboxylic
acids
Containing
a carboxyl
functional
group -COOH
O
C
R
OH
ethanoic acid
(acetic)
H
O
C
part of vinegar
C
OH
H
butanoic acid
(butyric)
contained in insect stings and
nettles
HCOOH
CH3(CH2)2COO
H
unpleasant smell and acrid
taste; present in rotten butter
COOH
benzoic acid
Esters
Containing
a functional
group RCOOR’
O
H
ethyl formate
C
H5 C2
C
R
an aromatic carboxylic acid
O
rum odour (odorant)
O
OR'
Notes: R and R’ represent a hydrogen atom (–H) or alkyl group (e.g. methyl –CH3, ethyl –C2H5
etc.)
III. How to read chemical formulas in inorganic chemistry – examples
Symbol
AlBr3
English
aluminium bromide
AlCl3
aluminium chloride
ND3
deutero ammonia
Pronunciation
,ælju’miniəm
‘brəumaid
,ælju’miniəm
‘klo:raid
‚dju:tərə ə‘məuniə
NH4CO2NH2
ammonium
carbamate
ammonium
hydroxide
ə‘məuniəm
‚ka:bəməit
ə‘məuniəm
hai‘droksaid
NH4OH
SbBr3
SbCl5
SbI3
Sb2O3
AsBr3
AsH3
BeI2
BiBr3
BBr3
CdO
Ca(OH)2
CaCO3
Ca(HCO3)2
CO2
CO
C3O2
CS2
COCl2
Cl2O
ClO2
Cl2O6
Cl2O7
Cr(CO)6
antimony tribromide
‘æntiməni
trai’brəumaid
antimony
‘æntiməni
pentachloride
,pentə’klo:raid
antimony triiodide
‘æntiməni
trai’aiədaid
antimony trioxide
‘æntiməni trai’oksaid
arsenic tribromide
a:’s(ə)nik
trai’brəumaid
arsine
‘a:si:n
beryllium iodide
bə’riliəm ‘aiədaid
bismuth tribromide
‘bizməɵ
trai’brəumaid
boron tribromide
‘bo:ron trai’brəumaid
cadmium oxide
‘kædmiəm ‘oksaid
calcium hydroxide
‘kælsiəm
hai’droksaid
calcium carbonate
‘kælsiəm ‘ka:bənit
calcium
hydrogen ‘kælsiəm ‘haidrədžən
carbonate
‘ka:bənit
carbon dioxide
‘ka:bən dai‘oksaid
carbon monoxide
‘ka:bən mo‘noksaid
carbon suboxide
‘ka:bən sab‘oksaid
carbon disulphide
‘ka:bən dai’salfaid
phosgene
‘fosdži:n
chlorine monoxide
‘klo:ri:n mo‘noksaid
chlorine dioxide
‘klo:ri:n dai‘oksaid
dichlorine hexoxide
dai‘klo:ri:n
heks‘oksaid
chlorine heptoxide
‘klo:ri:n hept‘oksaid
chromium
‘krəumiəm
hexacarbonyl
,heksə’ka:bənil
Czech
bromid hlinitý
chlorid hlinitý
deuteroamoniak,
amoniak -3dkarbaminan amonný
hydroxid amonný
(vodný roztok
amoniaku)
bromid antimonitý
chlorid antimoničný
jodid antimonitý
oxid antimonitý
bromid arsenitý
arzenovodík/arzan
jodid berylnatý
bromid bizmutitý
bromid boritý
oxid kademnatý
hydroxid vápenatý
uhličitan vápenatý
hydrogenuhličitan
vápenatý
oxid uhličitý
oxid uhelnatý
suboxid uhlíku
sirouhlík
fosgen
oxid chlorný
oxid chloričitý
dimer oxidu
chlorového
oxid chloristý
hexakarbonyl
chromu
CrO2Cl2
CoCl2
Cu2Br2
chromyl chloride
cobaltous chloride
cuprus bromide
‘krəumil ‘klo:raid
kəu’bo:ltəs ‘klo:raid
‘kju:prəs ‘brəumaid
FeCl3
FeCl2
HCl (g)
HCl (aq)
ferric chloride
ferrous chloride
hydrogen chloride
hydrochloric acid
‘ferik ‘klo:raid
‘ferəs ‘klo:raid
‘haidrədžən ‘klo:raid
‘haidrəu’klo:rik ‘æsid
HF (g)
HF (aq)
hydrogen fluoride
hydrofluoric acid
‘haidrədžən ‘fluəraid
‘haidrəu’fluorik ‘æsid
H2O2
hydrogen peroxide
H2S
hydrogen sulphide
‘haidrədžən
pə’roksaid
‘haidrədžən ‘salfaid
PbS
LiOH
MnCl2
HgCl2
NO
N 2O
N2O4
lead sulphide
lithium hydroxide
manganous chloride
mercuric chloride
nitric oxide
nitrous oxide
dinitrogen tetroxide
NOCl
PH3
PH4Cl
SiH4
SiO2
AgCl
NaBr
NaHCO3
nitrosyl chloride
phosphine
phosphonium
chloride
silane
silicon dioxide
silver chloride
sodium bromide
bicarbonate
Na2CO3
NaCl
NaOH
sodium carbonate
sodium chloride
sodium hydroxide
SO2
SO3
H2SO4
H2O
sulphur dioxide
sulphur trioxide
sulphuric acid
water
‘led ‘salfaid
‘liɵiəm hai’droksaid
‘mængenəs ‘klo:raid
mə:’kjuərik ‘klo:raid
‘naitrik ‘oksaid
‘naitrəs ‘oksaid
dai’naitrədžən
tet‘roksaid
‘naitrəsil ‘klo:raid
‘fosfi:n
fos’fəuniəm ‘klo:raid
‘sailein
‘silikən dai‘oksaid
‘silvə ‘klo:raid
‘səudiəm ‘brəumaid
bai’ka:bənit
‘səudiəm ’ka:bənit
‘səudiəm ‘klo:raid
‘soudiəm
hai’droksaid
‘salfə dai‘oksaid
‘salfə trai‘oksaid
sal’fjuərik ‘æsid
‘wo:tə
chromylchlorid
chlorid kobaltnatý
dimer bromidu
měďného
chlorid železitý
chlorid železnatý
chlorovodík
kyselina
chlorovodíková
fluorovodík
kyselina
fluorovodíková
peroxid vodíku
sulfan (dříve
sirovodík)
sulfid olovnatý
hydroxid lithný
chlorid manganatý
chlorid rtuťnatý
oxid dusnatý
oxid dusný
dimer oxidu
dusičitého
nitrosylchlorid
fosfan
fosfonium chlorid
silan
oxid křemičitý
chlorid stříbrný
bromid sodný
hydrogenuhličitan
sodný
uhličitan sodný
chlorid sodný
hydroxid sodný
oxid siřičitý
oxid sírový
kyselina sírová
voda
IV. How to read chemical formulas in organic chemistry – examples
English
dichlormethane
formaldehyde
formic acid
methane
methanol
methylamine
acetylene
acetonitrile
ethylene
acetaldehyde
acetic acid
ethylamine
acetone
propane
propene
propylene
propyne
propyl acetate
ethylacetate
butane
butyl alcohol
diethylene glycol
diethyl sulphate
diethyl sulphite
diethyl sulphide
isobutylamine
amyl alcohol
hexachlorobenzene
pentachlorobenzene
benzene
chloroaniline
nitroaniline
phenol
aniline
hexene
hexane
hexanol
benzonitrile
benzaldehyde
benzoic acid
toulene
benzyl alcohol
Pronunciation
dai’klo:rəu’mi:ɵein
fo:‘mældəhaid
‘fo:mik ‘æsid
‘mi:ɵein
‘meɵənol
‘mi:ɵail’æmi:n
ə‘setili:n
‘æsitəu’naitrail
‘eɵili:n
‘æsət’ældihaid
ə’si:tik ‘æsid
i:ɵail ‘əmi:n
‘æsitəun
‘prəupein
‘prəupi:n
‘prəupili:n
‘prəupain
‘prəupil ‘æsitit
‘eɵail ‘æsitit
‘bju:tein
‘bju:til ‘ælkəhol
dai’eɵili:n ‘glaikəul
dai’i:ɵail ‘salfeit
dai’i:ɵail ‘salfait
dai’i:ɵail ‘salfaid
,aisəu’bju:til,əmi:n
‘æmil ‘ælkəhol
,heksə’klo:rəu’benzi:n
,pentə’klo:rəu’benzi:n
‘benzi:n
‘klo:rəu’ænilain
‘naitrəu’ænilain
‘fi:nol
‘ænilain
‘heksi:n
‘heksein
‘heksənəul
‘benzəu’naitrail (-ril)
‘benz’ældəhaid
ben’zoik’æsid
‘toljui:n
‘benzil ‘ælkəhol
Czech
dichlormethan
formaldehyd
kyselina mravenčí
metan
metanol
metylamin
acetylen
acetonitril
ethylen
acetaldehyd
kyselina octová
ethylamin
aceton
propan
propen
propylen
propyn
propylacetát
octan ethylnatý
butan
butylalkohol
diethylenglykol
diethylsulfát
diethylsulfit
diethylsulfid
isobutylamin
amylalkohol
hexachlorbenzen
pentachlorbenzen
benzen
chloranilin
nitroanilin
fenol
anilin
hexen
hexan
hexanol
benzonitril
benzaldehyd
kyselina benzoová
toulen
benzylalkohol
heptane
styrene
ethylbenzene
caprilic acid
octane
propylbenzene
isopropylbenzene
benzyl acetate
nonane
naphtalene
butylbenzene
tert. butylbenzene
ethyl benzoylacetate
biphenyl
fluorene
benzophenone
anthracene
benzil
‘heptein
‘stairi:n
‘i:ɵail’benzi:n
kæp’rilik ‘æsid
‘oktein
‘prəupail ‘benzi:n
,aisəu’prəupail ‘benzi:n
‘benzil ‘æsitit (-eit)
‘nəunein
næftəli:n
‘bju:tail’benzi:n
‘tə:šəri ‘bju:tail’benzi:n
‘i:ɵail ‘benzoil’æsitit
bai’fi:nail
‘fluəri:n
‘benzəu’fi:nəun
‘ænɵrəsi:n
‘benzil
heptan
styren
ethylbenzen
kyselina kaprylová
oktan
propylbenzen
isopropylbenzen
benzylacetát
nonan
naftalen
butylbenzen
terc. butylbenzen
benzoylacetát ethylnatý
difenyl
fluoren
benzofenon
anthracen
benzyl
V. Notes on reading chemical formulas
1) If the symbol of the element is preceded by a number, the number may indicate
molecules or moles, e.g.
2 H2O - two molecules /´molekjulz/ of H2O or
- two moles /´məulz/ of H2O
2) Signs + and – express the positive or negative valence of the ion, e.g.
H+ - univalent positive hydrogen ion [juni´veilənt ´pozitiv ´aiən]
jednomocný kladný iont (kation) vodíku
2+
Cu - divalent positive copper ion [dai´veilənt …..]
dvoumocný kladný iont mědi /měďnatý kation
Al3+ - trivalent positive aluminium ion [trai´veilənt …..]
trojmocný kladný iont hliníku
Cl
- univalent negative chlorine ion [juni´veilənt ´negətiv ´klo:ri:n …..]
jednomocný záporný iont chlóru / chloridový anion
3) Higher valence is expressed by the following prefix + the word “valent“. The prefix is
always stressed:
tetra tetravalent [,tetrə´veilənt]
čtyřmocný
penta pentavalent [,pentə ´veilənt]
pětimocný
hexa hexavalent [,heksə ´veilənt]
šestimocný
hepta heptavalent [,heptə ´veilənt]
sedmimocný
octa octavalent [,oktə´veilənt]
osmimocný
4) Sign
NH2
expresses a bond between atoms and is not read:
bond between nitrogen and carbon atoms
CH3
5) Sign
+
stands for
Sign
=
stands for
Sign
stands for
Sign
stands for
plus
together with
give(s)
form(s)
give(s)
pass(es) over to
lead(s) to
form(s)
is/are formed
equilibrium
plus
spolu, s
dávají, dá
tvoří
dávají, dá
přecházejí do, přechází do
vedou k, vede k
tvoří
tvoří se, vznikne, vzniknou
je v rovnováze
6) Among chemists, there is no general agreement on how to pronounce some of the
frequent suffixes in chemical compounds, although some dictionaries will offer good
guidance. Also, pronunciation in AE and BE can differ and may even vary from laboratory to
laboratory. The most frequent pronunciation of suffixes is as follows:
Suffix
- ene
- ane
[- i:n]
e.g. ethene [´i:ɵi:n], acetylene [´æsətili:n], fluorine [´fluəri:n], toluene
[´tolui:n], napthalene [´nefɵəli:n], benzene [´benzi:n], ethylene [´eɵili:n]
[- ein]
e.g. ethane [´i:ɵein], butane [´bju:tein], propane [´prəupein],
[´mi:ɵein]
methane
- ite
[- ait]
e.g. fluorite [´fluərait], chloride [´klo:raid], sulphite [´salfait]
- yl
[- il] and often [- ail]
e.g. amyl [´aemil/ ´æmail], benzyl [´benzil/ ´benzail]; methyl [´meɵil/ ´meɵail],
ethyl [´eɵil/ ´eɵail]
-ine
-ide
[- i:n] and often [- ain]
e.g. pyridine [´piridi:n], fluorine [´fluəri:n], phosphine [´fosfi:n], iodine
[´aiədi:n]
ethylamine [´i:ɵil´əmi:n], bromine[´brəumi:n], chlorine [´klo:ri:n], benzine
[´benzi:n]
aniline [´ænilain], methylamine [´mi:ɵail´əmi:n]
Note that with some names identical pronunciation may be confusing:
benzine x benzene [´benzi:n]
fluorine x fluorene [´fluəri:n]
[- aid] and also [- i:d]
e.g. hydride [´haidraid], chloride [´klo:raid], iodide [´aiədaid], peroxide
[pər´oksaid], sulphide [´salfaid], oxide [´oksaid], bromide [´brəumaid],
hydroxide[,haidr´oksaid], sacharide [´sækəraid], fluoride [´fluəri:d], nitramide
[´naitrəmi:d], trifluoride[/,trai‘fluəri:d]
-ate
[- eit] and also [- it]
acetate [´æsəteit], perchlorate [,per´klo:reit], dichromate [dai´krəumeit],
carbonate [´ka:boneit], sulphate [´salfeit]
7) The first syllable is stressed if there is no prefix:
e.g: cadmium [´cædmiəm], acetate [´æsəteit]
8) Unstressed syllables are often pronounced in full, i.e. they are not reduced:
e.g. phenol [´fi:nol], boron [´bo:ron]
9) The vowel preceding the following prefixes – acic, - alic, - anic, - aric, - elic, - enic, -eric, etic, -idic, -ilic, -inic, -isic, -onic, - opic, - oric is usually short, and stress is on the syllable
preceding – ic.
e.g. chloric [´klorik]
but: acetic [ ´əsi:tik], ceric [´si:rik]
VI. Some abbreviations in common use in chemistry
Symbol
a.
acet. a.
al.
amor. , amorph.
anh.
aq.
at. no.
at. wt.
b. p.
conc.
d., dec.
dil.
dist.
evap.
i., insol.
liq.
p. sol.
r.m.m.
sol.
English
acid
acetic acid
alcohol
amorphous
anhydrous
aqua
aqueous
water
atomic number
atomic weight
boiling point
concentrated
decompose
dilute
distilled
evaporation
insoluble
liquid
partly soluble
relative molecular
mass
soluble
Pronunciation
‘æsid
ə‘si:tik ‘æsid
‘ælkəhol
ə‘mo:fəs
æn‘haidrəs
‘ækwə
‘eikwiəs
‘wo:tə
ə‘tomik ‘nambə
ə‘tomik ‘weit
‘boiliɳ ‘point
‘konsen,treitid
,di:kəm‘pəuz
dai’lju:t
dis’tild
i,væpə‘reišən
in’soljubl
‘likwid
‘pa:tli ‘soljubl
‚relətiv mə‘lekjulə
‚mæs
‘soljubl
Czech
kyselina
kyselina octová
alkohol
amorfní
bezvodý
vodný
voda
atomové číslo
atomová váha
bod varu
koncentrovaný
rozložit
ředit
destilovaný
vypařování
nerozpustný
tekutý, kapalný
částečně rozpustný
relativní molekulová
hmotnost
rozpustný
sp. wt.
subl.
m.p.
vac.
20°C
specific weight
sublime
melting point
vacuum
twenty degrees
Celsius
above
below
soluble in all
proportions
spə‘sifik ‘weit
sə‘blaim
‘meltiɳ ‘point
‘vækjuəm
‘twenti di’gri:z
‘selziəs
ə‘bav
bi‘ləu
‘soljubl in ‘o:l
prə‘po:šənz
specifická váha
sublimovat
bod tání
vakuum
20°C
výše
níže
rozpustný
v jakémkoli poměru