8. References - Lesnická a dřevařská fakulta

Transkript

8. References - Lesnická a dřevařská fakulta
Anderson T. L., Fracture mechanics: Fundamentals and applications. New York, CRC Press LLC, 688 p., 1995. Askenfelt, A., Jansson, E. V., From touch to string vibrations, in Five Lectures on the Acoustics of the Piano. edited by A. Askenfelt (Royal Swedish Academy of Music, Stockholm), vol. 64, pp. 39–57., 1990.
Askenfelt, A., Jansson, E.V., From touch to string vibrations. II: The motion of the key and hammer . Journal of the Acoustical Society of America, 90 (5), pp. 2383­2393., 1991.
Babiak, M., Diffusion coefficients of beech and black locust wood. Proceedings of the 3rd IUFRO Symposium Wood Structure and Properties, (ISWSP‘98), Zvolen, Slovakia, pp: 65­70., 1998.
Bacon, T., The ultimate Guitar book, Dorling Kondersley Ltd, London, 1991.
Báron, J. G., Physical basis of piano touch. Journal of the Acoustical Society of America. 30(2), 151–152., 1958.
Bécache, E., Chaigne, A., Derveaux, G., Joly, P., Numerical simulation of a guitar. Computers and Structures, 83(2­3), pp. 107­126., 2005.
Berthaut, J., Ichchou, M. N., Jézéquel, L., Piano soundboard: Structural behavior, numerical and experimental study in the modal range. Applied Acoustics, 64(11), pp. 1113­1136., 2003.
Berthelot J. M., Composite Materials – Mechanical Behavior and Structural Analysis. New York, Springer–Verlag, 646 p., 1999. Bissinger, G., Bailey, M., Testing a modal­analysis­based model to predict averaged violin radiation from mechanical response measurements. Proceedings of the International Modal Analysis Conference ­ IMAC, 2, pp. 1303­1308., 1998.
Bissinger, G., Ye K., Effect of holding on the normal modes of an instrumented violin bow. Proceedings of the International Modal Analysis Conference ­ IMAC, 1, pp. 126­130., 1999.
Bissinger, G. ­ Ye, K., Automated hammer­impact modal analysis with a scanning laser vibrometer: Working example ­ a violin. Proceedings of the International Modal Analysis Conference ­ IMAC, 1, pp. 943­949., 2000.
Bissinger, G., A unified materials­normal mode approach to violin acoustics. Acta Acustica united with Acustica, 91(2), pp. 214­228., 2005.
Bissinger, G., Modal analysis, radiation and the violin's soundpost. S&V ­ Sound and Vibration, 29(8), pp. 18­22. 1995.
Bissinger, G., Modern vibration measurement techniques for bowed string instruments. Experimental Techniques, 25(4), pp. 43­46., 2001.
Boccaletti, C., Duni, G., Elia, S., Santini, E., Dynamic model of an electromechanical piano key by means of FEM techniques. Proceedings of the IASTED International Conference on Modelling and Simulation, no. 459­110, pp. 308­
313., 2005. Bodig J., Jayne B. A., Mechanics of wood and wood composites. Malbar, Florida, Kreiger publishing company, 712 p., 1993. Bonamini, G., Uzielli, L., Un semplice metodo non distruttivo per riconoscere in bosco gli abeti rossi cosiddetti "di risonanza". Monti e Boschi. 49(6): 50­53., 1998. Bonamini, G. Il legno per strumenti musicali: conoscenze di base e ricerca futura. Italia Forestale e Montana. 50(5): 492­504., 1995.
Bonharda V., Pracha J., Piana a Pianina, Praha., 1958.
Boutillon, X. Model for piano hammers: Experimental determination and digital simulation, Journal of the Acoustical Society of America. 83 pp. 746., 1988.
Boutillon, X., The piano hammer action. In: Proc. Of Catgut Acoust. Soc. Int. Symp., July 20­23 Hartford, CT., 1986.
Brancheriau, L., Bailleres, H., Detienne, P., Kronland, R., Metzger, B., Classifying xylophone bar materials by perceptual, signal processing and wood anatomy analysis. Les Ulis, France: EDP Sciences. Annals­of­Forest­Science. 63(1): 73­81., 2006b.
Brancheriau, L., Bailleres, H., Sales, C. Acoustic resonance of xylophone bars: experimental and analytic approaches of frequency shift phenomenon during the tuning operation of xylophone bars. Heidelberg, Germany: Springer­Verlag GmbH. Wood­Science­and­Technology. 40(2): 94­106., 2006a.
Brdička M., Samek L., Sopko B., Mechanika kontinua. Praha, Academia, 799 p., 2000.
Brepta, R., Půst, L., Turek, F., Mechanické kmitání, Sobotáles, Praha., 1994. Bretos, J., Santamarfa, C., Alonso Moral, J., Vibrational patterns of a violin­shaped air cavity obtained by finite element modeling. Acustica, 85(4), pp. 584­586., 1999.
Buchar, J., Šíření elastických vln v různých druzích dřev. Acta Universitatis agriculturae et silviculturae Mendelianae Brunensis, XXVI, No. 1–4, pp.: 209–223., 1993.
Bucur, V., Acoustics of wood. 1st Ed. CRC Press Inc., NY, 284 pp., 1995.
Caldersmith, G., Rossing,T. D., Determination of Modal Coupling in Vibrating Rectangular Plates, Northern Illionis University ­ USA, DeKalb, IL 60115., 1982. Cave I. D., Modelling moisture­related mechanical properties of wood – Part II: Computation of properties of a model of wood and comparison with experimental data. Wood Science and Technology. n. 12, pp. 127–139., 1978,
Cescotto, S. Zhu, Y.Y., Large Strain Dynamic Analysis Using Solid and Contact Finite Elements Based on a Mixed Formulation ­ Application to Metalforming, Journal of Metals Processing Technology, Vol. 45, pp. 657­663., 1994.
Chaigne, A., Askenfelt, A. Numerical simulation of piano strings. I. A physical model for a struck string using finite difference methods, Journal of the Acoustical Society of America. 95. pp. 1112., 1994.
Chalko, T.J., Parszewski, Z.A. Cad for holographic modal analysis and animation with application to the violin. Mechanical Engineering Publ. Ltd., Bury St. Edmund. International Conference on Computer­Aided Production Engineering. pp. 167­174., 1986. Chia, T., Chern, J., Chen, K., Tsai, C., Yu, C., CAD model reconstructing and manufacturing of the violin panel. Ping Tung, Taiwan: Chinese Forest Products Association. Forest­Products­Industries. 25(4): 271­282., 2006. Cho, C., Ye, S., Effects of low molecular weight phenol formaldehyde resin treatment on the vibration properties of spruce plate. Ping Tung, Taiwan: Chinese Forest Products Association. Forest­Products­Industries. 25(1): 21­28., 2006.
Chung, W., Park, S., Studies on the vibrational modal analysis of solid woods for violin making: part 1. Effect of cutting direction and density on resonant frequency of woods. Mokchae Konghak­ Journal of the Korean Wood Science and Technology. 27(3): 1­6., 1999.
Claudia, S. C., Mario, R. M., Pascual, R., Numerical and experimental analysis on the dynamic behaviour of the violin plates. Proceedings of the 2002 International Conference on Noise and Vibration Engineering, ISMA, pp. 2059­2065., 2002.
Clough, Ray W., Penzien, J., Dynamics of Structures, McGraw­Hill, New York, p. 559., 1975.
Cousins W. J., Elasticity of isolated lignin: Young’s modulus by a continuous indentation method. Forestry science n.7, pp. 107­112., 1977.
Cuenca, J., Causse, R., Three­dimensional interaction between strings, bridge and soundboard in modern piano’s treble range. In proceedings of the 19th International congress on acoustics, Spain, 2007. Čulík, M. Modálná analýza s využitím Chladniho obrazcov pri zistovaní fyzikálno­akustických charakteristík vybraných exotických drevin použivaných na výrobu spodných dosák gitár. Acta Facultatis Xylologiae Zvolen res Publica Slovaca. n. 40: 95­100., 1998.
Dániel, V., Koňas, Petr., Konečně­prvkový efektivní návrh konstrukce kytary. Acta Universitatis agriculturae et silviculturae Mendelianae Brunensis, sv. LIV, č. 2, p. 23­30., 2006.
Dániel, V., Frekvenční charakteristiky kytary pomocí MKP. In 4th International Symposium Material ­ Acoustic ­ Place 2008. 1. vyd. Zvolen, Slovenská Rep. Vydavateľstvo TU vo Zvolene, p. 17­25., 2008
Dalík, J., Numerické metody, Akademické nakladatelství CERM, s.r.o. Brno, 145 p., 1997.
Dally, J.,W., Riley, W., F., Experimental Stress Analysis, McGraw­Hill Inc., 1991.
Doležal, J., Průzkum rezonančních vlastností dřeva z různých oblastí a nadmořských výšek. VVÚD Praha, 1953.
Doležal, J., Konstrukce zařízení hodnotící vlastnosti dřeva na podkladě ln­dekrementu útlumu. VVÚD Praha, 1957.
Elejabarrieta, M. J., Ezcurra, A., Santamaria, C., ́
Air cavity modes in the resonance box of the guitar: The effect of the sound hole. Journal of Sound and Vibration, 252 (3), pp. 584­590., 2002a.
Elejabarrieta, M. J., Ezcurra, A., Santamaria, C.,
́
Coupled modes of the resonance box of the guitar. Journal of the Acoustical Society of America, 111(5 I), pp. 2283­2292., 2002b. Elejabarrieta, M. J., Ezcurra, A., Santamaria, C., ́
Evolution of the vibrational behavior of a guitar soundboard along successive construction phases by means of the modal analysis technique. Journal of the Acoustical Society of America, 108(1), pp. 369­378., 2000.
Elejabarrieta, M. J., Ezcurra, A., Santamaria, C., ́
Vibrational behaviour of the guitar soundboard analysed by the finite element method. Acta Acustica united with Acustica, 87(1), pp. 128­136., 2001.
Ezcurra, A., Elejabarrieta, M.J., Santamaria,
́ C., Fluid­structure coupling in the guitar box: Numerical and experimental comparative study. Applied Acoustics, 66(4), pp. 411­425., 2005.
Fedyukov, V. I., Veselov, L. N., Kolbina, T. A., Instrument for measuring the distribution of micro­hardness of cores during the sampling of resonance wood. Derevoobrabatyvayushchaya Promyshlennost. (1): 22­23., 1998.
Fedyukov, V. I., Possibilities of targeted selection and growing of resonance wood in the forests of Russia. Rusko. Lesnoe­Khozyaistvo. (1): 11­13., 1999.
Fletcher, N. H., Rossing, Thomas D., The Physics of Musical Instruments, , 756 p., 1998.
French, M., Cherng, J., An objective method for determining soundboard material quality. Proceedings of the International Modal Analysis Conference ­ IMAC, 1, p. 740­745., 2001.
Gillis P. P., Orthotropic elastic constants of wood. Wood Science and Technology. 6, pp. 138­156., 1972.
Giordano, N., Jiang, M., Dietz, S., Experimental and Computational Studies of the Piano. Proceedings of the 17th International Congress on Acoustics, vol. 4., 2001. Giordano, N., Jiang, M., Physical Modeling of the Piano. EURASIP Journal on Applied Signal Processing. pp. 926­
933., 2004.
Giordano, N., Korty, A. J., Motion of a Piano String: Longitudinal Vibrations and the Role of the Bridge. Journal of the Acoustical Society of America, vol. 100, 3899., 1996.
Giordano, N., Winans, J. P., Piano Hammers and Their Force Compression Characteristics: Does a Power Law Make Sense? Journal of the Acoustical Society of America, vol. 107, 2248., 2000. Giordano, N., Mechanical Impedance of a Piano Soundboard. Journal of the Acoustical Society of America, vol. 103., 1998.
Giordano, N., Simple Model of a Piano Soundboard. Journal of the Acoustical Society of America, vol. 102, p. 1159., 1997. Giordano, N., Sound Production by a Vibrating Piano Soundboard: Experiment. Journal of the Acoustical Society of America, vol. 104, p. 1648., 1998.
Goebl, W., Bresin, R., Galembo, A., Touch and temporal behavior of grand piano actions, 2005.
Green D. W., Winandy J. E., Kretschmann D. E., Mechanical properties of wood. Wood handbook: Wood as engineering material. Madison, Wisconsin, USA, Forest product laboratory, pp. 4­1 to 4­45., 1999.
Hall, D. E., Piano string excitation III: General solution for a soft narrow hammer. Journal of the Acoustical Society of America. vol. 81 pp. 547., 1987. Hall, D. E., Piano string excitation VI: Nonlinear modeling, Journal of the Acoustical Society of America. 92 pp. 95., 1992.
Hall, D. E., Piano string excitation. Journal Acoustic Society of America. 92 (1), 95­105., 1992.
Hashimoto, T., Umetani, Y., Numerical Simulation of Piano Sounds. Toward the Combined Analysis of Strings, Bridge and Soundboard. IEIC Technical Report. Vol. 99. No. 626, pp. 1­6., 2000.
Hearmon R. F. S., Úvod do teorie pružnosti anisotropních látek. Praha, SNTL, 143 p., 1965.
Herraez, M., Miguel, R., Morcillo, M. A., Hidalgo, A., ́
Experimental modal analysis of violin plates. Proceedings of the Tenth International Congress on Sound and Vibration, pp. 4427­4434., 2003.
Hirschkorn, M. C., Dynamic Model of a Piano Action Mechanism. Disertační práce. University of Waterloo. Waterloo, Ontario, Canada., 2004.
Höfer, G., Když struny zní, Pedagogická fakulta ZČU Plzeň., 1998.
Holmberg S., Persson K., Petersson H., Nonlinear mechanical behaviour and analysis of wood and fibre materials. Computers and structures. n. 72, pp. 459­480., 1999.
Holodniok, M., Metody analýzy nelineárních dynamických modelů, Academia, nakladatelství AVČR, Praha., 1986.
Horáček, P., Modeling of Coupled Moisture and Heat Transfer During Wood Drying, 8th IUFRO Wood Drying Conference, Brasov, Romania, 2003.
Horáček, P., Fyzikální a mechanické vlastnosti dřeva I. Mendelova univerzita v Brně, 1998.
Horáček, P., Model vázaného šíření vlhkostního a teplotního pole při sušení dřeva. Lesnická práce, Brno, 2004.
Horský, J. et al., Mechanika ve fyzice, 1.vyd. Praha: Academia, nakladatelství AVČR, 412 p., 2001.
Huang, Y., Chen, S., Chang, H., ­ Chang, S., Effects of coating and acetylation on the acoustic properties of Sitka spruce wood. Taiwan Journal of Forest Science. 15(2): 179­187., 2000.
Hughes, T. J. R., The Finite Element Method Linear Static and Dynamic Finite Element Analysis, Prentice­Hall, Inc., Englewood Cliffs, NJ., 1987.
Ihlenburg, F., Finite Element Analysis of Acoustic Scattering, Series: Applied Mathematical Sciences, Vol. 132 XIV, 224 p., 1998.
Ille, R., Výzkum rezonančního dřeva smrku, Práce VVÚD Sv. 9/1974, Vývojový ústav dřevařský Praha, Praha, 1974. Inacio, O., Antunes, J.,Wright, M.
́
C. M., Computational modelling of string­body interaction for the violin family and simulation of wolf notes. Journal of Sound and Vibration, 310 (1­2), pp. 260­286., 2008.
Jane F. W., The structure of wood. London, A. & C. Black, 478 p., 1970.
Jansson, E., Bork, I., Meyer, J., Investigations into the acoustical properties of the violin. Acustica, 62(1), pp. 1­15., 1986.
Jílek Z., O klavíru, vysokoškolské skriptum, SPN Praha, 1967.
Jung, H., Yoo, T., Kwon, J., Effects of double surface finishing on acoustical properties of soundboard for traditional musical instruments. Mokchae Konghak ­ Journal of the Korean Wood Science and Technology. 26(4): 26­33,. 1998.
Kang,W., Jung, H. S., Studies on the free vibrational properties of traditional and alternative species for sounding boards. Mogjae Gonghak, J. of the Korean Wood Science and Technology. 16(3): 48­64., 1988.
Kasal, B., Mechanical properties of wood. Encyclopedia of Forest Science. Elsevier Publishing Co., Oxford, England. (Burley, J., J. Evans, and J. Younquist, Editors). 2000 p. pp. 1815­1828., 2004.
Kaw A. K., Mechanics of composite materials. Boca Raton, Florida, CRC Press LLC, 329 p., 1997.
Kawamura, S., Masuda, M., Nakamura, T., Influence of frequency and decrement on psychological images of wood tapping sound. Investigation using computer synthesizing. Mokuzai Gakkaishi ­ Journal of the Japan Wood Research Society. 43(12): 993­1001., 1997.
Keane, M., Improving the upright piano. Acoustics Australia, 35(1), pp. 11­15., 2007.
Kindel, J., Wang, I., Vibrations of a piano soundboard: Modal analysis and finite element analysis. Journal of the Acoustical Society of America. Vol.81, pp. S61­S61., 1987.
Kinsler, E. L. et. al., Fundamentals of Acoustics, John Wiley and Sons, New York pp. 98­123., 1982.
Knott, G.A., Shin, Y.S., Chargin, M., Modal analysis of the violin. Finite elements in analysis and design, 5 (3), pp. 269­
279., 1989.
Kohnke P., ANSYS – Theory reference. Canonsburg, PA, USA, ANSYS, Inc. 965 p., 1998.
Kokla, M., Stulov, A., Grand pianomanufactoring in Estonia: Historical overview. Proceedings of the Estonian Academy of Sciences. Engineering. Estonia., 1995.
Kolář V., Němec I., Kanický V., FEM Principy a praxe metody konečných prvků. Praha, Computer Press, 402 p., 1997.
Koňas, P., General koncept of Finite Element (FE) model based on anatomy structure (part V ­ Probabilistic FEM model of wood), ACTA Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, LI, No. 1, pp. 69­76., 2003.
Korsakov, G. S., Ivanov, B. A., Boitsova, I. N., The sound qualities of musical stringed instruments with resonance boards of peeled veneer. Derevoobrabatyvayushchaya Promyshlennost. (2): 14­15., 1995. Kuchtík, J., Rezonanční vlastnosti dřeva. Metody a problémy jejich zjišťování. VŠZ Brno, 1964.
Kuchtík, J., Problémy měření kvality dřeva pro výrobu rezonančních desek I, II, Hudební nástroje 1967, č. 2/3. Praha, 1967. Kurfűrst, P., Hudební nástroje, Togga Praha, 1.vyd., 2002.
Kwon, J., Jung, H., Effects of finishing of violin plate on its adsorption and vibration modes. Mokchae Konghak ­ Journal of the Korean Wood Science and Technology. 26(3): 16­25., 1998. Lexa, J., et. al., Mechanické a fyzikálne vlastnosti dreva, 1. Svazok technologie dreva, Práca ­ vydavatelstvo ROH ­ Bratislava, Bratislava, 1952.
Lekhnitskii, S. G., Theory of Elasticity of an Anisotropic Elastic Body, Holden­Day, San Francisco, 1963.
Ličko, J. A., study of physico acoustical characteristics of sycamore from Kremnicke vrchy. Slovakia: Acta Facultatis Xylologiae Zvolen res Publica Slovaca. (40): 51­57., 1998.
Ličko, J., On using the sycamore wood in the manufacturing of violins. Bratislava, Slovakia: Štátný Drevárský Výskumný Ústav. Drevársky Výskum. 45(1): p. 23­31., 2000.
Liu, Z., Liu, Y., Shen, J., Liu, M., Application of analytic hierarchy process to vibrational property evaluation of soundboard wood for musical instrument. Harbin, China: Editorial Board of Journal of NEFU. Journal­of­Northeast­
Forestry­University. 34(6): 7­9., 2006.
Liu, Z., Shen, J., Liu, Y., Liu, M., Zhang, H., Shang, J., Acoustic vibration property of full­size spruce wood soundboard of musical instruments. Beijing, China: Chinese Society of Forestry. Scientia­Silvae­Sinicae. 43(8): 100­105., 2007.
Mackerle, J., Finite element analysis in wood research: a bibliography. Wood Science and Technology, vol. 39: pp. 576 ­ 600Springer­Verlag, 2005.
Madenci, E., Guven, I., The Finite Element Method and Applications in Engineering Using ANSYS ® Springer Science, Inc., New York, USA, 686 p., 2006.
Madsen, B., Structural behaviour of timber, Timber Engineering Ltd., North Vancouver, 1992.
Mamou­Mani, A., Frelat, J., Besnainou, C., Piano soundboard under prestress: a numerical approach. In proceedings of the 19th International congress on acoustics, Spain, 2007a.
Mamou­Mani, A., Frelat, J., Besnainou, C., Numerical simulation of a piano soundboard under downbearing. Journal of the Acoustical Society of America, 123 (4), pp. 2401­2406., 2008.
Mamou­Mani, A., Le Moyne, S., Frelat, J., Besnainou, C., Ollivier, F., Effect of prestresses on natural frequencies of a buckled wooden plate: a numerical and experimental investigation, International Conference on Noise and Vibration Engineering ­ ISMA 2007, 2007b.
Marčok, M., Netradičné akustické vlastnosti dreva, vedecké a pedagogické aktuality, Vysoká škola lesnícka a drevárska Zvolen, 1984.Mamou­Mani
Marčok, M., Kurjatko, S., Aplikácia ultrazvukových vľn pri transporte kvapalín cez drevo, vedecké a pedagogické aktuality, Vysoká škola lesnícka a drevárska Zvolen, 1987.
Mark, R. E., Cell wall mechanics of tracheid. New Haven, Yale univ. press, 310 p., 1967.
Marshall, Kenneth D., Modal analysis of a violin. Journal of the Acoustical Society of America. 77(2), pp. 695­709., 1985.
Matovič, A., Nauka o dřevě. Brno, Vysoká škola zemědělská, 155 p., 1977.
Matsunaga, M., Sakai, K., Kamitakahara, H., Minato, K., Nakatsubo, F. Vibrational property changes of spruce wood by impregnation with water­soluble extractives of pernambuco (Guilandina echinata Spreng.) II: structural analysis of extractive components. Tokyo, Japan: Springer­Verlag Tokyo. Journal­of­Wood­Science. 46(3): 253­257., 2000.
Matsutani, A., Comparison between modern violin bridge and baroque violin bridge by photoelastic observation and frequency analysis. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 43(5 A), pp. 2754­2755., 2004.
Matsutani, A., Study on bridge of violin by photoelastic observation. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 41(10), pp. 6291­6296., 2002. McIntyre, M. E., Woodhouse, J., On Measuring Wood Properties, Part 1, Cambridge – Great Britain, JCAS 42, pp. 11­
15, 1984.
McIntyre, M. E., Woodhouse, J., On Measuring Wood Properties, Part 2, Cambridge – Great Britain, JCAS 43, pp. 18­
24, 1985.
McIntyre, M. E., Woodhouse, J., On Measuring Wood Properties, Part 3, Cambridge – Great Britain, JCAS 45, pp. 14­
23, 1986. McIntyre, M. E., Woodhouse, J., On Measuring the Elastic and Damping Constants of Orthotropic Sheet Materials, Cambridge, Acta metall. Vol. 36, No. 6, pp. 1397­1416, 1987.
Mechel, F.P., Formulas of Acoustics, XXIII, 1175 p., 2002.
Modr, A., Hudební nástroje, Editio Bärenreiter Praha, 9. vyd., 2002.
Nakamura, I., Vibrational and acoustic characteristics of soundboard. Journal Acoust. Soc. Jpn. 16 (6), 429­439, 1993.
Nakamura, I., The vibrational character of the piano soundboard. Proc. 11th ICA, Paris. vol. 4, pp. 385, 1983. Okuda, A., Ono, T., Bracing effect in a guitar top board by vibration experiment and modal analysis. Acoustical Science and Technology, 29 (1), pp. 103­105., 2008.
Ortiz­Berenguer, L. I., Casajus­Quiros, F. J., Blanco­Martin, E., Ibanez­Cuenca, D., Modeling of piano sounds using FEM simulation of soundboard vibration. Proceedings of Acoustics’08 Paris., 2008.
Ortmann, O., et al., The Physical Basis of Piano Touch and Tone. London, New York., 1925.
Parmantier, J. L., Le grand livre international du bois. Paris, Fernand Nathan, pp. 276­417, 1981.
Peng, W. T., Huang Y., Chen Y., Research and development of wood/plastic composite materials (II) Dynamic viscoelasticities of three types of wood fibre/PP composites, spruce wood and particleboard. Bulletin of the Taiwan Forestry Research Institute. 10(1): 93­103., 1995.
Podobský, J., Nosek, J., Veicherová, H., Výzkum vlivu materiálu na akustickou kvalitu rezonanční desky pianina, RD8.1 Základní výzkum rezonančních desek ­ závěrečná zpráva výzkumného úkolu, Československé hudební nástroje oborový podnik Hradec Králové, 1975.
Požgaj, A., Chovanec, D., Kurjatko, S., Babiak, M., Štruktúra a vlastnosti dreva. Bratislava, Príroda, 488 p., 1997.
Quintanar, I., Icaza, H., Rivera, N., ­ Paz, P., O., Anatomical and acoustic characteristics of three species of angiosperms from Huayacocotla, Veracruz. Madera y Bosques, publ. 4(1): 15­25., 1999.
Raffaj, A., Piano strings: Their Acoustics, Design and Manufacturing. Pianotreff. Norsko, 2002.
Raffaj, A., Příspěvek k modelování soustavy pianová struna – ozvučná deska. Disertační práce. ČVUT FEL Praha. Praha, 2000.
Raffaj, A., Sound beats genesis in some musical instruments. Proceedings of ISMA 2001 (International symposium on musical acoustics). Perugia, 2001.
Raffaj, A., Tuning of FEM Models of Soundboards by the Results of Experimental Modal Analysis. Proceedings of ISMA'97 ­ International symposium on musical acoustics. Edinburgh, 1997.
Rajakumar, C. and Ali, A., A Solution Method for Acoustic Boundary Element Eigenproblem With Sound Absorption Using Lanczos Algorithm, Proceedings of 2nd International Congress on Recent Developments in Air­ and Structure­
Borne Sound and Vibration, Auburn University, AL, pp. 1001­1010., 1992.
Rajčan, E., Akustika I, Technická univerzita vo Zvolene, 1998.
Rajčan, E., Eignet sich Tannenholz fur Klaviaturen bei Tasteninstrumenten? Drevársky Výskum. 41(3): 1­9, 1996.
Rajčan, E., et al., Aplikácia akustiky při štúdiu vlastností dreva, Technická univerzita vo Zvolene, 1999.
Rektorys, K., Variační metody v inženýrských problémech a v problémech matematické fyziky. Praha, Academia, 602 p., 1999.
Runnemalm, A., Molin, N. E., Operating deflection shapes of the plates and standing aerial waves in a violin and a guitar model. Acustica, 86(5), pp. 883­890., 2000.
Šali, S., Kopač, J., Measuring a frequency response of a guitar. Proceedings of the International Modal Analysis Conference ­ IMAC, 2, pp. 1375­1379., 2000.
Scherer, G. W. and Rekhson, S. M., Viscoelastic­Elastic Composites: I, General Theory, Journal of the American Ceramic Society, Vol. 65, No. 7., 1982.
Schneiwind, A. P., Barrett D. J., Wood as a linear orthotropic viscoelastic material. Wood science and technology. n. 1, pp. 43­57., 1972.
Shen, J., Study on the relationships between longitude and radial sound vibration parameters of genus Picea. Beijing, China: Chinese Society of Forestry. Scientia­Silvae­Sinicae. 42(3): 21­24., 2006.
Siau, J.F., Wood. Influence of moisture on physical properties, NY Virginia Polytechnic Institute and State University, 227 p., 1995.
Skaar, C. H., Wood­Water Relations, Berlin Heidelberg, Springer­Verlag, 283 p., 1988. Skala, J. Piano soundboard ­ prestressed structure. Material­Acoustics­Place 2005. Zvolen. Slovensko, 2005.
Skrodzka, E., Łapa, A., Gordziej, M. Modal and spectral frequencies of guitars with differently angled necks. Archives of Acoustics, 30, pp. 199­203., 2005.
Škvor, Z., Akustika a elektroakustika, Academia, nakladatelství AVČR, Praha, 2001.
Smetana, C., et al., Hluk a vibrace, měření a hodnocení, Sdělovací technika, Praha, 1998.
Stalnaker, J. J., Harris, E. C., Structural Design in Wood. 2nd ed. Boston: Kluwer Academic Publishers, 2002. Stulov, A., Hysteretic model of the grand piano hammer felt. Journal of the Acoustical Society of America, 97(4), pp. 2577­2585., 1995.
Suzuki, H., Nakamura, I., Acoustic of piano. Appl. Acoust. 30, pp. 147­205., 1990.
Suzuki, H., Analysis of piano tones with soft and hard touches. In Proceedings of the Stockholm Music Acoustics Conference (SMAC’03). edited by R. Bresin (Royal Institute of Technology, Stockholm, Sweden), vol. 1, pp. 179–182., 2003.
Suzuki, H., Vibrational and sound radiation of a piano soundboard. J.Acoust.Soc.Am. 80 (6), pp. 1573­1582., 1986.
Sýkora, V. J., Dějiny klavírního umění I. ­ Dějiny nástroje, Jiří Churáček JC­Audio, Netolice & nakladatelství KOPP, České Budějovice, 2005.
Takeshi, O., Acoustic properties of wood. Mokuzai Gakkaishi ­ Journal of the Japan Wood Research Society. 37(11): 991­998., 1991.
Thomson, W. T., Theory of Vibrations with Applications, Prentice Hall, pp. 343­352, 1971.
Timoshenko S. P., Gere J. M., Mechanics of materials. Monterey, California, Books/Cole engineering division, 771 p., 1984.
Timoshenko S., Goodier J. N., Theory of elasticity. New York, McGraw­Hill book company, 506 p., 1951.
Tinnsten, M., Carlsson, P., Numerical optimization of violin top plates. Acta Acustica united with Acustica, 88(2), pp. 278­285., 2002.
Tippner, J., Koňas, P., Teplotní, vlhkostní a napěťová pole v hráni řeziva při sušení v atypické komorové kondenzační sušárně řeziva. ACTA Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, LII, No. 1, pp. 159­167., 2003.
Tippner, J., Koňas, P., Model rezonanční desky koncertního klavíru. In Schwangmaier, J. Stárek, J. 13. ANSYS User's Meeting 2005 1. vyd. Brno: SVS FEM s. r. o, 2005.
Tippner, J., Koňas, P., Dániel, V., Influence of Factors on Dynamical Behaviour of Piano Soundboard. In Proceedings of Abstracts of the 5th International Symposium Wood Structure of Properties '06. 1. vyd. Zvolen: Arbora Publishers, 2006,
Treu, A., Hapla, F., Study on the quality of spruce and fir resonance wood. Frankfurt am Main, Germany: J.D. Sauerlander's Verlag. Allgemeine­Forst­und­Jagdzeitung. 171(12): 215­222., 2000.
Trcala, M., Model vázaného pohybu vlhkostního a teplotního pole ve dřevě během sušení. Diplomová práce. Brno: LDF MENDELU, 84 p., 2009.
Tsai, S. W., Hahn, H. T., Introduction to Composite Materials, Section 7.2, Technomic Publishing Company, 1980.
Tsai, S. W., Composites Design, Third Edition, Section 11.6, Think Composites, Dayton, Ohio, 1987.
Tse, S., Morse, I. E., Hinkle, R. T., Mechanical Vibrations, Allyn and Bacon, Boston, 1963.
Tsoumis G., Science and technology of wood. New York, Chapman & Hall, 494 p., 1991.
Úrgela, S., Wahlin, A., Elastic constants of wooden plates derived from transient bending wave holographic interferograms. Drevársky Výskum. 42(3): 23­36., 1997.
Vincent, J. F. V., Structural biomaterials. New Jersey, Princenton university press, 244 p., 1990.
Wang, L. M., Burroughs, C. B., Acoustic radiation from bowed violins. Journal of the Acoustical Society of America, 110(1), pp. 543­555., 2001.
Weaver, W., Johnston, P.R., Structural Dynamics by Finite Elements, Prentice­Hall, pp. 413­415., 1987.
Wegst, U. G. K., Wood for sound. St, Louis, USA: Botanical Society of America Inc. American­Journal­of­Botany. 93(10): 1439­1448., 2006.
Williams, J. P., Piano – průvodce hudebním nástrojem a jeho místem v dějinách, Praha, Slovart, 160 p., 2003
Wogram, K., The string and the soundboard, in: Five lecures on the acoustics of the piano. edited by Askenfelt, 1990.
Woodhouse, J., On the "bridge hill" of the Violin. Acta Acustica united with Acustica, 91 (1), pp. 155­165., 2005. Yanagisawa, T. , Nakamura, K., Dynamic compression characteristics of piano hammer felt, Journal of the Acoustical Society of Japan. vol. 40, pp. 725., 1984.
Yano, H., Mukudai, J., Acoustic properties in the radial direction of Sitka spruce used for piano soundboards. Mokuzai Gakkaishi ­ Journal of the Japan Wood Research Society. 35(10): 882­885., 1989.
Ye, K., Bissinger, G., Attaining `free­free' normal mode frequency and damping conditions for the violin. Proceedings of the International Modal Analysis Conference ­ IMAC, 1, pp. 398­403., 2000.
Zienkiewicz, O.C., Taylor, R.L The finite element method: Basic formulation and linear problems. Volume 1. 4. vyd. London: McGraw­Hill, 648 p., 1989. Zienkiewicz, O.C., Taylor, R.L. The finite element method: Solid and fluid Mechanics, dynamics and non­linearity . Volume 2. 4. vyd. Berkshire: McGraw­Hill, 807 p., 1991. 

Podobné dokumenty

stáhnout soubor - atestační práce

stáhnout soubor - atestační práce Během sledovaného období došlo také k rozvoji specializací farmaceutů, většina z nich (804) pracuje v oboru lékárenství. Mezi muži a ženami není rozdíl v získávání specializace I.stupně, 72,84 mužů...

Více

Tippner, Konas: Model rezonancni desky koncertniho klaviru

Tippner, Konas: Model rezonancni desky koncertniho klaviru BODIG,   J.   &   JAYNE,   B.   A.   1982:   Mechanics   of   wood   and   wood   composites.   Reinhold  Company. New York – Cincinnati – Toronto – London – Melbourne, Van Nostrand, 712pp. BOUTILL...

Více

Abies grandis /Douglas ex D. Don/ Lin

Abies grandis /Douglas ex D. Don/ Lin Česká zemědělská univerzita v Praze, Fakulta lesnická a dřevařská, Kamýcká 129, CZ – 165 21 Praha 6 - Suchdol, Česká republika Výzkumný ústav lesního hospodářství a myslivosti, Strnady 136, CZ – 25...

Více

zde - Univerzita Hradec Králové

zde - Univerzita Hradec Králové V souvislosti s tímto trendem se v aplikacích čím dál více využívá počítačového vidění. Jedním z nejčastějších úkolů počítačového vidění je detekce a rozpoznání osob na fotografii. Příspěvek se věn...

Více

Výpočtové modely lineární lomové mechaniky heterogenních

Výpočtové modely lineární lomové mechaniky heterogenních který byla zvolena metoda dvoustavového ψ-integrálu –viz kapitola 6.1.2, který ve spojení s deformační variantou MKP poskytuje pro jeho výpočet velmi účinný nástroj. Metoda umožňuje stanovit parame...

Více

Výroční zpráva ÚŽFG AV ČR, za rok 2004

Výroční zpráva ÚŽFG AV ČR, za rok 2004 částečné sekvenování a mapování genu SKI, tudium genů exprimovaných ve fetálních a dospělých svalech prasat (A. Stratil – MZLU, Brno). Studium protinádorového působení bovinní pankreatické ribonukl...

Více

Stránka 1 Ústav nauky o dřevě – Dílčí knihovna Autor Název Rok

Stránka 1 Ústav nauky o dřevě – Dílčí knihovna Autor Název Rok Wood and Cellulosic Chemistry. Xerokopie. Tropické dříví. Doporučená znění smluv, jakosti, klasifikace a vady dřeva Fyzikální a mechanické vlastnosti dřeva I. Fyzikální a mechanické vlastnosti dřev...

Více