cauchys teorém

Transkript

cauchys teorém
12 – Frequency‐domain CTRL design
Martin Hromcik
Automatic control 2012
9‐III‐12
Nyquist’s stability criterion
Automatické řízení - Kybernetika a robotika
Cauchy’s theorem of argument, for general function of complex variable ... .
Corollary: Nyquist test (for closed‐loop stability assessment, based on open‐loop frequency response characteristics). OL = L = b/a, CL = 1/(1+L) = a/(a+b)
• critical point ‐1 encircled clockwise by the OL Nyquist graph as many times as is # CL unstable poles ‐ # CL unstable zeros (=OL unstable poles)
• alternatiuvely: # CL unstable poles = ...
• counterclockwise ‐> counted with negative sign
Nyquist’s stability criterion:
CL stable # of encirclements of ‐1 counterclockwise = # unstable OL poles
Special case – OL stable:
CL stable Ù OL Nyquist does not encircle ‐1
Michael Šebek
Pr‐ARI‐12‐2012
2
Gain Margin
Automatické řízení - Kybernetika a robotika
ω180
L( jω)
K =3
K =2
K =1
o
ω180
o
•
o
phase crossover frequency ω180o :∠L( jω180o ) = −180
•
Gain Margin: GM = 1 L( jω180o )
•
•
that simple only for OL stable systems ... for unstable OL: same idea, more careful treatment (more more crossovers, GM’s for each of them, ...) Michael Šebek
3
Phase Margin
Automatické řízení - Kybernetika a robotika
L( jω)
ωC
ωC : L( jωC ) = 1 = 0 dB
•
Gain crossover frequency
•
Phase Margin:
•
Time‐delay equivalent formulation:
Michael Šebek
PM = 180o + ∠L( jωC )
θmax = PMrad ωc = (π 180) PMdeg ωc
ARI‐12‐2012
4
GM and PM
Automatické řízení - Kybernetika a robotika
• GM: robustness w.r.t. gain variations; typical requirement GM > 2 (=6dB)
• PM: robustness w.r.t. delays in the loop; typical requirement PM >30°
1−
ωc
ω180
GM [dB]
1
GM
1
GM
ω180
PM
PM
Michael Šebek
ωc ω180
ARI‐12‐2012
ωc
5
Reversed case ...
Automatické řízení - Kybernetika a robotika
<= ... stabilizing stable OL ...
1 GM
PM
L( jω)
... stabilizing unstable OL ... =>
PM
L( jω )
1 GM
Michael Šebek
ARI‐12‐2012
6
GM and more crossovers ...
Automatické řízení - Kybernetika a robotika
•
GM interval ( Kmin , Kmax )
• if CL stable for L(s) = L0 (s)
• then CL remains stable
for all
L(s) = kL0 (s)
kmin < k < kmax
(
•
0 ≤ kmin ≤ 1
)
1 ≤ kmax ≤ ∞
CL unstable (already) for
L(s) = kmin L0 (s)
L(s) = kmax L0 (s)
Michael Šebek
ARI‐12‐2012
7
PM and more crossovers
Automatické řízení - Kybernetika a robotika
(φmin , φmax )
•
PM interval
•
•
If CL stable for L(s) = L0 (s)
then CL remains stable for all L( s ) = e − jφ L0 ( s )
•
φmin < φ < φmax
and becomes unstable for and
•
L( s ) = e − jφmin L0 ( s )
L( s ) = e − jφmax L0 ( s )
Note that −π ≤ φmin ≤ 0
0 ≤ φmax ≤ π
Michael Šebek
ARI‐12‐2012
8
Co je špatného na klasických pojmech ?
Automatické řízení - Kybernetika a robotika
• GMs and PMs are most common indicators of controllers robustness in engineering practice. • Note however that certain GMand PM “safe” systems can be though destabilized easily by combined small gain and phase variation: L ( s ) = kL0 ( s )e − jφ
k ∈ [ k min , k max ], φ ∈ [φmin , φmax ]
• Solution (generalization of GM/PM concepts): distance (norm) of L from the critical point ‐1. Hinf robust control ... Michael Šebek
ARI‐12‐2012
9
CL frequency response
Automatické řízení - Kybernetika a robotika
OL vs. CL frequency response:
• CL:
L( s )
T ( s) =
1 + L( s )
• approximately
1 for L( s ) large
T (s) ≈
L( s ) for L( s ) small
• typically L( s )
• therefore
T (s) ≈
Michael Šebek
L( s )
T ( s)
ω << ωc
ω >> ωc
large for high freqs
small for low freqs
1
L( s )
for low freqs
for high freqs
ARI‐12‐2012
ωc
ω << ωc
ω >> ωc
10
Crossover frequency behavior
Automatické řízení - Kybernetika a robotika
•
• PM 90°
• PM 45°
•
L( s ) ≈ 1 ,
around ωc ,
depends on PM
T ( s)
∠L( jωc ) = −90o
T ( jωc ) = 1
∠L( jωc ) = −135o
T ( jωc ) ≈ 1.31
2 ≈ 0.707
for 2nd order system:
PM = arctan
Mp =
Mp
2ς
−2ς 2 + 1+ 4ς 4
1
2ς 1− ς 2
Michael Šebek
ARI‐12‐2012
11
Bandwidth and crossover frequency
Automatické řízení - Kybernetika a robotika
P
P
•
20
dB
M ,ω
bandwidth = those frequencies (of harmonic 10 M(ω) = T( jω)
signals) wich the CL is capable to track crossover
ωc
reasonably ... 1
0.7
typically, CL = low pass filter:
good tracking for ω small
ω
( T ≈ 1), but not for large ( T ≈ 1)
0.1
bandwidth
formal definition of classical control: bandwidth = frequency whee the output has half energy of input, y 2 = 0.5u 2
ω ω
ω
Hence
Y ( jω ) = ½ U ( jω ) = 0.707 U ( jω ) ⇔ Y ( jω ) dB = U ( jω ) dB − 3dB
bandwidth defines “responsivenes” of CL, speed ...
higher bandwidth – more aggressive control law – implies faster transients, but often higher sensitivity to parameter changes and noises. lower bandwidth typically opposite. ωc : T ( jωc ) = 1 (0 dB)
Crossover frequency:
Resonance peak:
M P = max{ T ( jω ) }, ω P : M P = T ( jω P )
abs
•
0
−3
BW
•
•
•
•
•
•
P
Michael Šebek
ARI‐12‐2012
c
12
− 20

Podobné dokumenty

26 COMMUTATING CAPACITORS (only for spare parts

26 COMMUTATING CAPACITORS (only for spare parts odpojovačem. Dielektrikum tvoří PP film, impregnovaný minerálním olejem. Elektrodou je oboustranně metalizovaný kondenzátorový papír se zesíleným okrajem. Regenerační schopnost spolu s úplnou impre...

Více

ELECTRO MATERIAL www . malpro . cz • Přístrojové svorkovnice kl

ELECTRO MATERIAL www . malpro . cz • Přístrojové svorkovnice kl - Designed for covering boxes with internal diameter of 68mm.

Více

ano - Hippo

ano - Hippo rU=solve(f1,f2,’U2,U3’); rU.U2 rU.U3 P=rU.U2/’U1’ nP=subs(P,{’R’,’C’,’L’},{1e3,22.5e-9,11.25e-3}) [num, den]=numden(nP) format short e A=sym2poly(den) B=sym2poly(num)/A(1) A=A/A(1)

Více

HV - CoNet

HV - CoNet γ , činitel tlumení β , činitel fáze α , délku postupné vlny λ a fázovou rychlost vf . Ř ešení

Více

worksheet_geographical_regions_CR

worksheet_geographical_regions_CR Carpathian (Bílé Karpaty) and Javorníky ranges, the westernmost of the Western Carpathian Mountains that dominate Slovakia. http://www.britannica.com/place/Czech-Republic#toc39439

Více

slides

slides Discrete-time system & digital controller ... Automatické řízení - Kybernetika a robotika

Více

Shaun White

Shaun White extruded and CNC machined footplate with replaceable grindplate Deck width 115mm/4,52”; CNC machined fork made of extruded profile; Headset with pressed-in bearings; Inverted compression system; Ov...

Více