Grain growth kinetics inolivine aggregates

Transkript

Grain growth kinetics inolivine aggregates
168 (1989) 255-2'73
Scrence PublisheÍs B.v.' Amsterdam _ Printed in The Netherlands
Ta,w4htsics,
Eta..er
Graingrowthkineticsin olivineaggregates
S. KARATO
Ocean Research Institute, Uniuersity of Tokyo, Nakano, Tokyo 164 (Japan) *
(Received June 1ó, 1988; revised version accepted January 12' 1989)
Abstract
Karato, S., 1989. Grain growth kinetics in olivine aggÍegates' Tectonophysics, |68:255-2.73'
Grain growth kinetics were studied in hot-pressed fine-grained olivine aggregates Experimental conditions include
pressuÍesof 0.1 MP4
300 MPa and 1 GPa, and temperatures of 1473, 1573 and 16.73K, with or without the presence
of water. At the initial stage of grďn growth, growth of larger grains occurs rapidly, consuming smaller grains, which
results in significant poÍe entÍapment. Almost homogeneous grain-size distribution ís established in this process. After
this stage, grain-size distribution remains almost homogeneous in most cases. It was found that the presence of water
enhances the grain growth kinetics when the amount of water is limited. However, when the amount of water is large,
the water-containing pores significantly inhibit the grain boundary migration. Therefore the enhancement of grain
growth due to the pÍesence of water is due to the role of dissolved water in olivine rather than the mass transport
through wateÍ. AbnoÍmal grain growth was found in some samples. In these cases, normal grain growth was inhibited
by the presence of a significant amount of water-filled pores, or grains with significantly larger size than the rest
occurred in the staÍting materials. In 0.1 MPa runs, significant porosity developed and the grain growth Íates were
significantly lower than in those at high confining pressures. These results show that both water and pores have
important effects on grain growth kinetics in olivine. When the effects of pores (or secondary phases) in inlubiting grain
gÍowth are unimportant, the grain growth rate in olivine is very fast: gÍowth to 100 pm size wil| occur in 102 to 103
hours at 1500 K. Thus fine grain size in olivine will be maintained only for a short geological time, unless the grain
boundaries are effectively pinned by secondary particles.
Introduction
Microstructures of rocks at the grain scale have
an important bearing on a variety of geological
and geophysical problems. These problems include the estimation of paleostresses from recrysta|Iized grain size (Avé Lallemant et al., 1980), the
mechanisms of preferred orientation and the reSultant seismic anísotropy (Karato, 1987; Nicolas
and Christensen, 1987), and grain-size sensitive
creep (Karato et al., 1986).
Several processes may influence the grain size
of rocks (Karato, 1984). They include dynamic
* Present address: Department of Geology and Geophysics,
University of Minnesota, Minneapolis, MN 55455, U.S.A.
0040-195r,/89,/$03.50
o 1989 Elseúer Science Publishers B V.
recrystallization, grain growth and primary recrystallization. Dynamic recrystallization is a process during deformation in which the total grain
boundary energy increases (i.e. grain size decreases) at the expense of strain energy within
grains. The driving force for this process is the
strain energy stored in dislocations, and grain size
is mainly determined by the applied shear stress
(Twiss, 1977). During grain growth, the grain
boundary energy is reduced (i.e. grain size increases), the driving force being grain boundary
energy. Grain boundary migration may also occur
after deformation, being driven by dislocation energy (primary recrystallization).
The importance of these processes depends
primarily on the ratio of strain energy stored in
dislocations to grain boundary energy. Dynamic
S- K-{RATO
2)t)
recrystalfization and primary recrystallization are
important at relatively high (initial) stress and/or
coarse grain size.
Extensive studies have been carried out on dynamic recrystallization (for a review, see Urai et
a1., 1986; Karato, 1987). Toriumi (1982) studied
the primary recrystallization in olivine (see also
Morcier, 1979). However, relatively little attention
re grain growth in minerals.
t82) studied the grain growth
aggregates, and Olgaard and
the effect of secondary phases
:alcite. No experimental studken on grain growth in olivine
inary results by Karato (1984).
The purpose of this study was to obtain the first
data set on grain growth in olivine and thereby to
better understand the physical processes that may
govern the grain size of olivine in the upper mantle.
The driving force for grain growth is the grain
boundary energy and the grain growth rate decreases significantly with increase of grain size
(e.g. Kingery et a1.,7916). Therefore fine-grained
starting materials are necessary in order to observe significant grain growth within an experimental time scale. Hot-pressed fine-grained olivine
aggregates were used in this study. The starting
material was the San Carlos olivine. Its chemical
comoosition is shown in Table 1.
TABLE 1
Chemical composition of the starting materiď
wt.Vo
FeO
Nio
Mgo
CaO
Total
Sample
Method of grair
Average grain size
size separation "
(p m)
Powder suspended in
1.3
(cs)"o
(cs),"
alcohol after 20 hours
Powders suspended in
1.0
alcohol after 2 hours
but deposited after
20 hours
Powders suspended in
2.3
).1
,a
8.3
alcohol after 10 min.
Powder suspended in
alcohol after 20 min.
but deposited after
t hour
u The powder samples and alcohol were kept in a 50 cm height
cylinder for graín síze separation'
o (GS)" refers to the mean grain size defined by number
" (G,S), refers to the mean grain size defined by volume
fraction, i.e. (GS), : Iť,so) dr, where g(r) dr is the
volume fraction of grains the grain size of which is r - r { dr.
Specimen Jabrication
sio2
Methods of grain size separation and average grain sizes of
olivine powders
de nsity, i'e . (Gs)" : I ť, ÍQ) d r, whe re f (r)d r is the nu m ber fraction of grains the grain size of which ís r - r ldr.
Experimental procedure
Al 2 o 3
TABLE 2
41.23
0.00
7.83
0.26
50.72
0.00
100.04
About 3-5 mm size optically clear olivine grains
were hand-picked, crushed in a tungsten carbide
rock crusher and then ground in an alumina or an
agate mortar for 30 to 200 min. The optical microscope observation on decorated powders showed
that these processes introduced few dislocations.
Powders of particular grain sizes were separated
by sieves for grain sizes larger than 38 pm, and by
the sedimentation method (in alcohol) for the
smaller grains (see Table 2). After separation of
grain size, the samples were dried ín a Co/Co,
K for
gas mixture (Ío,:10-5 Pa) at 73.73_14,73
10-20 hours. In order to avoid the precipitation of
carbon, argon was flushed after the temperature
dropped below ca. 1000 K. The grain-size distribution of the starting powders was measuÍed by the
Elzon Particle Counter and the results are shown
in Table 2 and in Fig. 1.
Hot-pressing was carried out with or without
the addition of water using a gas medium apparatus described by Paterson (1970). The thermodynamic conditions and the details of the hot-
S KAR.\TO
rain
,M"{tr\ GROWTH
IN OLIVINE
AGGREGATES
sizes oÍ
lm srze
c
a
o
tr
_--:-
c
o
o
o
(( '5 ), .'
E
o
5. 1
8.3
c
1
a
o
6
6
c
o
r:O cm height
d by number
b is the numsr - r l dr.
(!
c
o
o
o
E
a
E
l
by volume
d
( r rdr
35
t5
I
is t he
4 45
5
gra insize, P m
h is r -r*dr .
É
c
lirine grains
ilen carbide
nmlna or an
ltical microlers showed
ilislocations.
nE separated
pm, and by
pl) for the
cparation of
a co/co2
-1473 K for
cipitation of
temperature
size distribusued by the
ts are shown
6
(í
c
o
o
o
c
o
E
o
!
)
o
1o
5
)
ó
c
c
ó
0
6
tr
o
o
C
o
G
o
o
E
o
o
=
l
5
r or without
lium appararc thermodyof the hot-
grainsize , Fm
gra inslze, pm
gr ain size, P m
5
lo
t5
20
g r ai n si z e , P m
F i g ' 1 .G ra in - sizedist ribu t ron ofst a rt in goliúne p owd e rs'Me thod sofpowd e rpre parationare d e scribe dinT able 2. Arrow sind icate
theaverageg.u'',,.i""'Approximately2000grainsweremeasuredforeachspecimen'
sEt etu?s egl ?dI^I00€ lV .eJoJoqp3qlJcsep
Bdtr\trI.0 r3 páIJp pu€ JelB/ť\lnoqll^{ (€dl^tr
l") passaJd-loq eJea sleueleru tu4rels eqa
samsserd q8g le suolllpuoc (..Árp,,) eeJJ-JelB,t
Dpun ep?tu eJo/t\sluelulJedxa 8uqeeuu€
V
'sunt ,,r(Lp,,anssald ^\eJ
qBtg
D
ÚD
Ú
Ú
D
E
'O
tn
jn
'(986I ''P
peuleluoc
Áeql luql pe,ry\oqs
ra oturuy) Je1?^\eeJJ
.sarod
peureluoc Suolllpuoc
Ádocsorlceds peJB{uI
popp€-Jel"^\ Jepun pelueuue se1dures oqr IIV
.€dl\tr
€' 01 lIIo{ petuur
peJJncco
ssaJls IBrlueJeJJIO'uorl"ruJoJep tuunp
'
,176p
.€
'
L'
.soN
qurorE uwl?
pu"
suru uI
'uolsrd eqt
'I8'
;o ..1urod-qcno1'' eql 8uunsuaru Áq pero1ruour se.tr
IIcTq/t\'uoll?clJlsuep Jo uoIlBSSec eql JoUE peulJep
sr eruq Euqeauue eql 'esuc slql uI 'Sursserd-1oq
eql s€ uru elu?s eql uI pel€auu? arearrsa1dures eql
aJeq \ sunJ Jeqto ur perynls aJa^r scrlauDl qprorE
uTBJ9 .el"J qunort urur8 uo sI?IJál?uI Butuels
uI sácueJaJJlp Jo slceJJe eql ezilulullu ol JepJo
ur lno perJJEc su.u eldruus errres aql uo tuqeeuuu
anlsseccns srqJ .eqnl uoJI ulql u Áq ueurrceds
oql uoJJ pa1eredas s€^\ qcTg.{\ oc1u1ut pasolcuo
arelr saldruus eq1 'suru eql Surrnp Jolp^\ Jo edecse
a1qrssod eql pIoAB oJ .pa^Jasqo S€'r\ aJnlcruls
-oJcTru eql pue eldures aql Jo Jaluec egl ruo{ lnc
sem eldures Jo ecr1surql ? 'suru aseql Jo qcea JoUV
'ezrs urert Jo uorlprJe^ erurl eql e^Jesqo o1 saldures
áIuzs eq1 uo epzru eja,rr slueuruedxe 8uqeeuuu o^Is
-ser8ord,(IE6?,s(,6v,Ez6v,8Í6l pue 8z6v ,vT,6ý
'ZT,6V'VI6V 'so5f sunr Jo serJeso.rl uI 'tursserd
flE{I
-loq JoJ se snlerudde sz8 eures eql Eursn 'eJns
-serd 8urur;uoc edtr^tr
0o€ l3 1no peuJ€c s31r\suoll
-rpuoc (..leart,,; peppB-JelB.4{\rapun Euqeauuy
'sttnJ .61aŮ1''alnssald t73t11
I'
usl{t
(b{r
yýa,Í
t.}
l.8Í-7,I
.€ eIqBI uI pezuBlutuns eJ€ sllnseJ eql puB
suolllpuoc I?1ueuluedxe eql .s1uaulJadxa ;o sedÁ1
pJe^es ut parpnls aJeld scrleuDl qluort urerg
It
]}
!t
It
It
T'
I'
s
t Et
ll.'l
0lrt
sřzl
I0Lý
!E
'oN
ls
rmu
;o Áreururn5
€ alsvJ
troťo Nlvilc
."/)
eJnlx(u seB Lg3/ga e at
t,LvI ý (ea ,-0t :
pdtr^tr
T'0 lB parJp eran seydurusesegl 'Sussard-1oq
eql reUV 'Qrlrc/B 96'9) serlrsuep lecllaroeql tsotu
-1e e^Bq JelB^\ lnoqlv( passard-1oq eldues aqa
'e1er qltrorE urerE eql Jo Jellecs
ut pellnsoJ qcg^\ eIg€IJ€A s€Á\ Á1tsorod IBuIJ eql
.Á1q
.l1nset € Sv .pelloJluoc
ile.{\ lou eJe^r qc1q,tr
-{uesse uaurrcads eql Jo pue sa1drues eqt 1o Á1ryq
-eaurred egl uo spuadap Sursserd-1oq ra1;e seldures
eql uI peuleluoc Jelu^\ Jo 1unolu€ aq1 .a1durzs
eql tn 1de1 su,rr JelB^\ Jo 1unoure n|eal? € l"ql
turlecrpur 'unJ eql JoUB uerurceds eW ;o pua do1
eq1 J€eu uallo^\s selr 1e1cu|uoJI eq} .uaurrceds eql
pue sacerdpua eullunp aql uee^uág pelJasul eJe^\
$lsrp uorr {cFlt-ruu g ereq r (1697 'o5f tueu
01 elq
-uedxe uE uI 'uorleclJlsuep a^BcoJJee^ar-Llce
-rssod lr ep?ru JelB^\;o edecse eqJ 'suoqrpuoJ pep
-p"-Jál€^l ur turssard.loq Jeil" uolstd eql uI soloq
e1dnocourraql aql uI puno; sÁerrrp eJa/h Jal€^\ Jo
sdorq 'araqdsourlu uotru BurpunoJJns eql otrla>1cef
uorr oqt qEnorql pesnJJlp ro (7 'trg aas) uolsrd
eql ur seloq eldnocotuJaql o1 secetdpue BurIunIB
eql 1sed padecse Jel€^\ aql .tursserd-1oq But
-JnO 'Jel?.ry\qlLv\ pel"Jnl"s lsoru1u se^racuds erod
eql'suorlrpuoc poppe-Jelu/( Jepun Eursserd-1oq
aql ol JoIJd .qB\oJ8 urerE uI Jalu/t\ Jo áIoJ eql 01
uoIl€IeJ ut Butsserd-loq Euunp JelB^\ Jo Jol^uqeq
uV .(986T)
eql Jo araq uanrB eq il1lr\ lunocJ€
'IE le ol"Jp) ur poqrJcsep eJ? empecoJd tursserd
'emsserd
e4;41
Bururguoc
.7 .Btg
ure.rBpue)8utssard-1oq
:o; Á1quressy
0o€ tu (qt.,'ro.rB
eJ-O
brlY@
et-O
-l
ol
I
anpacolď 8u1oauuv
€ j -O
'sueurrceds paup esoql uo lno perJJ?c eJe^\
slueuruedxe qurrort ur?lt ..Átq,, .G86t ..Iu le
ol"J") eeg) seldur"s perJp eseql ur JelB^\elqelcolep
ou páAoqs Ádocsor1ceds peJBJJuI .sJnoq 0z JoJ )
OJYTT\ilX
S
892
259
N OX-TTT\-E {rcREGATES
toqu0
EE
PEÍIÍřE''E
fulIEE
!L
Ú@iál
D
f,f,sl
filn
.fit101
.f"ilm
m rerEd
mditims
3.
Ú@
-) condilng prsfor hor14. 49L
progresthe same
faur srze4le v'as
E mtcropossible
iles rl'ere
fuom the
Eesslve
d out in
Ences ln
:. Grain
m *-here
n as the
time is
n- n-hich
pint" of
r growth
rl stress
r-added
fosmpy
arato et
e under
essures.
(at 300
lffa as
gas ap-
us@
[n&
filol
s101
.{-tr
.
Temper-
Pressure
atule
(K)
(MPa)
r573
r4'73
r4'73
Water
o
Duration
Average
Density c
(hours)
grďn size
(E/"^. )
(pm)
0.5
45
187
46
90
r32
200
10
18
to /J
300
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0 .1
0.1
dry
dry
dry
dry
dry
dry
dry
dry
dry
dry
300
300
300
300
wet
wet
I
1
2
wet
4
l) /J
l5'r3
7573
1573
7673
7673
ÚHil
m;il
Í1)1
rÍ]'01
{nn
A
flg
4914
{Dtr
1924
14'73
I4'.73
7473
1473
{NM
m
ffi
{I8!r
A
4918
4923
4925
rs'73
15'73
15',t3
7573
300
300
300
300
wet
1
wet
1
s.mr
c
D
t5'73
14'73
300
300
wet
#.,8F
{5ó
160
{m4
{EI
{SE3
s3D
4891
{lm
B
B
C
B
A
c
75'73
1573
1573
75'13
14'73
1413
1513
1.573
15'73
300
300
300
300
300
300
300
300
300
B
A
7s73
75'73
300
1000
sz1
1929
lokb
A
A
Comments
wet
wet
wet
wet
dry
wet
5ó
2.6
3.6
5.3
'7.9
10.8
11.8
15.5
r23
18.3
z 5 .2
'7.8
2
Á
4.5
3
40;r
25.5
3.2'l
8
1
5
22.0
3.33
3.30
3.27
2r.8
wet
wet
J
dry
dry
3
20
11.1
37.2
wet
3.29
3.24
2.5
2.5
1
2
wet
3.17'r
3 . 1 1d
3.21d
3 . 1 3d
3.04d
7'7.3
24.5
35.0
44.1
dry
wet
3 . 3 1d
3.30d
3.30d
3.22d
10.7
14.8
21,.0
45.2
13.1
18.3
20.5
3.6
t7.7
29.8
wet
J.JI
).21
Deformation
(abnormal grain growth)
J.JJ
Deformation
Deformation
2.6-2;7
3.2'7
3.26
Deformation
3.30
3.33
(abnormalgrain growth)
Deformation
' For explanation of A, B, C and D, see Table 2.
o *DrY'' indicates water-free conďtions; ..wet'' indicates water-added conditions'
' Density of olivine grain is 3.33 g/cm3.
d Estimated from point counting on thin sections.
paratus as for hot-pressing was used, but in a 1
GPa run, a piston cylinder type solid-medium
apparatus was used.
In two runS (NoS. 4821. and 4929), grain gÍowth
occurTed during deformation. The ďfferential
stress ransed from 25 to 72 MPa.
0.1 MPa pressure "dry" runs.
The starting material was hot-pressed (at 300
MPa) without water. Thin slices with ca. 0.5 mm
thickness were cut from the hot-pressed sample
and annealed at 0.1 MPa in a CO/CO'
gas mixture (/o,: 10-s Pa) at 1473-1673 K.
lonur8rur Árepunoq urer8 o1 enp ssecord luaurderlue erod
r 3uuvroqs 'tavr patre1ue q7 .3 .Árepunoq urer8 Bul^otu eql
-i{ pouuoJep serod pelq-rele.r tur,roqs ,revr pa8rulue uy 'g
urcr8 q8noJql ssecord luaruder1ua arod Jo pJocal aql
ano:€
rroqs surer8 eql eplsur arod ;o uollnqulslp áqJ .s3ll"punoq
fuiaour Áq padder1ua aq Áeu sau?punoq urzrB 1u sero6
TuTJ snonuÍluoc sB ueql Jeql€ J seJod pál?Iosl uI sJncco Jel?^\
s'uepunoq urÚJ3 lv 'souepunoq upr8 1u puu surerB eql eplsul
q|oq sJncco Jal?^\ .,t\er^IT€ J e^o .V .suolllpuoJ PaPp?.Jel?^l lÚ
pepe(ru? pw passard-1oq aldurus eqt Jo sornlcrulsolclll1 'g 'tld
pelpy (selqqnq Jo) sarod Jo acueserd er{l sr sernlEaJ
alq€lou eql Jo euo .snoeue8ouroq eJolu aurc'eq
uorlnqrJlsrp ezrs-rruJB oql pu" paJJncJo q1lrroJ8
ur?Jt lupcrJru8rs 'tuqueuue puB Bursserd-1oq
ralJv '()I 'Erg) uoqnqulsrp ezrs-uTpr8apr.r, qlr^\
"
Jep^\oduror; pesserd-loq se^\aIduIBssTtIJ .€ .tl'q uI
u^\oqs eJ€ suolllpuoc papp?-Jel",/l\ Jepun peleeuu€
pue passerd-1oq eldures e ;o sqdertoJcrruoloqd
sunJ .(lad1,,anssail
qfup
.,^Í\oloq
pessncslp eq ilI/l\
s? 'qllrroJB umJB uo slceJJa lu"JrJrutrs al?q ol lno
peuJnl Áaqt pue Suolllpuoc tutssard-1oq aql qll.t\
Árel ol punoJ aJe^\saJod Jo uollnqulslp eql puu
.tIIu .?c
lunouB oqů
9
Jo uollnlosal aql 01 sas€qd
Ásse13 uror; aoJJ aJe^\ seu€punoq urert aq1 ;o
.suollcunf a1du1 ÁIurcur peJJncco Áaqt
lsol^I
lB
tnq
.seuepunoq urer3
1e pelJnuepl Á11euorsuccoarazrr
seserld Ásst19 .serod ro; ldeJxe sasuqd Árepuocas
uoJJ eeJJ lsotup eJe^\ seldluus eql 1Eq1 pá.&\oqs
Sursn suorlu^Jesqo IBJnlJnJlsoJcrI I
WAI
sllnsou
'poqleu Surlunoc lulod eql
Áq ro poqtatu u€epeurqcJv eln Áq peJnsuetu eJe^\
suaurrceds eqt Jo serlrsorod Jo sarlrsuep eqJ
.Ádocsorcrur uoJlcela
uolssTlusueJl pue pcr1do Áq parpn1s se,t\ .soseqd
fuupuocas Jo uorlnqrJlsrp eql pu" ecuelsrxe aql
Á1urcedse .seuupunoq urer8 eq1 Jo eJnl€u eqJ
.Ápn1ss1qt q
.ed"qs
s'I eq ol petunsse $ lnq
ureJt sB IIe^l s€ uol1nqulsp ezrs-uTuJ8 uo spued
-ep J luelsuoc ÁllleuoluodoJd eqa .(6961 .uos
,(l)c:
(sc) Áq
1epua11) lu?lsuoc € sI , eJeq^\
(7) q1tuo1 ldecrelur et€Je^€ peJnsealll egl uIoJJ
pelurlrrlse sen, (59) ezrs urcr8 aEureny 'poqlou
ldeJJelur aql Sursn suorlces rmll uo eperu are^\
slualuoJnseeru eas-rrrurt aql IIB .I{as Áq sec€JJns
oJnlcu4 eql uo pa^Jesqo eJel\ qcrq^\ Jo seJnlcnrls
-orcrru oqt 'I68t 'o51 aldurus egl JoJ ldecxg
lrm
lq
!turry
rA{
tuil
lL 1JL.'
r sarud
uP xF
E[EL\
mfu
) 3(F J(a
.!B FAIE
F3{rrroJ
\uelt
ptrnoq
u 3q T
s-repB
'o{!rJ)
sedocsorcrur uoJlcale uorssnusu?Jl puu (ltaS)
turuuucs '1ecr1dotursn pe,,rrasqoerea seldures
papauue/pesserd-1oq Jo sernlcrulsoJcrruoqJ
JNJJO
É aqt
{l sprs
Jod
tr qlr,r
) NI\.UC
uouoa.tasqolDrru?n4soDltlt Jo poqtaw
oJvuvx
s
*; -..:
:;
.:i';;;ň;;#;' "*;;
tru:5..:.! Fig 3). Most of the pores inside
Úll[/M.
tu 5:"::
fl03lij!-r-:-::a:llialh in zones surrounding the angulúi.ur-.'T-!:c.
-...res. in which no pores are found.
'Det*'een
-:;
ll'lc
, :-s
the zone and the grain
.]1Í|lllirillLi]ú].i.:.r e a relatively small number of pores.
.tl!5
' -.::epores on grain boundaries are de]|lÍÍ]TTu:':
i"3. .l3. C). Deformed pores are associL..-ú..ť'
::ned grain boundaries, and the shape
l, |1ť::: : :Ínedpores Suggeststhat grain boundary
E:E;- --.in these cases is driven by the grain
!í r|]'::.. Čnergy(Karato' 1988). In Some cases,
[!É:.:. bl moving boundaries is so marked that
l r::
torn and trapped into the grains (Fig.
-.
'{-- ]-:-: srze of pores inside the grains appears to
Ír-::s- irom the center to the outer part (see also
;r i
-,'r. This suggests an increase in pore size
-:
;-:.rain growth.
Fig.
4 are shown the dislocation structures of
-.siine
sample
as shown in Fig. 3. Three regions
^rr.
:.early recognized. The central portion, often
":.
r---.:lar shaped, has relatively low dislocation den-
very high dislocňion deisities which coincides
with the pore-rich zone. The dislocations in the
outer rim between the dislocation and pore-ricl
zone and grain boundaries are mostly straight and
perpendicular to the grain boundaries. These dis.
locations tend to be parallel to the [100] or [001
orrentatron.
Initial rapid grain growth consuming fine grainr
was also observed with the other starting materi.
als. However, the kinetics of this initial stage ol
grain growth was found to depend on the initial
grain-size distribution. The wider the starting grair
distribution, the faster the initial stage grair
growth. The pore-rich zone was not clearly seer
when the starting powder had a relatively uniforn
and fine grain size. Entrapped porosity was gener
ally larger in samples hot-pressed from powders
with wider grain-size distribution (see Table 3).
The SEM micrographs of sample No. 4891, the
densification of which was imperfect due to the
effective sealing of water, are shown in Fig. 5. Thr
rounded shape of grains clearly indicates signifi.
cant mass transport driven by surface energy. Thr
30 pm
Fig
4. Díslocations in a hot-pressed and annealed sample revealed by oxidation
j : . 1^^^+: ^.
decoration. Note the dislocation-rich
zone
.ŮeJpeq Jel"^\peppu lnoqllt\ (eac t ro e66 gg5)
ernsserd turur;uoc q8q t" suorllpuoc ee{-Jolu,t\
E pelueuup pue pesserd-1oq saldurzs eqJ
suru ,,rup,, anssatd q3111
'lseJ aql u?ql azrs raBrul qcnur
qtr,t sumr8 peul€luoc plJel€ur 8utuels aqt rc/ptn
atru1 senr Á1tsorod eJeq.tr punoJ s"1t\I{lť\oJEurer8
IEurJouqV 'surur8 Jalleurs Jo slslsuoc qcrq^\'xuleur
eql uI punoJ surn oceds erod luecr;ru8rs pue 'serod
.seszc esoql
.iueur paure1uoc sÁerrrp surer8 otre1 eqt
.(0I
.3rg)
sroqro eql u"ql ra8re1 Á1uturouqu
uI
e u\ ,(L
suprE Jo JeqÍIlnu IIeuIs 3 ses€c
'narE
^\eJ
.trg)
1eurrou-Bo1 Á1a1eurxordde sen se1drues eql
Jo lsoru ur uollnqulsrp ezrs-urert aqt qtnoqtly
'e1er qpror8
rrrert 1ca;;u Á1luucgr.uB1s1ou seop deerc uotsn;pp
tuulo'rur uorl"IuroJep luql uees st 11 '(9961 "p 1a
o1erey) daerc uorsn;Jlp sI ses€c esaql uI peAIo^uI
.uoll€turo;ap 8urrnp
rusru€qceru uoll€IuJoJáp eq1
saler qilrorB urert aql are 6 '8rg ur pettold oqy
.|ouJ/Í\'
09I: * g pve G,/,ut;
aql
x 9'T:0r1 surulqo euo (ernleredulsl alnlosqe'-o'
.Átreua
uoll€^Ilce
sI J puu lu€lsuoc set aql sr y
aql sr * !r 'urre1 lurluauodxa-erd aql sr 0r1 ueq,t.)
k)
'l '8ta q ud\oqs sI llns
lururou-8o1 tsorup uV
eql Bursn
-er eql :poqleu (qsor) usurllnJ-uqu3
sa1duresoql Jo aluos ur peleullse s€',r\ uorlnqulslp
azrs-ur?Jo 'eur1 ttrrpeuuu qtrl\ soseeJcurezrs urert
leql uaas $ tI '9 'tI.{ ul u,{oqs sr seldurus pepeu
-uB uI seJnlcrulsoJcTtu Jo uoll"u€^ alull eqJ
'seldurus (firsuep pcrleroeqt
oÁL6<) esuep Á1anr1BIeJJoJ Á1uo apeur eq II1rn
.8urzno11o;áql uI .sa1dures
srsÁ1eue a,r1lztlluznb
Jesuep Jaqlo eql uuql Je^\oIÁ1tuecr1ru8rssem (o691
.ec Álrsorod) s1dulzs snorod slql sI a1ur qyrrorB
urzr8 eql 'Jene,uro11'(Vf 'tta eas) rep,v'od Surlrels
eql JoJ ueql reBruy sPA\ ezls ururB atereiru eql
uollnqlJlsrp ezrs-urerE
pue snoauatouotl eJoru su,^.t,
'(6 'Btg aes) seldtues
Jesuep uI 13q1 uzql ra1prus Á1luecr;ruBrs sr e1dures snorod s1ql
.:eaa,to11 .Átreue ace;rns Áq ua,,rup
ut a1er q1,raorBurer8 1zra,ro
surerB ;o adeqs pepunor eq1
sel€
J
IPuI
ssBlu
e^rlc?
uodsuer1
'(Vf 'ttS) rap,trod EurlrBls eql ol paredruoc ezts urer8 .ra8rel
.(rogt .oN) Álrsorod q3Tq qt1m
lnq uIJoJÍun Á1e,rqz1ereql eloN
.E .Btg
e1dures passerd-loq 3 Jo sqde:8orcrur uol1calá Buruuec5
(tu/"í-)dxe o , t : , t
:IIIJoJsnÍquaJJv eq1 ur pesserdxe
.(Á1rsorod
sr ecuepuadap ern1eredruel eql uaq16
eql 01 .Á1qerunsard .enp) a3re1 fuaa
ut uoll€u€^
sB^\sunJ lueJeJJIp 8uoure uoI13IJ3^eql ecurs Ápn1s
sTtll IuoJJ paulluJolep Á1rood Á1uo selr ecuepuedep
ernleredurol '6 '8Id ur ps11o1d sr elBJ qunorE
.lu€lsuoc
ururt ;o ecuepuadep ernleredurel eqJ
pue 1 : I eulll
eleJ ? sI 4 pue.Á1e,rr1cedser0:l
0Sg
pug
eraqzn
eql
eJ"
urer8
'7 : u ql!\l
ezTs
ls
S.)
(r)
DI::59 -,S9
:uorl?IeJ 3uus,o11o;oql llJ
'suru
oqt lnoq8norql purrou-8o1 lsourle
Et"p aqJ
peurerueJ uorlnqulslp ezrs-urztB aq1 'poued iloqs
Á1qr8ffieu ? sB1ť\qlndoJ8 urer8 ;o etu1s pl}ruI eql
pu€ (VI .Erg) azs urur8 eur; uJoJIun lSoIuIE {I3
peq reprrrod SulrBls eql 'sesec eseql uI '8 'tlJ uI
u^\oqssr azrs rrrer8 etere,\e Jo uoIl€IJeA aIuI1eqJ
.(1161 .uoproc pue lu€qcJuI^tr .3.e) qrtror8
urer8 lerurou 8unse88ns 'punoJ sed\ uorlnqulsrp
orvuvx s
z9z
s I.d,.:" tr [
,,ill| \L*-
-'
-
'-\E
{C'GREGATES
263
tormal gÍ-.rr
9i7).
size is shor:
powder hac
:ig. 1,A.)an;
a neglig:bn'"
L1nrema1nď
n-s.The dau
(1 r
grarn SŽe aI
l Á. is a rate
lce of grain
Temperature
ad from this
ent mns was
vJnatlon ln
pendence is
\2 )
t_
tBt
E* is the
and ?" is
; :1 .6 x
gro\\'thrates
t rnechanism
reep (Karato
(.}ninvolúng
aťfectgrain
n in most of
o".rmal (Fig.
gÍerns grew
Fig. 10). In
rrarnedmany
frrund in the
s. -{bnormal
Ltl \\aS large
J sÍains with
annealed in
rng pressure
ater had few
2 hours; (B)
at 1573 K, 300 MPa at wateÍ-added conditions' (A) After
Fig. ó. Time variation of microstructures in samples annealed
after 4 hours; (C) after 8 hours'
uo Á1ululrrpeJJncco seJod eql .(srnoq 00I < )
tuol ro; puz $
EISI <) sernleradurat
FI lB pel"euu" saldures ur pe^Jesqo seantuqlems
.I"Fel€ur 8ur}rels eql q uelil snoou
r c9ru3t5
douoq eJorusB^\saldues paleaurrueqt rn uorlnq
{Bsrp ezls-ururt eqa .(g etqzr) Buríuauuetu]rnp
firporod uI es?eJcul u3 atull aru"s aql l€ pue
*.rs urur8 rn es?eJcrn Im pe^\oqsseldures eseql
-II .tIď uI uÁ\oqs sI BdI^i I.0 1" pepeuue se1d
{res eqt Jo eJnlcrulsoJcrruagl ;o eldurexe uy
'lu€ l suoc alPJ 3 sI 11pue Á1a'rncadsero l pu€
.t7:
elml lB ezrs urert eql aru o59 pIIB ,s9 eJeqÁ
.a.I .irre1qprorB ure:8 arunbs aql lIJ ?l€ P aql .T€ e uu"
': '
- zs9
's9
á^Issaccns re1;u e1dures eIIIBs eq1 uo ep"Iu arax ern1eradtuo1
qfie lB sluerueJnseeru eql 'ezrs urer8 Jo uolpu"^ eula'g '319
(,1)lo'bot
to
suru .<^Jp,'DďW I'0
o
o
.Jele^\papp€
lnoqllt peleeuue se1duruseql ;o
.ursorod roiaol eql epdsep '(O '8tg) suollrpuoc pep
-pe.Jel€^l Japun a1BJq}rrort ururt eq1 uuql JolIBIIIs
.sorod
i1luecqru8ts s€^\ el€J qyrrorE ururE aq1
o
í!,
N
o
(h
oJ9
cE
5
.!
yt19 I
'deerc uors
-ng;rp Suunp seler ql,tor8 urerB eql el"crpur salBueul 'suotltp
.uoJ eeJJ-Jál"/t\ JoJ aJ? seuo uedo puz suolllpuoc pepp?-JelP1Y\
.ube Áq peur;ap
lu"lsuo'
ro3 ere s1oqwÁs pqos .lxel eqt ut (l)
urur8 5o acuspuedep a:n1e:adurea '6 '3r4
elpJ ? sr 1ql,trort
(v)1/r0l
ot
89
9.9
ý.9
z'9
0.9
.peJnýaruare,rrr
P uo
srrrer8oý8 .uoDceslBuolsueulp-o1ý\l
eql
uIoJJ
uollnqulslp
eql
luelueJns"áIu
lEuolsuarulp.eergl á,l?ul
.Ilsa o1 pesn sEÁ\poqleu (9s6I) uetullnd-utT€ J eqJ .uollcas
.ox) e1durespa1ueu
ur.ql? uo ep?ru s"^\lueuelnsuáI^I.(ooot
eq"L 'l 'BId
eas-utert
pessard-1oq
ur
uorlnqrllsrp
pue
-Tr"
"
(uJd )
YI
0ý0e oz
ol
azls ure J o
9
( r68t * O )
I
V
o
I arnsseloqolq
O
,tup.
vL
o
!
3
3
o
o
o
o
o
D
D
tr
a
oJvllvx
s

Podobné dokumenty

`š. `tOO pm

`š. `tOO pm uerep. both approximately one order of magnitude tKarato et ď., 1986). Note that the observed enbncement of the grain boundary mobility may crylain the enhancement of dynamic recrystallizadon due t...

Více

id Assisted Recrystallization in Upper Mantle Peridotite Xenoliths

id Assisted Recrystallization in Upper Mantle Peridotite Xenoliths iFig.4A). In addition to this 'background' structureother structuresare locally developed {Drury & van Roermund, in press) including healed micro-fractures which are defined by planar arrays of mul...

Více